US3782096A - Apparatus and method for producing no-twist center-pull roving packages - Google Patents

Apparatus and method for producing no-twist center-pull roving packages Download PDF

Info

Publication number
US3782096A
US3782096A US00075524A US3782096DA US3782096A US 3782096 A US3782096 A US 3782096A US 00075524 A US00075524 A US 00075524A US 3782096D A US3782096D A US 3782096DA US 3782096 A US3782096 A US 3782096A
Authority
US
United States
Prior art keywords
mandrel
strand
feeding element
package
feeding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00075524A
Inventor
H Karlson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GOLDSWORTHY ENG Inc
Original Assignee
GOLDSWORTHY ENG Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GOLDSWORTHY ENG Inc filed Critical GOLDSWORTHY ENG Inc
Application granted granted Critical
Publication of US3782096A publication Critical patent/US3782096A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/26Yarns or threads characterised by constructional features, e.g. blending, filament/fibre with characteristics dependent on the amount or direction of twist
    • D02G3/28Doubled, plied, or cabled threads
    • D02G3/281Doubled, plied, or cabled threads using one drawing frame for two slivers and twisting of the slivers to a single yarn, i.e. spin-twisting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H54/00Winding, coiling, or depositing filamentary material
    • B65H54/02Winding and traversing material on to reels, bobbins, tubes, or like package cores or formers
    • B65H54/28Traversing devices; Package-shaping arrangements
    • B65H54/2806Traversing devices driven by cam
    • B65H54/2809Traversing devices driven by cam rotating grooved cam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H54/00Winding, coiling, or depositing filamentary material
    • B65H54/02Winding and traversing material on to reels, bobbins, tubes, or like package cores or formers
    • B65H54/28Traversing devices; Package-shaping arrangements
    • B65H54/2896Flyers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H57/00Guides for filamentary materials; Supports therefor
    • B65H57/006Traversing guides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/31Textiles threads or artificial strands of filaments
    • B65H2701/312Fibreglass strands

Definitions

  • a roving band feeding eye is reciprocated with respect to and simultaneously orbited about a mandrel for winding filament containing roving strands thereupon. The winding is accomplished over the end of the mandrel so that a twist is incorporated in each turn of the roving strand for every revolution of the feeding eye.
  • a device is also provided for shifting the winding eye radially outwardly as the diameter of the roving package increases during winding.
  • This invention relates in general to certain new and useful improvements in method and apparatus for producing roving packages and, more particularly, to-a method and apparatus for producing no-twist packages by winding the roving material over the end of a fixed non-rotatable, non-shiftable mandrel.
  • the package or spool may be mounted on a spindle where the roving is tangentially pulled from the periphery of the spool. Furthermore, the roving may be pulled from the center of the spool without rotating the package. However, if the roving is pulled tangentially, it is necessarily limited to removal at a slow rate of speed since pulling tangentially from a roving package creates high inertial forces and problems of backlash. There are devices which will enable the roving to be pulled from the package tangentially without this problem of drag, but these devices are rather complicated, difficult to operate and rather expensive. When the roving is pulled from the center of the package, speed limitations problems are obviated. However, when pulling from the center of the package, a twist is formed in the roving as each revolution of roving is removed from the package.
  • twist in the filament strand is not eliminated, these twists will appear in the final product as a white scar distributed thinly and somewhat sporadically. These scars are not only decoratively undesirable, but usually interfere with the physical properties of the final product.
  • optimum strength cannot be achieved if the roving as applied to the forming mandrel, is not laid on in the form of a flat, untwisted band.
  • the twist tends to create air voids or resin-rich areas in the ultimate laminate. 1n addition, the twist also creates a variation in the concentration of fiber per unit of cross sectional area of the laminate, thereby causing a reduction in strength in some discrete areas of the laminate.
  • the first order twist is a complement of the second order twist so that the roving can be pulled from the center of the package in a no-twist form.
  • the primary object of the present invention to provide an apparatus and method for winding filament roving on a mandrel to produce a no-twist center-pull roving package in one winding operation.
  • FIG. 1 is a perspective view of an apparatus for producing roving packages which is constructed in accordance with and embodies the present invention
  • FIG. 2 is a vertical sectional view partially broken away and looking down on the top portion of the apparatus of FIG. 1;
  • FIG. 3 is a vertical fragmentary sectional view taken along line 3-3 of FIG. 2;
  • FIG 4 is a fragmentary horizontal sectional view taken along line 4-4 of FIG. 3;
  • FIG 5 is a fragmentary sectional view taken along line 5-5 of FIG. 4;
  • FIG. 6 is a vertical fragmentary sectional view taken along line 6-6 of FIG. 2;
  • FIG. 7 is a fragmentary sectional view taken along line 7-7 of FIG. 6;
  • FIG. 8 is an end elevational view looking toward the right hand end of the apparatus of FIG. 1 with a sectional portion shown through the outrigger on the apparatus of FIG. 1;
  • FIG. 9 is a fragmentary sectional view taken along line 9-9 of FIG. 8;
  • FIG. 10 is a vertical sectional view looking into the interior of a modified form of apparatus for producing roving packages and which view is equivalent to a sectional view taken through the right hand end of the apparatus;
  • the apparatus of the present invention is designed to produce no-twist, center-pull roving packages of filamcntal materials.
  • a centerpull package is referred to in the art as a package of roving having a central bore and a roving end so that it is capable of being unwound from the center of the package.
  • a no-twist package is referred to as a package of roving where the roving can be pulled from the package and used without incorporating a twist in the roving as it is pulled from the package.
  • filament type roving spools or so-called roving balls presently available are generally formed of a series of overlapped, helical windings. Accordingly, it is quite difficult under present practice to remove the roving from a stationary nonrotating ball without imparting a twist thereto.
  • a ribbon of paper is wrapped around one stump, the outside end of the ribbon being held firmly after winding has been completed and the winding is pulled in either direction from the center of the cylinder thus formed, a twist is imparted to the ribbon. Essentially, the same phenomenon occurs to the roving in a roving ball.
  • the apparatus of the present invention generally comprises a fixed non-rotatable, non-shiftable mandrel and a winding frame which rotates about the mandrel.
  • the winding frame carries a feeding head which is reciprocatable with respect to the mandrel and feeds roving thereon at a continuous rate.
  • the feeding head contains a feeding eye which receives the roving from a point which is located outwardly from the end of the mandrel so that during the winding process, the roving is wound over the end of the mandrel.
  • the feeding eye is in effect orbited about the mandrel during its reciprocable movement, and during the winding thereof, the
  • roving is wound over the end of the mandrel so that a twist is incorporated in the roving for each revolution of the feeding eye about the mandrel. As the filament diameter of the formed package increases, the feeding eye will be shifted radially outward from the mandrel.
  • a large cradle-like element which carries the feeding eye revolves about the fixed mandrel.
  • This cradle-like element provides for proper positioning of the feeding eye with respect to the mandrel support shaft as the diameter of the roving spool being formed increases.
  • the present apparatus obviates the large cradle-like structure which rotates about the mandrel and permits axial reciprocative shifting of the feeding eye during its orbiting movement.
  • the sensing of the thickness of the roving package being formed on the mandrel is performed electronically, and accordingly, the speed of the feeding eye and its relative position can be adjusted electronically.
  • A designates an apparatus for producing a no'twist center-pull roving package or so-called spool and generally comprises an outer housing 1 which is illustrated in FIG. I.
  • the outer housing 1 is generally rectangular in both horizontal and vertical cross-section and includes an outrigger 2 substantially as illustrated in FIG. 1.
  • FIG. 1 illustrates the apparatus A as being conventionally mounted on a rectangular support stand D.
  • the outer housing 1 is generally formed by a front wall 3, a back wall 4, and a pair of opposed end walls 5,6.
  • a control panel 7 including the major controls for operation of the winding apparatus A.
  • a fixed (non-rotatable, nonshiftable) mandrel shaft 13 Secured to the support plate 8 and the intermediate support plate 12 and extending longitudinally within the winding chamber 11 is a fixed (non-rotatable, nonshiftable) mandrel shaft 13. At its forward end, the mandrel shaft 13 carries an expandable mandrel 14 which is actuable by means of a manually operable handle 15.
  • a series of camming members (not shown) inside of the mandrel 14 will cause an expansion thereof.
  • the camming members will cause a contraction of the overall diametral size of the mandrel 14.
  • the mandrel 14 is of the type more fully described in copending application Ser. No.
  • worm shaft 16 Concentrically disposed about the mandrel shaft 13 and being rotatable with respect thereto is a worm shaft 16.
  • the worm shaft 16 is provided with a diametrally enlarged extension 17 and is journaled in bearings 18 on the mandrel shaft 13 in the manner illustrated in FIG. 2.
  • a carriage 19 is rotatably supported on both the mandrel shaft 13 and the worm shaft 16 is a cantilever position, as illustrated in FIG. 2.
  • the carriage 19 includes a back plate 20, a forward support ring 21, and an intermediate support plate 22 and each of which are connected by means of longitudinally extending radially spaced shaft assemblies 23,24.
  • the back plate 20 and the intermediate plate 22 are secured to a sleeve 25 which is concentrically disposed about the worm shaft 16 and is rotatable with respect thereto by means of bearings 26 and 27, in the manner as illustrated in FIG. 2.
  • the carriage 19 is rotatable through the sleeve 25 with respect to the worm shaft 16.
  • the carriage 19 is also rotatable with respect to the stationary mandrel shaft 13, and the mandrel 14.
  • the worm shaft 16 is also rotatable with respect to the mandrel shaft 13.
  • a mountingplate 28 is secured to the partition 9 in the power chamber and holds a series of components (to be hereinafter described in detail) for driving the carriage 19 and worm shaft 16 in the winding chamber 11.
  • a conventional D.C. electric motor 29 Secured to the mounting plate 28 is a conventional D.C. electric motor 29 which rotates a main drive shaft 30 through a coupling 31.
  • a pulley 32 Secured to the shaft 30 is a pulley 32, a pulley 33 is integrally formed on an extension 33' secured between the plate and the sleeve forming part of the carriage 19, and cooperates with the pulley 32 through a drive belt 34 that extends around the pulleys 32,33 for powering the carriage 19.
  • the main drive shaft also drives a drive pulley 35 through a gear reducer 36.
  • the pulley 35 cooperates with a second pulley 37 mounted on a stub shaft 38.
  • a pulley 39 Secured to the end of the stub shaft 38 is a pulley 39 which cooperates with a drive wheel 41) operatively connected to the end of the worm shaft 16 through a drive belt 41.
  • roving strands may be wound upon the mandrel 14 (in a manner to be hereinafter described in more detail) into the form of a roving package or so-called spool and conveniently removed from the expandable mandrel 14.
  • diametral expansion and retraction of the mandrel 14 occurs through rotation of the handle 15.
  • the handle 15 is pivotable so that it can be shifted into axial alignment with the mandrel 14 thereby affording convenient removal of a roving package formed on the mandrel 14.
  • the apparatus of the present invention has been designed for the forming of fiberglass roving packages, it should be recognized that the device could be used to form packages of other filamental and nonfilamental materials.
  • packages of boron strands could be formed in the same manner.
  • Fiberglass tapes and other reinforcing material tapes could be formed into no-twist center-pull packages in the same manner.
  • the apparatus and method of the present invention can be used in the forming of balls of wire and the like.
  • the structure involving the mandrel shaft 13, the worm shaft 16, and the associated members is more fully illustrated in FIGS. 3-5. It can be seen that the mandrel shaft 13 is preferably a hollow member, but with sufficient overall thickness to support its weight in a cantilever position.
  • the worm shaft 16, which is also tubular in construction, is concentrically disposed about the mandrel shaft 13 and is slightly spaced therefrom so as to be rotatable with respect to the mandrel ,Shaft 13.
  • the worm shaft 16 is provided with reverse helical grooves 43 which merge with a pair of circumferential grooves 44 located at the transverse ends of the worm shaft 16.
  • the sleeve 25 is not completely circular in vertical cross section and is provided with a relatively flat plate 45 secured to opposed longitudinal margins of the sleeve 25 by means of screws 46.
  • the plate 45 is provided with a longitudinally extending slot 47 defined by the opposed longitudinal margin which permits an actuator 48 to shift reciprocatively in a longitudinal direction within the slot 47.
  • the actuator 48 is provided with a shoe-pin 49 rotatably retained within an internal press-fitted bushing 50, the latter being secured in position in the manner illustrated in FIG. 4.
  • a roller 51 is retained on the bushing 50 and rotatable with respect thereto, and is designed to move within the various grooves 43,44 on the worm shaft 16 secured to the shoe-pin 49 and being movable therewith is an arcuately shaped cam follower 52 or so-called shoe which is designed to carry the roller 51 across the intersection of two intersecting grooves 43.
  • the cam roller 51 will ride within the helical grooves 43 and will cause a shifting movement of the actuator 48 toward one transverse end of the worm shaft 16.
  • the direction of movement of the actuator 48 will be reversed so that the actuator 48 will then begin to shift toward the opposite end position. Accordingly, rotation of the carriage 19 enables a continuous reciprocative movement of the actuator 48 from one transverse end of the worm shaft 16 to the opposite transverse end thereof.
  • a radially extending arm 54 Secured to the bushing 50 by means of the screws 52 is a radially extending arm 54, the latter being secured to the tube assembly 24 in the manner as illustrated in FIGS. 2-4.
  • the shaft assembly 24 generally comprises an aluminum tube 54 which is concentrically disposed within a reciprocating Teflon tube 55.
  • the Teflon tube 55 is concentrically disposed within an outer steel tube 56 in the manner as illustrated in FIGS. 3 and 4.
  • the Teflon tube 55 is designed to provide a twisting action resulting from torsional forces and the aluminum tube 55 is designed to restrain any buckling of the Teflon tube 55.
  • the arm 53 is secured to a shiftable retaining block 57 by means of a series of bolts 58 which extend through the Teflon tube 55 and the aluminum tube 54 and into an aluminum plug 59, the latter being disposed within the aluminum tube 54 for purposes of rigid securement.
  • the retaining block 57 is shiftable with respect to the outer tube 56 in an elongated slot 60 formed within the tube 56. Furthermore, since the retaining block 57 is secured to both the arm 53 and the aluminum tube 54, as well as the Teflon tube 55, the tubes 54,55 are reciprocated with the retaining block 57. Thus, as the arm 53 reciprocates longitudinally with the actuator 48, resulting from rotation of the carriage 19 about the worm shaft 16, the tube assembly consisting of the tubes 54,55 will also reciprocate longitudinally. By further reference to FIG. 3, it can be seen that the Teflon tube 55 is provided with a longitudinal slot 61 for reasons which will presently more fully appear. It should be observed by reference to FIGS. 3 and 4 that the left transverse end of the tubes 54,55 are located a sufficient distance with respect to the left transverse end of the steel tube 56 so that reciprocative movement of the tube assembly 54,55 is enabled with the actuator 48.
  • the mandrel 14 is comprised of a retaining ring 61, which is engageable by a camming member 62, the latter of which causes expansion and contraction of an open ended sleeve 63.
  • a camming member 62 the latter of which causes expansion and contraction of an open ended sleeve 63.
  • the camming member 62 is caused to expand, the sleeve 63 which is provided with overhanging longitudinal margins 64 is also permitted to expand in diametral size. This action is creatd by rotation of the handle as previously indicated.
  • the forwardmost end of the steel tube 56 is secured to the support ring 21 through a bushing 65 and is retained therein by means of a screw and washer assembly 66.
  • a screw and washer assembly 66 the assembly of the shiftable tubes, namely the aluminum tube 54 and the Teflon tube 55 terminates rearwardly of the support ring 21 and is provided at its forwardmost end with a slidable retaining block 67.
  • the block 67 is in the form of a cylindrical plug inserted within the aluminum tube 54 and is retained therein by a series of three longitudinally aligned bolts 68.
  • the bolts 68 project outwardly through the elongated slot 60 in the manner as illustrated in FIGS. 6 and 7.
  • a pivotal roving feed arm 70 which is more fully illustrated in FIGS. 6 and 7.
  • a finger 71 Secured to the outer end of the roving feed arm 70 is a finger 71 in the form of a relatively thin flat plate which is shiftable within a longitudinally extending U-shaped guide 72, the latter being secured to and extending outwardly from the steel tube 56 by means of a plurality of support flanges 73.
  • the roving feed arm 70 is provided with a wiper shoe 74 which has an arcuate surface 75 disposed with respect to the surface of the mandrel 14 and is designed to bear against the surface of the mandrel 14 (or a roving package being formed thereon).
  • the roving feed arm 70 also carries an arcuately shaped roving guide 76, which is designed to receive a strand of roving S from a source to be more fully described in detail hereinafter.
  • the roving is trained through an eyelet 77 formed in a plate 78 secured to the outer end of the steel tube 56 through the locking nut 66.
  • the roving strand S is also trained through a pair of eyelets 79,80 mounted on the roving feed arm 70 in the manner as illustrated in FIGS. 6 and 7.
  • the eyelet 80 actually constitutes a feeding eye since the roving strand S is fed directly from the eyelet 80 directly to the mandrel 14.
  • the actuator 48 shifts longitudinally in a reciprocative manner, it will cause the combination of the Teflon tube and the aluminum tube 54 to also reciprocate longitudinally within the steel tube 56. It should also be observed that the length of movement of the actuator 48 and the various tubes 54,55 is equivalent to the overall length of the mandrel 14. Finally, the block 67 carried at the outer end of the tubes 54,55 will cause the roving feed arm to reciprocate longitudinally. Moreover, it can be observed that during its reciprocative movement the roving feed arm 70 is also rotating about the mandrel l4 inasmuch as the roving feed arm 70 is carried by the carriage 19.
  • the wiper shoe 74 With the feeding eye thereon, actually orbits about the mandrel l4 and simultaneously reciprocates longitudinally with respect to the central axis of the mandrel 14.
  • the roving strands S can be applied to the mandrel 14 after being trained through the eyelet 77 guide the tube 76 and the eyelet 79 and the feed eye 80.
  • the winding Inasmuch as the strand S is fed to the mandrel 14 from a point which is located beyond the end of the mandrel 14, the winding, in essence, occurs over the end of the mandrel 14. This action is more fully illustrated in FIGS. 2 and 7.
  • a first order twist is incorporated in the roving for each revolution of the roving arm 70 about the mandrel 14.
  • the worm shaft 16 rotates at a speed substantially less than the carriage l9 and in the opposite direction with respect to the carriage 19. This slight rotation of the worm shaft 16 is provided in order to provide a contiguous roving pattern application on the mandrel 14. However, the mandrel 14 does not rotate with the worm shaft 16. It can be observed that if the worm shaft 16 did not rotate to this slight degree, the roving strands would not be offset with respect to each other as they are applied to the mandrel 14. It is to be noted that the mandrel 14 has been referred to as a fixed mandrel and defined as being non-rotatable and nonshiftable".
  • mandrel l4 is not rotated in order to effect the forming of a roving package thereon. Furthermore, the mandrel I4 is not shifted in order to permit the contiguous pattern of roving strands to be applied to the surface thereof.
  • the inreased diameter thereof will cause the wipershoe 74 to extend radially from the surface of the mandrel 14.
  • the elongated slot 60 is substantially wider than the bolts 69 (FIGS. 6 and 7) so that the retaining block 67 is capable of being pivoted within the steel tube 56.
  • the degree of pivoting movement or rotation of the retaining block 67 within the steel tube 56 is essentially equivalent to the overall thickness of a roving package to be formed on the mandrel 14.
  • the roving feed arm 70 it is only necessary for the roving feed arm 70 to pivot about the central axis of the retaining block 67 a sufficient amount to permit the windings of strand S on the mandrel to form a roving package of the desired thickness.
  • the retaining block is secured to the aluminum tube 54 and the Teflon tube 55 through the bolts 69.
  • the assembly of tubes 54,55 is secured to the actuator 48 through the retaining block 59.
  • the Teflon tube 55 is provided with a longitudinal slot 61 in order to permit a torsional type of bending so that the tubes 54,55 can be twisted to a limited degree. This twisting enables the roving feed arm 70 to be pivoted outwardly with respect to the central axis of the mandrel l4; and yet to maintain a rigid connection to the actuator 48 for longitudinal shifting of the roving feed arm 70.
  • the feeding eye 80 will orbit about the mandrel l4 and will simultaneously shift longitudinally, back and forth, with respect to the mandrel 14.
  • the roving strand S applied to the mandrel 14 will be wound over the end of the mandrel 14 to form a roving package or spool.
  • the roving feed arm 70 is capable of pivoting with respect to the steel tube 56, the wiper shoe 74 and the feeding eye 80 will always remain a fixed distance with respect to the surface of the spool being formed on the mandrel 14.
  • the roving strand S is received through the eyelet 77 from a surge compensator 81 which is mounted on the outer end of the outrigger 2 and which is more fully illustrated in FIGS. 1, 8 and 9.
  • the outrigger 2 generally includes an outer housing 82 having an extended portion 83 which contains the surge compensator 81.
  • the surge compensator 81 is powered by an outrigger shaft 84 which is in turn powered from the main drive shaft 30 through a belt drive 85.
  • the outer end of the outrigger shaft 84 is journaled in a transversely extending support wall 86 formed in the outrigger housing 82.
  • a worm shaft 87 which is journaled for rotational movement in the manner as illustrated in FIG. 9.
  • the worm shaft 87 and the outrigger shaft 84 is each provided with aligned sprockets 88,89 for accommodating a conventional sprocket drive belt 90. In this manner, the worm shaft 87 is capable of being powered and rotated by means of the outrigger shaft 84.
  • the worm shaft 87 is provided with reverse helical grooves 91 which merge with a pair of circumferential grooves 92 located at each of the transverse ends of the worm shaft 87.
  • a shiftable block 93 is longitudinally and reciprocatively shiftable in an elongated slot 94 formed within the extended portion 83 of the outrigger 2.
  • the block 93 is provided with a camming shoe or so-called follower shoe 95 which rides within the reverse helical grooves 91 and the circumferential grooves 92.
  • roving will be trained through the supply eye 96 and the fixed eyelet 97 before being trained through the eyelet 77.
  • the supply eye 96 will reciprocate longitudinally and at the same and reciprocatively with the feeding eye 80. Both the feeding eye 80 and the roving supply eye 96 will simultaneously shift in the same direction for the same distance and at the same rate of speed. In this manner, the roving strand S is supplied to the roving feed arm and the feeding eye free of any surges.
  • a photodiode plate 98 which has a series of radially aligned photodiodes 99.
  • the plate 98 is mounted in such manner that the diodes 99 extend in a pattern radially from the central axis of rotation of the mandrel l4 and of the carriage 19.
  • a conventional light source 100 which is connected to a suitable source of electrical current (not shown), is mounted on the outrigger 2 in such manner that it projects light upon each of the photodiodes 99.
  • the motor 29 is electrically connected to a suitable feedback control circuit (not shown) and to the bank of photodiodes 99 so that as the successive numbers of diodes 99 are covered by the roving package being formed, the speed of the motor 29 is reduced proportionally. Accordingly, it can be seen that the rotational speed of the roving feed arm 70 and the feeding eye 80 will be adjusted to compensate for the increased diametral size of the roving package being formed. Furthermore, it can be observed that through the pivotal action of the roving feed arm 70, the feeding eye 80 will always be maintained at the same distance with respect to the surface of the roving spool being formed on the mandrel 14. The mandrel 14 can be diametrally reduced by rotating the handle 15 for easy removal of the package formed thereon.
  • the strand When it is desired to remove a strand from the roving package, the strand may be pulled from either the peripheral surface of the package or the center of the package. Inasmuch as the strands have been wound over the end of the mandrel 14 through an orbiting eye 80, each revolution of the eye 80 about the mandrel 14 will cause the incorporation of a first order twist in the strand S. Therefore, when the strand S is removed from the package thus formed, this incorporated twist will be removed for each 360 length of strand in the roving package.
  • the apparatus B is substantially similar to the previously described apparatus A and has a similar outer appearance except that the apparatus B does not employ a surge compensator on the outrigger as in the case of the apparatus A.
  • the apparatus B generally comprises an outer housing 101 which is also generally rectangular in both vertical and horizontal cross section.
  • the apparatus B also includes a worm shaft 102 which is substantially similar to the worm shaft 16 and operable in the same manner.
  • the forward-most end of the worm shaft 102 is journaled in an intermediate support plate 103, which is, in turn, journaled on a mandrel shaft 103', the latter being located in the winding chamber 11.
  • an expandable mandrel 104 Secured to the forward end of the mandrel shaft 103' in a cantilever position is an expandable mandrel 104 which is substantially identical to the previously described mandrel 14 and is operable by a manually actuable handle 105.
  • a series of camming members (not shown) inside of the mandrel 104 will cause a diametral expansion thereof.
  • the camming members will also cause a contraction of the overall diametral size of the mandrel 104.
  • the portion of the apparatus illustrated in FIG. 11 surrounding the mandrel 104 generally comprises the carriage 106, of which the intermediate support plate 103 forms a part thereof.
  • a roving feed arm 107 is located in the winding chamber 11 and coacts with the mandrel 104 in the same manner that the roving feed arm 70 coacted with the mandrel 104.
  • the roving feed arm 107 is furthermore mounted on a shaft assembly 108 which includes an aluminum tube 109, a Teflon tube 110 concentrically disposed therearound, and a steel tubular housing 111.
  • the shaft assembly 108 is substantially similar in all other respects to the previously described shaft assembly which retain the roving feed arms 70.
  • the carriage 106 will rotate about the fixed (non-rotatable, non-shiftable) mandrel 104.
  • the shaft assemblies 109,110 will shift longitudinally in a reciprocative manner to cause a shifting movement of the roving feed arm 107.
  • the roving feed arm 107 will shift in a path from substantially one end of the mandrel 104 to the other end thereof. Inasmuch as the roving feed arm 107 is an integral part of the carriage 106, it will also rotate about the mandrel 104 simultaneously with its reciprocative longitudinal shifting.
  • the roving feed arm 107 is otherwise similar to the roving feed arm 70 and also includes a feeding eye 113. It should also be observed that the strand S is introduced to the feeding eye 113 from a point which is located beyond the end of the mandrel 104. Therefore, the winding, in essence, oc-
  • a first order twist is incorporated in the roving for each revolution of the feeding eye 113 about the mandrel 104.
  • the worm shaft 102 will cause the mandrel 104 to rotate a very slight amount with respect to the carriage 106 in the same manner that the worm shaft 16 and mandrel 14 was rotated with respect to the carriage 19.
  • This slight rotation of the worm shaft 102 is provided in order to enable a contiguous roving pattern on the mandrel 104.
  • the mandrel 104 is non-rotatable and non-shiftable.
  • An arcuately shaped receiving plate 114 is located within the carriage 106 and is fixedly secured thereto so as to be rotatable with the carriage 106. Furthermore, a bushing 115 is mounted on the periphery of the carriage through a shaft 116 and receives the roving strand S from a remote source through an eyelet 117 formed on a support ring 118, the latter being secured to the carriage 106. The roving strand S which is trained about the busing 115 is then also trained over the receiving plate 114 and finally trained through a receiving eyelet 119 on the roving feed arm 107.
  • the roving strand S which is taken from a remote source is trained through the eyelet 1 17, around the bushing 115 and over the receiving plate 1 14. Finally, this roving strand S is then trained through the eyelet 119 and the feeding eye 113 before it is applied to the surface of the mandrel 104.
  • the receiving plate 114 essentially follows the periphery of the carriage 106 and extends for approximately onehalf the circumferential distance of the carriage 106. In this manner, it is possible to eliminate the surge compensator existing in the apparatus A. While the roving strand S is received from a remote source, and over the end of the mandrel 104, it is essentially fed from the bushing 115. Thus, as the roving feed arm 107 reciprocates longitudinally from one end of the mandrel 104 to the other end thereof, the roving strand S will be continuously fed to the feeding eye 113 from the bushing 115. The roving strand S will slide over the surface of the receiving plate 114 as the roving feed arm 107 shifts longitudinally. Accordingly, the surface of the plate 114 is relatively smooth and free of any sharp abutments thereon.
  • the method of producing a package formed of a textile fiber strand which incorporates a twist in each turn of the strand in the package comprising orbiting a strand feeding element with respect to a nonrotating, nonshiftable mandrel receiving said strand, simultaneously shifting said feeding element back and forth in a traversing movement with respect to a portion of the length of said mandrel, introducing strand from a remote source over a plate which extends around the orbiting path of said feeding element and around a dispensing member which is located at a point outwardly of the orbiting path of said feeding element with respect to said mandrel, and which dispensing member is located approximately at the midpoint of the portion of the length of said mandrel covered by the traversing movement of said feeding element so that the strand is introduced to said feeding element on a relatively constant basis, and winding the strand issued from said feeding element about said mandrel and thereby incorporate a twist in said strand for each turn of said strand during each orbiting revolution of said feeding
  • the methodof claim 3 further characterized in that the strand is introduced to the feeding eye in a timed relation to the reciprocative movement of the feeding eye with respect to the mandrel.
  • An apparatus for producing a package formed of a textile fiber strand with a twist incorporated in each turn of the strand in the package comprising base means, a nonrotatable, nonshiftable mandrel operatively mounted on said base means, a strand feeding element orbiting about said mandrel and reciprocatively shifting in the direction of the central axis of said mandrel in a traversing movement simultaneously with the orbiting movement thereof, a plate extending around the orbiting plate of said feeding element and being located to receive strand from a remote source, said plate also being rotatable with said feeding element, a dispensing member operatively associated with said plate and being rotatable therewith, said dispensing member being located at approximately the midpoint of the portion of the mandrel covered by said traversing movement of said feeding eye, said dispensing member receiving said strand from said plate and introducing the strand to the feeding eye on a relatively constant basis, so that the strand issuing from said feeding element is wound over the end of said mandre
  • the apparatus of claim 6 further characterized in that means is provided for reducing the speed of orbiting movement of the feeding element and the speed at which strand is wound about the mandrel as the diametral size of the package being formed thereon increases.
  • a mechanism for rotating an element about an axis of rotation and permitting pivotal movement of said element during rotation thereof comprising support means, means on said support means concentrically located with respect to and defining said axis of rotation, a first member operatively connected to said support means and extending outwardly therefrom, powered means operatively connected to said first member causing rotation of same about said axis of rotation, a second member operatively connected to said first member and being rotatable therewith about said axis of rotation, said second member comprising a first shaft maintaining rigidity against longitudinal bending of said second member, and a second shaft concentrically disposed within at least a portion of said first shaft enabling torsional bending about the longitudinal axis of said second member, and connection means operatively connecting said element to the second shaft of said second member in such manner that said element is rotatable with said second member and so that said element is also pivotal during torsional bending of said second shaft about its longitudinal axis with respect to said second member during the rotational movement of
  • reciprocative means is operatively associated with said powered means and said first member to cause reciprocative movement of said first member and thereby enable reciprocative movement of said element with respect to said axis of rotation simultaneously with rotational movement thereof.
  • the mechanism of claim 13 further characterized in that said reciprocative means comprises a worm shaft and a follower element movable along said worm shaft, camming means existing between said worm shaft and follower element to enable reciprocative movement of said follower element, sandmeans connecting said reciprocative means to said first member to enable reciprocative movement of said first member and said second member.
  • An apparatus for producing a package formed of a textile fiber strand with a twist incorporated in each turn of the strand in the package comprising base means, a nonrotatable, nonshiftable mandrel operatively mounted on said base means, a strand feeding element orbiting about said mandrel and reciprocatively shifting in the direction of the central axis of said mandrel simultaneously with the orbiting movement thereof, a strand supply element located beyond said mandrel and receiving strand from a remote source for ultimate delivery to said strand feeding element, means for reciprocatively shifting said strand supply element in direction substantially parallel to the central axis of said mandrel and in the same direction as the feeding element and at substantially the same rate of speed as the feeding element to thereby provide strand to the feeding element at a relatively constant basis, so that the strand issuing from said feeding element is wound over the end of said mandrel to form a strand package on said mandrel and to thereby incorporate a twist for each turn of said strand during each orbit
  • the apparatus or claim 19 further characterized in that means is provided for regulating the speed of orbiting movement of the feeding element in response to the diametral size of the package being formed on the mandrel.
  • An apparatus for producing a package formed of a textile fiber strand with a twist incorporated in each turn of the strand in the package comprising base means, a nonrotatable, nonshiftable mandrel shaft operatively mounted on said base means, a mandrel secured to said mandrel shaft and extending axially therefrom, a tubular shaft concentrically disposed about a portion of said mandrel shaft, first drive means to rotate said tubular shaft in a first direction, a strand feeding element, second drive means for causing orbiting movement of said feeding element in a second direction opposite to said first direction about said mandrel and reciprocatively shifting said feeding element in the direction of the central axis of said mandrel simultaneously with the orbiting movement thereof, so that the strand issuing from said feeding element is wound over the end of said mandrel to form a strand package on said mandrel and to thereby incorporate a twist in said strand for each turn of said strand during each orbiting revolution of said feeding element
  • the apparatus of claim 21 further characterized in that means is provided for feeding a continuous strand to said feeding element.
  • An apparatus for producing a package formed of a textile fiber strand with a twist incorporated in each turn of the strand in the package comprising base means, a nonshiftable non-rotatable mandrel operatively mounted on said base means, an arm axially spaced from said mandrel, a strand feeding element carried by said arm, motive means rotating said arm about said mandrel and simultaneously reciprocatively shifting said feeding element along said arm in the direction of the central axis of said mandrel so that said feeding element orbits about and simultaneously reciprocatively shifts along said mandrel, so that strand issued from said feeding element is wound over the end 24.
  • the apparatus of claim 23 further characterized in that the sensing means is a photoelectric sensing mechanism.
  • the apparatus of claim 23 further characterized in that means is provided for feeding a continuous strand to said feeding element.

Abstract

An apparatus and a method for producing a roving package by pretwisting a roving band during winding of the package to produce a one-twist per revolution band layer configuration. A roving band feeding eye is reciprocated with respect to and simultaneously orbited about a mandrel for winding filament containing roving strands thereupon. The winding is accomplished over the end of the mandrel so that a twist is incorporated in each turn of the roving strand for every revolution of the feeding eye. A device is also provided for shifting the winding eye radially outwardly as the diameter of the roving package increases during winding.

Description

United States Patent 1191.
Karlson Jan. 1, 1974 APPARATUS AND METHOD FOR PRODUCING NO-TWIST CENTER-PULL ROVING PACKAGES [22] Filed: Sept. 25, 1970 211 Appl. No.: 75,524
[52] US. Cl... 57/71, 57/156, 242/18,
. 242/159 [5i] Int. Cl D01h 1/04, B65h 54/02 [58] Field ofSearch ..57/67-71, 75, 93, 94,156,
57/157 R; 242/18 R, 18 CS, 159, 171
3,070,319 l2/l962 Mackie 242/]8 CS I 3,073,537 H1963 Mackie 242/l8 R 3,498,550 3/I970 Klink et al. 242/l8 R 3,543,503 .l2/l970 Watahc cl al... 57/75 3,545,!92 l2/l970 Hickman 57/7] Primary ExaminerJohn Petrakes Attorney-Robert J. Schaap, John D. Upham and Neal E. Willis [57] ABSTRACT An apparatus and a method for producing a roving package by pretwisting a roving band during winding of the package to produce a one-twist per revolution band layer configuration. A roving band feeding eye is reciprocated with respect to and simultaneously orbited about a mandrel for winding filament containing roving strands thereupon. The winding is accomplished over the end of the mandrel so that a twist is incorporated in each turn of the roving strand for every revolution of the feeding eye. A device is also provided for shifting the winding eye radially outwardly as the diameter of the roving package increases during winding.
25 Claims, ll Drawing Figures PATENTEDJAH 1 m4 SHEET 10F 7 g BY INVENTOR ARALD E. KARLSON M ATTORNEY PATENTEDJAN 11914 3782,0226 SHEET 20F 7 FIG.2
INVENTOR HARALD E. KAR LSO N ATTORNEY PATENTEDJAH 1 I974 3.782.096 SHEET 3 0F 7 INVENTOR HARALD E. KARLSON ATTORNEY PATENTEDJM 1 m4 SHEET l 0F 7 F l l I I 1 I ll INVENTOR HARALD E. KARLSO N Mam ATTQRNEY PATENTEDJAH -1 m4 SHEET 5 BF 7 INVENTOR HARALD E. KARLSON FIG?) ATTORNEY PAIENTEDJAN 1 1974 sum 5 OF 7.
INVENTOR m m% W L ATTORNEY APPARATUS AND METHOD FOR PRODUCING NO-TWIST CENTER-PULL ROVING PACKAGES This invention relates in general to certain new and useful improvements in method and apparatus for producing roving packages and, more particularly, to-a method and apparatus for producing no-twist packages by winding the roving material over the end of a fixed non-rotatable, non-shiftable mandrel.
,In recent years, fiberglass reinforced articles have become more prevalent and as a result thereof, there is a widespread need for spools or so-called roving packages of fiberglass filament. 1n the making of these spools, glass is generally melted and dripped through holes in a viscous condition. To form filaments of fiberglass each of the individual filaments is pulled and then wound upon a drum at a controlled peripheral speed. The speed generally controls the filament diameter and forms a so-called forming package." Ends from a large number of forming packages are then gathered and combined to form a roving or so-called end. These rovings are thereafter wound on a second spool to form a roving package. For example, if 20 ends are gathered to form a roving; a conventional well-known 20-end roving package is produced. These roving packages are then marketed and find employment in a wide variety of applications for the production of filament reinforced articles.
There are basically two ways in which the roving can then be removed from the roving package. The package or spool may be mounted on a spindle where the roving is tangentially pulled from the periphery of the spool. Furthermore, the roving may be pulled from the center of the spool without rotating the package. However, if the roving is pulled tangentially, it is necessarily limited to removal at a slow rate of speed since pulling tangentially from a roving package creates high inertial forces and problems of backlash. There are devices which will enable the roving to be pulled from the package tangentially without this problem of drag, but these devices are rather complicated, difficult to operate and rather expensive. When the roving is pulled from the center of the package, speed limitations problems are obviated. However, when pulling from the center of the package, a twist is formed in the roving as each revolution of roving is removed from the package.
The creation of a twist is highly undesirable in many applications. If the twist in the filament strand is not eliminated, these twists will appear in the final product as a white scar distributed thinly and somewhat sporadically. These scars are not only decoratively undesirable, but usually interfere with the physical properties of the final product. In the field of filament winding or applying continuous roving to a forming mandrel for later impregnation with a thermosetting resin, or in the application of a preimpregnated roving to a forming mandrel for ultimate thermosetting of the resin to achieve a vessel or similar tubular structure, optimum strength cannot be achieved if the roving as applied to the forming mandrel, is not laid on in the form of a flat, untwisted band. Accordingly, if a twist is incorporated in the roving as it is applied to the forming mandrel, the twist tends to create air voids or resin-rich areas in the ultimate laminate. 1n addition, the twist also creates a variation in the concentration of fiber per unit of cross sectional area of the laminate, thereby causing a reduction in strength in some discrete areas of the laminate.
In an effort to overcome this problem, some of the users of the standard filament packages have rotated the spindles in order to unwind the rovings in such fashion that a flat ribbon of filament is maintained. However, breaking units, substantially friction free spindles tension compensating devices and similar equipment is needed to accomplish the unwinding of such packages. In addition, multi-spindled creels are necessary for this type of operation. Therefore, it can be seen that this procedure not only increases the capital equipment necessary to produce the product, but also substantially increases the production time to produce the product with a concomitant increase in product cost.
Furthermore, in order to obviate this problem, many roving producers provide a package with a built-in twist per revolution of roving. This may be accomplished by re-winding the entire spool in order to build the twist into the roving. However, production of such a package necessitates another operation and the product must be sold as a premium product. One such system is described in U.S. Pat. No. 3,311,518 to Stietz et al., In this patent, a system is described where two roving packages are formed. In the first package, the filament is wound on a rotating mandrel to incorporate a first order twist. This roving package is then wound on a second mandrel to incorporate a second order twist. The first order twist is a complement of the second order twist so that the roving can be pulled from the center of the package in a no-twist form. In view of these problems, the users of the roving packages have been reluctantly forced to use the tangential pulloff method in order to achieve a flat ribbon.
It is, therefore, the primary object of the present invention to provide an apparatus and method for winding filament roving on a mandrel to produce a no-twist center-pull roving package in one winding operation.
It is a further object of the present invention to provide an apparatus of the type stated which has production rates and production reliability at least equivalent to that of machines for producing standard roving packages.
It is another object of the present invention to provide a method for producing no-twist, center pull roving packages which is accomplished by winding the filament over the end of the mandrel to incorporate a twist for every revolution of a filament feeding member.
It is an additional object of the present invention to provide an apparatus of the type stated which is rugged in its construction, simple in its operation and rather economical to manufacture.
It is another object of the present invention to provide a filament wound article which is the product of being formed of a substantially continuous multifilament length of said filaments, any given length of which is characterized by a substantially parallel, non-twisted relationship.
It is another salient object of the present invention to provide a method of the type stated which requires only a small amount of manual attention in the production of such roving packages.
With the above and other objects in view, my invention resides in the novel features of form, construction, arrangement and combination of parts presently described and pointed out in the claims.
In the accompanying drawings: (7 sheets) FIG. 1 is a perspective view of an apparatus for producing roving packages which is constructed in accordance with and embodies the present invention;
FIG. 2 is a vertical sectional view partially broken away and looking down on the top portion of the apparatus of FIG. 1;
FIG. 3 is a vertical fragmentary sectional view taken along line 3-3 of FIG. 2;
FIG 4 is a fragmentary horizontal sectional view taken along line 4-4 of FIG. 3;
FIG 5 is a fragmentary sectional view taken along line 5-5 of FIG. 4;
FIG. 6 is a vertical fragmentary sectional view taken along line 6-6 of FIG. 2;
FIG. 7 is a fragmentary sectional view taken along line 7-7 of FIG. 6;
FIG. 8 is an end elevational view looking toward the right hand end of the apparatus of FIG. 1 with a sectional portion shown through the outrigger on the apparatus of FIG. 1;
FIG. 9 is a fragmentary sectional view taken along line 9-9 of FIG. 8;
FIG. 10 is a vertical sectional view looking into the interior of a modified form of apparatus for producing roving packages and which view is equivalent to a sectional view taken through the right hand end of the apparatus; and
FIG. 11 is a vertical sectional view taken along line 11-11 of FIG. 10.
GENERAL DESCRIPTION Generally speaking, the apparatus of the present invention is designed to produce no-twist, center-pull roving packages of filamcntal materials. A centerpull package is referred to in the art as a package of roving having a central bore and a roving end so that it is capable of being unwound from the center of the package. In this art, a no-twist package is referred to as a package of roving where the roving can be pulled from the package and used without incorporating a twist in the roving as it is pulled from the package.
Typically, filament type roving spools or so-called roving balls presently available are generally formed of a series of overlapped, helical windings. Accordingly, it is quite difficult under present practice to remove the roving from a stationary nonrotating ball without imparting a twist thereto. By analogy, if a ribbon of paper is wrapped around one stump, the outside end of the ribbon being held firmly after winding has been completed and the winding is pulled in either direction from the center of the cylinder thus formed, a twist is imparted to the ribbon. Essentially, the same phenomenon occurs to the roving in a roving ball.
The apparatus of the present invention generally comprises a fixed non-rotatable, non-shiftable mandrel and a winding frame which rotates about the mandrel. The winding frame carries a feeding head which is reciprocatable with respect to the mandrel and feeds roving thereon at a continuous rate. The feeding head contains a feeding eye which receives the roving from a point which is located outwardly from the end of the mandrel so that during the winding process, the roving is wound over the end of the mandrel. The feeding eye is in effect orbited about the mandrel during its reciprocable movement, and during the winding thereof, the
roving is wound over the end of the mandrel so that a twist is incorporated in the roving for each revolution of the feeding eye about the mandrel. As the filament diameter of the formed package increases, the feeding eye will be shifted radially outward from the mandrel.
In my copending application Ser. No. 59,26l, filed July 29, 1970, there are described at least two embodiments of an apparatus for producing no-twist centerpull roving packages. Each of these apparatus also operates on the principle that a feeding eye is orbited about a non-rotatable, non-shiftable mandrel and is reciprocatively shifted axially along the mandrel in order to apply roving strands to the mandrel. Furthermore, the strands of roving are wound over the end of the mandrel to incorporate a first order twist for each revolution of the feeding eye about the mandrel. However, in these aforesaid apparatus, a large cradle-like element which carries the feeding eye, revolves about the fixed mandrel. This cradle-like element provides for proper positioning of the feeding eye with respect to the mandrel support shaft as the diameter of the roving spool being formed increases. The present apparatus obviates the large cradle-like structure which rotates about the mandrel and permits axial reciprocative shifting of the feeding eye during its orbiting movement. Furthermore, the sensing of the thickness of the roving package being formed on the mandrel is performed electronically, and accordingly, the speed of the feeding eye and its relative position can be adjusted electronically.
DETAILED DESCRIPTION Referring now in more detail and by reference characters to the drawings which illustrate practical embodiments ofthe present invention, A designates an apparatus for producing a no'twist center-pull roving package or so-called spool and generally comprises an outer housing 1 which is illustrated in FIG. I. The outer housing 1 is generally rectangular in both horizontal and vertical cross-section and includes an outrigger 2 substantially as illustrated in FIG. 1. Furthermore, FIG. 1 illustrates the apparatus A as being conventionally mounted on a rectangular support stand D.
The outer housing 1 is generally formed by a front wall 3, a back wall 4, and a pair of opposed end walls 5,6. Mounted on the front wall 3 is a control panel 7 including the major controls for operation of the winding apparatus A.
Extending between the front wall 3 and the rear wall 4 is an upstanding transversely located support plate 8 and extending between the support plate 8 and the end wall 6 and being secured thereto is a longitudinally extending divider 9 which separates the housing 1 into a power chamber 10 and a winding chamber 11. Also extending between the divider 9 and the front wall 3 is an intermediate support plate 12.
Secured to the support plate 8 and the intermediate support plate 12 and extending longitudinally within the winding chamber 11 is a fixed (non-rotatable, nonshiftable) mandrel shaft 13. At its forward end, the mandrel shaft 13 carries an expandable mandrel 14 which is actuable by means of a manually operable handle 15. Thus, when the handle 15 is rotated in one direction, a series of camming members (not shown) inside of the mandrel 14 will cause an expansion thereof. In like manner, when the handle 15 is rotated in the reverse direction, the camming members will cause a contraction of the overall diametral size of the mandrel 14. The mandrel 14 is of the type more fully described in copending application Ser. No. 846,789, filed Aug. 1, 1969, (now US, Pat. No. 3,645,466, dated Feb. 29, 1972), and is, therefore, neither illustrated nor described in any further detail herein. However, it should be recognized that other types of expandable mandrels such as a pneumatically expandable mandrel could be employed as well.
Concentrically disposed about the mandrel shaft 13 and being rotatable with respect thereto is a worm shaft 16. The worm shaft 16 is provided with a diametrally enlarged extension 17 and is journaled in bearings 18 on the mandrel shaft 13 in the manner illustrated in FIG. 2.
A carriage 19 is rotatably supported on both the mandrel shaft 13 and the worm shaft 16 is a cantilever position, as illustrated in FIG. 2. The carriage 19 includes a back plate 20, a forward support ring 21, and an intermediate support plate 22 and each of which are connected by means of longitudinally extending radially spaced shaft assemblies 23,24. The back plate 20 and the intermediate plate 22 are secured to a sleeve 25 which is concentrically disposed about the worm shaft 16 and is rotatable with respect thereto by means of bearings 26 and 27, in the manner as illustrated in FIG. 2. Thus, it can be seen that the carriage 19 is rotatable through the sleeve 25 with respect to the worm shaft 16. The carriage 19 is also rotatable with respect to the stationary mandrel shaft 13, and the mandrel 14. In like manner, the worm shaft 16 is also rotatable with respect to the mandrel shaft 13.
A mountingplate 28 is secured to the partition 9 in the power chamber and holds a series of components (to be hereinafter described in detail) for driving the carriage 19 and worm shaft 16 in the winding chamber 11. Secured to the mounting plate 28 is a conventional D.C. electric motor 29 which rotates a main drive shaft 30 through a coupling 31. Secured to the shaft 30 is a pulley 32, a pulley 33 is integrally formed on an extension 33' secured between the plate and the sleeve forming part of the carriage 19, and cooperates with the pulley 32 through a drive belt 34 that extends around the pulleys 32,33 for powering the carriage 19. The main drive shaft also drives a drive pulley 35 through a gear reducer 36. The pulley 35 cooperates with a second pulley 37 mounted on a stub shaft 38. Secured to the end of the stub shaft 38 is a pulley 39 which cooperates with a drive wheel 41) operatively connected to the end of the worm shaft 16 through a drive belt 41.
By further reference to FIGS. 1 and 2, it can be seen that access is provided to the interior of the winding chamber 11 through an aperture 42 formed in the right end wall 6. Furthermore, roving strands may be wound upon the mandrel 14 (in a manner to be hereinafter described in more detail) into the form of a roving package or so-called spool and conveniently removed from the expandable mandrel 14. As indicated previously, diametral expansion and retraction of the mandrel 14 occurs through rotation of the handle 15. Furthermore, the handle 15 is pivotable so that it can be shifted into axial alignment with the mandrel 14 thereby affording convenient removal of a roving package formed on the mandrel 14.
While the apparatus of the present invention has been designed for the forming of fiberglass roving packages, it should be recognized that the device could be used to form packages of other filamental and nonfilamental materials. For example, packages of boron strands could be formed in the same manner. Fiberglass tapes and other reinforcing material tapes could be formed into no-twist center-pull packages in the same manner. In addition, the apparatus and method of the present invention can be used in the forming of balls of wire and the like.
The structure involving the mandrel shaft 13, the worm shaft 16, and the associated members is more fully illustrated in FIGS. 3-5. It can be seen that the mandrel shaft 13 is preferably a hollow member, but with sufficient overall thickness to support its weight in a cantilever position. The worm shaft 16, which is also tubular in construction, is concentrically disposed about the mandrel shaft 13 and is slightly spaced therefrom so as to be rotatable with respect to the mandrel ,Shaft 13.
The worm shaft 16 is provided with reverse helical grooves 43 which merge with a pair of circumferential grooves 44 located at the transverse ends of the worm shaft 16. By reference to FIG. 3, it can be seen that the sleeve 25 is not completely circular in vertical cross section and is provided with a relatively flat plate 45 secured to opposed longitudinal margins of the sleeve 25 by means of screws 46. Furthermore, the plate 45 is provided with a longitudinally extending slot 47 defined by the opposed longitudinal margin which permits an actuator 48 to shift reciprocatively in a longitudinal direction within the slot 47. The actuator 48 is provided with a shoe-pin 49 rotatably retained within an internal press-fitted bushing 50, the latter being secured in position in the manner illustrated in FIG. 4. A roller 51 is retained on the bushing 50 and rotatable with respect thereto, and is designed to move within the various grooves 43,44 on the worm shaft 16 secured to the shoe-pin 49 and being movable therewith is an arcuately shaped cam follower 52 or so-called shoe which is designed to carry the roller 51 across the intersection of two intersecting grooves 43. By reference to FIGS. 2 and 3, it can be seen that as the carriage 19 rotates, the cam roller 51 will ride within the helical grooves 43 and will cause a shifting movement of the actuator 48 toward one transverse end of the worm shaft 16. As roller 51 rides in the circumferential groove 44 located at that transverse end, the direction of movement of the actuator 48 will be reversed so that the actuator 48 will then begin to shift toward the opposite end position. Accordingly, rotation of the carriage 19 enables a continuous reciprocative movement of the actuator 48 from one transverse end of the worm shaft 16 to the opposite transverse end thereof.
Secured to the bushing 50 by means of the screws 52 is a radially extending arm 54, the latter being secured to the tube assembly 24 in the manner as illustrated in FIGS. 2-4.
The shaft assembly 24 generally comprises an aluminum tube 54 which is concentrically disposed within a reciprocating Teflon tube 55. Finally, the Teflon tube 55 is concentrically disposed within an outer steel tube 56 in the manner as illustrated in FIGS. 3 and 4. The Teflon tube 55 is designed to provide a twisting action resulting from torsional forces and the aluminum tube 55 is designed to restrain any buckling of the Teflon tube 55. The arm 53 is secured to a shiftable retaining block 57 by means of a series of bolts 58 which extend through the Teflon tube 55 and the aluminum tube 54 and into an aluminum plug 59, the latter being disposed within the aluminum tube 54 for purposes of rigid securement. By further reference to FIGS. 2-4, it can be seen that the retaining block 57 is shiftable with respect to the outer tube 56 in an elongated slot 60 formed within the tube 56. Furthermore, since the retaining block 57 is secured to both the arm 53 and the aluminum tube 54, as well as the Teflon tube 55, the tubes 54,55 are reciprocated with the retaining block 57. Thus, as the arm 53 reciprocates longitudinally with the actuator 48, resulting from rotation of the carriage 19 about the worm shaft 16, the tube assembly consisting of the tubes 54,55 will also reciprocate longitudinally. By further reference to FIG. 3, it can be seen that the Teflon tube 55 is provided with a longitudinal slot 61 for reasons which will presently more fully appear. It should be observed by reference to FIGS. 3 and 4 that the left transverse end of the tubes 54,55 are located a sufficient distance with respect to the left transverse end of the steel tube 56 so that reciprocative movement of the tube assembly 54,55 is enabled with the actuator 48.
By reference to FIG. 6, it can be seen that the mandrel 14 is comprised ofa retaining ring 61, which is engageable by a camming member 62, the latter of which causes expansion and contraction of an open ended sleeve 63. Thus, when the camming member 62 is caused to expand, the sleeve 63 which is provided with overhanging longitudinal margins 64 is also permitted to expand in diametral size. This action is creatd by rotation of the handle as previously indicated.
The forwardmost end of the steel tube 56 is secured to the support ring 21 through a bushing 65 and is retained therein by means of a screw and washer assembly 66. However, by reference to FIG. 7, it can be seen that the assembly of the shiftable tubes, namely the aluminum tube 54 and the Teflon tube 55 terminates rearwardly of the support ring 21 and is provided at its forwardmost end with a slidable retaining block 67. It can be seen by further reference to FIG. 6 that the block 67 is in the form of a cylindrical plug inserted within the aluminum tube 54 and is retained therein by a series of three longitudinally aligned bolts 68. The bolts 68 project outwardly through the elongated slot 60 in the manner as illustrated in FIGS. 6 and 7. Furthermore, these bolts 68 rigidly hold the retaining block 67, and aluminum tube 54, and the Teflon tube 55 in a rigid structure. Thus, it can be seen that the retaining block 67 will shift longitudinally with the aluminum tube 54 and the Teflon tube 55 within the steel tube 56.
Also, operatively secured to the retaining block 67 through the bolts 68 is a pivotal roving feed arm 70 which is more fully illustrated in FIGS. 6 and 7. Secured to the outer end of the roving feed arm 70 is a finger 71 in the form of a relatively thin flat plate which is shiftable within a longitudinally extending U-shaped guide 72, the latter being secured to and extending outwardly from the steel tube 56 by means of a plurality of support flanges 73. Thus, it can be seen that as the retaining block 67 shifts longitudinally within the steel tube 56, the roving feed arm 70 will be carried therewith. Furthermore, the position of the roving arm 70 will be maintained by means of the finger 71 which is slidable on the U-shaped guide 72.
At its inner end, the roving feed arm 70 is provided with a wiper shoe 74 which has an arcuate surface 75 disposed with respect to the surface of the mandrel 14 and is designed to bear against the surface of the mandrel 14 (or a roving package being formed thereon). The roving feed arm 70 also carries an arcuately shaped roving guide 76, which is designed to receive a strand of roving S from a source to be more fully described in detail hereinafter. By further reference to FIG. 7, it can be seen that the roving is trained through an eyelet 77 formed in a plate 78 secured to the outer end of the steel tube 56 through the locking nut 66. Furthermore, the roving strand S is also trained through a pair of eyelets 79,80 mounted on the roving feed arm 70 in the manner as illustrated in FIGS. 6 and 7. The eyelet 80 actually constitutes a feeding eye since the roving strand S is fed directly from the eyelet 80 directly to the mandrel 14.
By further reference to FIGS. 2-7, it can be seen that energization of the motor 29 will cause the carriage 19 to rotate about the worm shaft 16 through the various drive mechanisms previously described. As this occurs, the cam follower 52 will ride within the various grooves 43,44 so that the cam follower reciprocatively shifts longitudinally with respect to the worm shaft 16. As previously described, the roller 51 will ride in the helical grooves 43 until it contacts one circumferential groove 44 at which time the direction of the actuator 48 will be reversed.
Referring again to FIG. 2, it can be seen that as the actuator 48 shifts longitudinally in a reciprocative manner, it will cause the combination of the Teflon tube and the aluminum tube 54 to also reciprocate longitudinally within the steel tube 56. It should also be observed that the length of movement of the actuator 48 and the various tubes 54,55 is equivalent to the overall length of the mandrel 14. Finally, the block 67 carried at the outer end of the tubes 54,55 will cause the roving feed arm to reciprocate longitudinally. Moreover, it can be observed that during its reciprocative movement the roving feed arm 70 is also rotating about the mandrel l4 inasmuch as the roving feed arm 70 is carried by the carriage 19. Accordingly, the wiper shoe 74, with the feeding eye thereon, actually orbits about the mandrel l4 and simultaneously reciprocates longitudinally with respect to the central axis of the mandrel 14. The roving strands S can be applied to the mandrel 14 after being trained through the eyelet 77 guide the tube 76 and the eyelet 79 and the feed eye 80. Inasmuch as the strand S is fed to the mandrel 14 from a point which is located beyond the end of the mandrel 14, the winding, in essence, occurs over the end of the mandrel 14. This action is more fully illustrated in FIGS. 2 and 7. Inasmuch as the roving is wound over the end of the mandrel, a first order twist is incorporated in the roving for each revolution of the roving arm 70 about the mandrel 14.
By further reference to F IG. 2, it can be seen that the worm shaft 16 rotates at a speed substantially less than the carriage l9 and in the opposite direction with respect to the carriage 19. This slight rotation of the worm shaft 16 is provided in order to provide a contiguous roving pattern application on the mandrel 14. However, the mandrel 14 does not rotate with the worm shaft 16. It can be observed that if the worm shaft 16 did not rotate to this slight degree, the roving strands would not be offset with respect to each other as they are applied to the mandrel 14. It is to be noted that the mandrel 14 has been referred to as a fixed mandrel and defined as being non-rotatable and nonshiftable". This is absolutely true since the mandrel l4 is not rotated in order to effect the forming of a roving package thereon. Furthermore, the mandrel I4 is not shifted in order to permit the contiguous pattern of roving strands to be applied to the surface thereof.
As the roving package on the mandrel I4 is being formed, the inreased diameter thereof will cause the wipershoe 74 to extend radially from the surface of the mandrel 14. It can be seen that the elongated slot 60 is substantially wider than the bolts 69 (FIGS. 6 and 7) so that the retaining block 67 is capable of being pivoted within the steel tube 56. The degree of pivoting movement or rotation of the retaining block 67 within the steel tube 56 is essentially equivalent to the overall thickness of a roving package to be formed on the mandrel 14. Thus, it is only necessary for the roving feed arm 70 to pivot about the central axis of the retaining block 67 a sufficient amount to permit the windings of strand S on the mandrel to form a roving package of the desired thickness.
As previously indicated, the retaining block is secured to the aluminum tube 54 and the Teflon tube 55 through the bolts 69. In like manner, the assembly of tubes 54,55 is secured to the actuator 48 through the retaining block 59. However, the Teflon tube 55 is provided with a longitudinal slot 61 in order to permit a torsional type of bending so that the tubes 54,55 can be twisted to a limited degree. This twisting enables the roving feed arm 70 to be pivoted outwardly with respect to the central axis of the mandrel l4; and yet to maintain a rigid connection to the actuator 48 for longitudinal shifting of the roving feed arm 70.
Thus, it can be seen that the feeding eye 80 will orbit about the mandrel l4 and will simultaneously shift longitudinally, back and forth, with respect to the mandrel 14. The roving strand S applied to the mandrel 14 will be wound over the end of the mandrel 14 to form a roving package or spool. Furthermore, it can be observed that since the roving feed arm 70 is capable of pivoting with respect to the steel tube 56, the wiper shoe 74 and the feeding eye 80 will always remain a fixed distance with respect to the surface of the spool being formed on the mandrel 14.
The roving strand S is received through the eyelet 77 from a surge compensator 81 which is mounted on the outer end of the outrigger 2 and which is more fully illustrated in FIGS. 1, 8 and 9. The outrigger 2 generally includes an outer housing 82 having an extended portion 83 which contains the surge compensator 81. The surge compensator 81 is powered by an outrigger shaft 84 which is in turn powered from the main drive shaft 30 through a belt drive 85. The outer end of the outrigger shaft 84 is journaled in a transversely extending support wall 86 formed in the outrigger housing 82.
Also mounted in the outrigger housing 82 and extending longitudinally in the extended portion 83 is a worm shaft 87 which is journaled for rotational movement in the manner as illustrated in FIG. 9. The worm shaft 87 and the outrigger shaft 84 is each provided with aligned sprockets 88,89 for accommodating a conventional sprocket drive belt 90. In this manner, the worm shaft 87 is capable of being powered and rotated by means of the outrigger shaft 84.
The worm shaft 87 is provided with reverse helical grooves 91 which merge with a pair of circumferential grooves 92 located at each of the transverse ends of the worm shaft 87. By further reference to FIG. 9, it can be seen that a shiftable block 93 is longitudinally and reciprocatively shiftable in an elongated slot 94 formed within the extended portion 83 of the outrigger 2. The block 93 is provided with a camming shoe or so-called follower shoe 95 which rides within the reverse helical grooves 91 and the circumferential grooves 92. It can be seen that as the worm shaft 87 rotates, the follower shoe 95 will ride within the helical grooves 91 and will cause a shiftingmovement of the block 93 toward one transverse end of the worm shaft 87. As the shoe 95 rides in the circumferential groove 92 located at that transverse end, the direction of movement of the block 93 will be reversed so that the block 93.will then begin' to shift toward the opposite end position. Accordingly, rotation of the shaft 87 enables a continuous reciprocative movement of the block 93 from one transverse end of the worm shaft 87 to the opposite transverse end thereof. Also secured to the block 93 and extending outwardly therfrom is a roving supply eye 96 which cooperates with a fixed eyelet 97 mounted on the extended section 83 in the manner as illustrated in FIGS. 1, 8 and 9.
Thus, it can be seen that roving will be trained through the supply eye 96 and the fixed eyelet 97 before being trained through the eyelet 77. The supply eye 96 will reciprocate longitudinally and at the same and reciprocatively with the feeding eye 80. Both the feeding eye 80 and the roving supply eye 96 will simultaneously shift in the same direction for the same distance and at the same rate of speed. In this manner, the roving strand S is supplied to the roving feed arm and the feeding eye free of any surges.
Mounted interiorly within the winding chamber 11 and being secured to the mandrel shaft 13 is a photodiode plate 98 which has a series of radially aligned photodiodes 99. The plate 98 is mounted in such manner that the diodes 99 extend in a pattern radially from the central axis of rotation of the mandrel l4 and of the carriage 19. A conventional light source 100, which is connected to a suitable source of electrical current (not shown), is mounted on the outrigger 2 in such manner that it projects light upon each of the photodiodes 99. Thus, when no package is formed on the mandrel 14, all of the photodiodes 99 will be exposed to the source of light 100. However, as a roving package is being formed on the mandrel l4, successive ones of the photodiodes will be removed from light-receiving position with respect to the light source 100.
The motor 29 is electrically connected to a suitable feedback control circuit (not shown) and to the bank of photodiodes 99 so that as the successive numbers of diodes 99 are covered by the roving package being formed, the speed of the motor 29 is reduced proportionally. Accordingly, it can be seen that the rotational speed of the roving feed arm 70 and the feeding eye 80 will be adjusted to compensate for the increased diametral size of the roving package being formed. Furthermore, it can be observed that through the pivotal action of the roving feed arm 70, the feeding eye 80 will always be maintained at the same distance with respect to the surface of the roving spool being formed on the mandrel 14. The mandrel 14 can be diametrally reduced by rotating the handle 15 for easy removal of the package formed thereon.
When it is desired to remove a strand from the roving package, the strand may be pulled from either the peripheral surface of the package or the center of the package. Inasmuch as the strands have been wound over the end of the mandrel 14 through an orbiting eye 80, each revolution of the eye 80 about the mandrel 14 will cause the incorporation of a first order twist in the strand S. Therefore, when the strand S is removed from the package thus formed, this incorporated twist will be removed for each 360 length of strand in the roving package.
It is possible to provide a modified form of apparatus B which is more fully illustrated in FIGS. and 11. The apparatus B is substantially similar to the previously described apparatus A and has a similar outer appearance except that the apparatus B does not employ a surge compensator on the outrigger as in the case of the apparatus A. The apparatus B generally comprises an outer housing 101 which is also generally rectangular in both vertical and horizontal cross section. The apparatus B also includes a worm shaft 102 which is substantially similar to the worm shaft 16 and operable in the same manner. The forward-most end of the worm shaft 102 is journaled in an intermediate support plate 103, which is, in turn, journaled on a mandrel shaft 103', the latter being located in the winding chamber 11. Secured to the forward end of the mandrel shaft 103' in a cantilever position is an expandable mandrel 104 which is substantially identical to the previously described mandrel 14 and is operable by a manually actuable handle 105. When the handle 105 is rotated in one direction, a series of camming members (not shown) inside of the mandrel 104 will cause a diametral expansion thereof. In like manner, when the handle 105 is rotated in the reverse direction, the camming members will also cause a contraction of the overall diametral size of the mandrel 104.
The portion of the apparatus illustrated in FIG. 11 surrounding the mandrel 104 generally comprises the carriage 106, of which the intermediate support plate 103 forms a part thereof. A roving feed arm 107 is located in the winding chamber 11 and coacts with the mandrel 104 in the same manner that the roving feed arm 70 coacted with the mandrel 104. The roving feed arm 107 is furthermore mounted on a shaft assembly 108 which includes an aluminum tube 109, a Teflon tube 110 concentrically disposed therearound, and a steel tubular housing 111. The shaft assembly 108 is substantially similar in all other respects to the previously described shaft assembly which retain the roving feed arms 70. Furthermore, the carriage 106 will rotate about the fixed (non-rotatable, non-shiftable) mandrel 104. In addition, the shaft assemblies 109,110 will shift longitudinally in a reciprocative manner to cause a shifting movement of the roving feed arm 107. The roving feed arm 107 will shift in a path from substantially one end of the mandrel 104 to the other end thereof. Inasmuch as the roving feed arm 107 is an integral part of the carriage 106, it will also rotate about the mandrel 104 simultaneously with its reciprocative longitudinal shifting.
Journaled in the forward end of the roving feed arm 107 and being disposed in sliding contact with the surface of the mandrel 104 in a sensing roller 112 which engages the surface of the mandrel 104 or the roving spool being formed thereon. The roving feed arm 107 is otherwise similar to the roving feed arm 70 and also includes a feeding eye 113. It should also be observed that the strand S is introduced to the feeding eye 113 from a point which is located beyond the end of the mandrel 104. Therefore, the winding, in essence, oc-
curs over the end of the mandrel 104 by a feeding eye 1 13 which shifts both longitudinally with respect to the mandrel 104 and or its about the mandrel 104. Accordingly, a first order twist is incorporated in the roving for each revolution of the feeding eye 113 about the mandrel 104.
It should also be observed in this connection that the worm shaft 102 will cause the mandrel 104 to rotate a very slight amount with respect to the carriage 106 in the same manner that the worm shaft 16 and mandrel 14 was rotated with respect to the carriage 19. This slight rotation of the worm shaft 102 is provided in order to enable a contiguous roving pattern on the mandrel 104. Again, with regard to the forming of the roving package, the mandrel 104 is non-rotatable and non-shiftable.
An arcuately shaped receiving plate 114 is located within the carriage 106 and is fixedly secured thereto so as to be rotatable with the carriage 106. Furthermore, a bushing 115 is mounted on the periphery of the carriage through a shaft 116 and receives the roving strand S from a remote source through an eyelet 117 formed on a support ring 118, the latter being secured to the carriage 106. The roving strand S which is trained about the busing 115 is then also trained over the receiving plate 114 and finally trained through a receiving eyelet 119 on the roving feed arm 107. Thus, it can be seen that the roving strand S which is taken from a remote source is trained through the eyelet 1 17, around the bushing 115 and over the receiving plate 1 14. Finally, this roving strand S is then trained through the eyelet 119 and the feeding eye 113 before it is applied to the surface of the mandrel 104.
Rferring again to FIG. 10, it can be seen that the receiving plate 114 essentially follows the periphery of the carriage 106 and extends for approximately onehalf the circumferential distance of the carriage 106. In this manner, it is possible to eliminate the surge compensator existing in the apparatus A. While the roving strand S is received from a remote source, and over the end of the mandrel 104, it is essentially fed from the bushing 115. Thus, as the roving feed arm 107 reciprocates longitudinally from one end of the mandrel 104 to the other end thereof, the roving strand S will be continuously fed to the feeding eye 113 from the bushing 115. The roving strand S will slide over the surface of the receiving plate 114 as the roving feed arm 107 shifts longitudinally. Accordingly, the surface of the plate 114 is relatively smooth and free of any sharp abutments thereon.
The remainder of the apparatus B operates in substantially the same manner as the apparatus A. F urthermore, the roving package which is produced in the ap paratus B is substantially identical to the roving package produced in the apparatus A. The apparatus B essentially has the same versatility as the apparatus A.
It should be understood that changes and modifications in the form, construction, arrangement, and combination of parts presently described and pointed out may be made and substituted for those herein shown without departing from the nature and principle of my invention.
Having thus described my invention, what I desire to claim and secure by Letters Patent is:
l. The method of producing a package formed of a textile fiber strand which incorporates a twist in each turn of the strand in the package; said method comprising orbiting a strand feeding element with respect to a nonrotating, nonshiftable mandrel receiving said strand, simultaneously shifting said feeding element back and forth in a traversing movement with respect to a portion of the length of said mandrel, introducing strand from a remote source over a plate which extends around the orbiting path of said feeding element and around a dispensing member which is located at a point outwardly of the orbiting path of said feeding element with respect to said mandrel, and which dispensing member is located approximately at the midpoint of the portion of the length of said mandrel covered by the traversing movement of said feeding element so that the strand is introduced to said feeding element on a relatively constant basis, and winding the strand issued from said feeding element about said mandrel and thereby incorporate a twist in said strand for each turn of said strand during each orbiting revolution of said feeding element about said mandrel.
2. The method of claim ll further characterized in that said feeding element is held at a constant distance from the surface of the strand package being formed on the mandrel during its orbiting movement thereabout.
3. The method of claim 1 further characterized in that the speed of orbiting movement of said feeding element is regulated to compensate for the diametral size of the package being formed on said mandrel.
4. The methodof claim 3 further characterized in that the strand is introduced to the feeding eye in a timed relation to the reciprocative movement of the feeding eye with respect to the mandrel.
5. The method of claim 1 further characterized in that the speed of orbiting movement of the feeding element and the speed at which the-strand is applied to the mandrel is reduced as the diametral size of the roving package being formed on said mandrel increases.
6. An apparatus for producing a package formed of a textile fiber strand with a twist incorporated in each turn of the strand in the package, said apparatus comprising base means, a nonrotatable, nonshiftable mandrel operatively mounted on said base means, a strand feeding element orbiting about said mandrel and reciprocatively shifting in the direction of the central axis of said mandrel in a traversing movement simultaneously with the orbiting movement thereof, a plate extending around the orbiting plate of said feeding element and being located to receive strand from a remote source, said plate also being rotatable with said feeding element, a dispensing member operatively associated with said plate and being rotatable therewith, said dispensing member being located at approximately the midpoint of the portion of the mandrel covered by said traversing movement of said feeding eye, said dispensing member receiving said strand from said plate and introducing the strand to the feeding eye on a relatively constant basis, so that the strand issuing from said feeding element is wound over the end of said mandrel to form a strand package on said mandrel and to thereby incorporate a twist in said strand for each turn of said strand during each orbiting revolution of said feeding element about said mandrel.
7. The apparatus of claim 6 further characterized in that motive means is provided for simultaneously orbiting said feeding element about said mandrel and reciprocatively shifting said feeding element with respect to said mandrel.
b. The apparatus of claim 6 further characterized in that means is provided for automatically adjusting the position of said feeding element to hold the feeding element at a constant distance from the surface of the package being formed on the mandrel during the orbiting movement of the feeding element about said mandrel. I
9. The apparatus of claim 6 further characterized in that means is provided for regulating the speed of orbiting movement of the feeding element in response to the diametral size of the package being formed on said mandrel.
10. The apparatus of claim 6 further characterized in that means is provided for reducing the speed of orbiting movement of the feeding element and the speed at which strand is wound about the mandrel as the diametral size of the package being formed thereon increases.
11. A mechanism for rotating an element about an axis of rotation and permitting pivotal movement of said element during rotation thereof, said mechanism comprising support means, means on said support means concentrically located with respect to and defining said axis of rotation, a first member operatively connected to said support means and extending outwardly therefrom, powered means operatively connected to said first member causing rotation of same about said axis of rotation, a second member operatively connected to said first member and being rotatable therewith about said axis of rotation, said second member comprising a first shaft maintaining rigidity against longitudinal bending of said second member, and a second shaft concentrically disposed within at least a portion of said first shaft enabling torsional bending about the longitudinal axis of said second member, and connection means operatively connecting said element to the second shaft of said second member in such manner that said element is rotatable with said second member and so that said element is also pivotal during torsional bending of said second shaft about its longitudinal axis with respect to said second member during the rotational movement of said second member.
12. The mechanism of claim 11 further characterized in that said second member extends in a direction which is substantially parallel to said axis of rotation.
13. The mechanism of claim 1 ll further characterized in that reciprocative means is operatively associated with said powered means and said first member to cause reciprocative movement of said first member and thereby enable reciprocative movement of said element with respect to said axis of rotation simultaneously with rotational movement thereof.
14. The mechanism of claim 13 further characterized in that said reciprocative means comprises a worm shaft and a follower element movable along said worm shaft, camming means existing between said worm shaft and follower element to enable reciprocative movement of said follower element, sandmeans connecting said reciprocative means to said first member to enable reciprocative movement of said first member and said second member.
15. An apparatus for producing a strand package with a twist incorporated in each turn of the strand in the package, said apparatus comprising base means, a nonrotatable nonshiftable mandrel shaft operatively mounted on said base means, a mandrel secured to said mandrel shaft and extending axially therefrom, a tubular shaft concentrically disposed about a portion of said mandrel shaft, first drive means to rotate said tubular shaft, a strand feeding element, second drive means for causing orbiting movement of said feeding element about said mandrel and reciprocatively shifting said feeding element in the direction of the central axis of said mandrel simultaneously with the orbiting movement thereof, a support shaft axially spaced from and being substantially parallel with respect to said mandrel, retaining means operatively associated with saud support shaft and being operatively connected to said feeding element for carrying said feeding element on said shaft, and camming means operatively interposed between said shaft and retaining means to enable longitudinal shifting movement of said retaining means and said feeding element with respect to said mandrel during rotational movement thereof, so that strand issued from said feeding element is wound over the end of said mandrel to form a roving package on said mandrel and to thereby incorporate a twist in each "turn of said strand during each orbiting revolution of said feeding element about said mandrel, and means operatively interposed between said first and second drive means to cause said tubular shaft to rotate at a speed substantially slower than the rate of orbiting movement of said feeding eye and just sufficient so that a turn of strand applied during one reciprocative shifting movement of said feeding eye will not be registered with a trun of strand applied during a previous reciprocative movement of said feeding eye.
16. The method of producing a package formed of a textile fiber strand which incorporates a twist in each turn of the strand in the package, said method comprising orbiting a strand feeding element with respect to a nonrotating, nonshiftable mandrel receiving said strand, simultaneously shifting said feeding element back and forth with respect to a portion of the length of said mandrel, introducing strand from a remote source to a strand supply element located beyond one end of said mandrel, reciprocatively shifting said strand supply element in a direction substantially parallel to said mandrel and in the same direction as said feeding element and at substantially the same rate of speed as said feeding element, transmitting the strand from said supply element to said feeding element during said reciprocatively shifting movement to thereby provide strand to the feeding element on a relatively constant basis, and winding the strand issued from said feeding element about said mandrel over one end thereof to form a strand package on said mandrel and thereby incorporate a twist in said strand for each turn of said strand during each orbiting revolution of said feeding element about said mandrel.
17. The method of claim 16 further characterized in that said feeding element is held at a constant distance from the surface of the strand package being formed on the mandrel during its orbiting movement thereabout.
18. The method of claim 16 further characterized in that the speed of orbiting movement of said feeding element is regulated to compensate for the diametral size of the package being formed on said mandrel.
19. An apparatus for producing a package formed of a textile fiber strand with a twist incorporated in each turn of the strand in the package, said apparatus comprising base means, a nonrotatable, nonshiftable mandrel operatively mounted on said base means, a strand feeding element orbiting about said mandrel and reciprocatively shifting in the direction of the central axis of said mandrel simultaneously with the orbiting movement thereof, a strand supply element located beyond said mandrel and receiving strand from a remote source for ultimate delivery to said strand feeding element, means for reciprocatively shifting said strand supply element in direction substantially parallel to the central axis of said mandrel and in the same direction as the feeding element and at substantially the same rate of speed as the feeding element to thereby provide strand to the feeding element at a relatively constant basis, so that the strand issuing from said feeding element is wound over the end of said mandrel to form a strand package on said mandrel and to thereby incorporate a twist for each turn of said strand during each orbiting revolution of said feeding element about said mandrel.
20. The apparatus or claim 19 further characterized in that means is provided for regulating the speed of orbiting movement of the feeding element in response to the diametral size of the package being formed on the mandrel.
21. An apparatus for producing a package formed of a textile fiber strand with a twist incorporated in each turn of the strand in the package, said apparatus comprising base means, a nonrotatable, nonshiftable mandrel shaft operatively mounted on said base means, a mandrel secured to said mandrel shaft and extending axially therefrom, a tubular shaft concentrically disposed about a portion of said mandrel shaft, first drive means to rotate said tubular shaft in a first direction, a strand feeding element, second drive means for causing orbiting movement of said feeding element in a second direction opposite to said first direction about said mandrel and reciprocatively shifting said feeding element in the direction of the central axis of said mandrel simultaneously with the orbiting movement thereof, so that the strand issuing from said feeding element is wound over the end of said mandrel to form a strand package on said mandrel and to thereby incorporate a twist in said strand for each turn of said strand during each orbiting revolution of said feeding element about said mandrel, and means operatively interposed between said first and second drive means to cause said tubular shaft to rotate at a speed substantially slower than the rate of orbiting movement of said feeding eye and just sufficient so that a turn of strand applied during one reciprocative shifting movement of said feeding eye will not be registered with a turn of strand applied during a previous reciprocative movement of said feeding eye.
22. The apparatus of claim 21 further characterized in that means is provided for feeding a continuous strand to said feeding element.
23. An apparatus for producing a package formed of a textile fiber strand with a twist incorporated in each turn of the strand in the package, said apparatus comprising base means, a nonshiftable non-rotatable mandrel operatively mounted on said base means, an arm axially spaced from said mandrel, a strand feeding element carried by said arm, motive means rotating said arm about said mandrel and simultaneously reciprocatively shifting said feeding element along said arm in the direction of the central axis of said mandrel so that said feeding element orbits about and simultaneously reciprocatively shifts along said mandrel, so that strand issued from said feeding element is wound over the end 24. The apparatus of claim 23 further characterized in that the sensing means is a photoelectric sensing mechanism.
25. The apparatus of claim 23 further characterized in that means is provided for feeding a continuous strand to said feeding element.

Claims (25)

1. The method of producing a package formed of a textile fiber strand which incorporates a twist in each turn of the strand in the package; said method comprising orbiting a strand feeding element with respect to a nonrotating, nonshiftable mandrel receiving said strand, simultaneously shifting said feeding element back and forth in a traversing movement with respect to a portion of the length of said mandrel, introducing strand from a remote source over a plate which extends around the orbiting path of said feeding element and around a dispensing member which is located at a point outwardly of the orbiting path of said feeding element with respect to said mandrel, and which dispensiNg member is located approximately at the midpoint of the portion of the length of said mandrel covered by the traversing movement of said feeding element so that the strand is introduced to said feeding element on a relatively constant basis, and winding the strand issued from said feeding element about said mandrel and thereby incorporate a twist in said strand for each turn of said strand during each orbiting revolution of said feeding element about said mandrel.
2. The method of claim 1 further characterized in that said feeding element is held at a constant distance from the surface of the strand package being formed on the mandrel during its orbiting movement thereabout.
3. The method of claim 1 further characterized in that the speed of orbiting movement of said feeding element is regulated to compensate for the diametral size of the package being formed on said mandrel.
4. The method of claim 3 further characterized in that the strand is introduced to the feeding eye in a timed relation to the reciprocative movement of the feeding eye with respect to the mandrel.
5. The method of claim 1 further characterized in that the speed of orbiting movement of the feeding element and the speed at which the strand is applied to the mandrel is reduced as the diametral size of the roving package being formed on said mandrel increases.
6. An apparatus for producing a package formed of a textile fiber strand with a twist incorporated in each turn of the strand in the package, said apparatus comprising base means, a nonrotatable, nonshiftable mandrel operatively mounted on said base means, a strand feeding element orbiting about said mandrel and reciprocatively shifting in the direction of the central axis of said mandrel in a traversing movement simultaneously with the orbiting movement thereof, a plate extending around the orbiting plate of said feeding element and being located to receive strand from a remote source, said plate also being rotatable with said feeding element, a dispensing member operatively associated with said plate and being rotatable therewith, said dispensing member being located at approximately the midpoint of the portion of the mandrel covered by said traversing movement of said feeding eye, said dispensing member receiving said strand from said plate and introducing the strand to the feeding eye on a relatively constant basis, so that the strand issuing from said feeding element is wound over the end of said mandrel to form a strand package on said mandrel and to thereby incorporate a twist in said strand for each turn of said strand during each orbiting revolution of said feeding element about said mandrel.
7. The apparatus of claim 6 further characterized in that motive means is provided for simultaneously orbiting said feeding element about said mandrel and reciprocatively shifting said feeding element with respect to said mandrel.
8. The apparatus of claim 6 further characterized in that means is provided for automatically adjusting the position of said feeding element to hold the feeding element at a constant distance from the surface of the package being formed on the mandrel during the orbiting movement of the feeding element about said mandrel.
9. The apparatus of claim 6 further characterized in that means is provided for regulating the speed of orbiting movement of the feeding element in response to the diametral size of the package being formed on said mandrel.
10. The apparatus of claim 6 further characterized in that means is provided for reducing the speed of orbiting movement of the feeding element and the speed at which strand is wound about the mandrel as the diametral size of the package being formed thereon increases.
11. A mechanism for rotating an element about an axis of rotation and permitting pivotal movement of said element during rotation thereof, said mechanism comprising support means, means on said support means concentrically located with respect to and defining said axis of rotation, a firSt member operatively connected to said support means and extending outwardly therefrom, powered means operatively connected to said first member causing rotation of same about said axis of rotation, a second member operatively connected to said first member and being rotatable therewith about said axis of rotation, said second member comprising a first shaft maintaining rigidity against longitudinal bending of said second member, and a second shaft concentrically disposed within at least a portion of said first shaft enabling torsional bending about the longitudinal axis of said second member, and connection means operatively connecting said element to the second shaft of said second member in such manner that said element is rotatable with said second member and so that said element is also pivotal during torsional bending of said second shaft about its longitudinal axis with respect to said second member during the rotational movement of said second member.
12. The mechanism of claim 11 further characterized in that said second member extends in a direction which is substantially parallel to said axis of rotation.
13. The mechanism of claim 11 further characterized in that reciprocative means is operatively associated with said powered means and said first member to cause reciprocative movement of said first member and thereby enable reciprocative movement of said element with respect to said axis of rotation simultaneously with rotational movement thereof.
14. The mechanism of claim 13 further characterized in that said reciprocative means comprises a worm shaft and a follower element movable along said worm shaft, camming means existing between said worm shaft and follower element to enable reciprocative movement of said follower element, sandmeans connecting said reciprocative means to said first member to enable reciprocative movement of said first member and said second member.
15. An apparatus for producing a strand package with a twist incorporated in each turn of the strand in the package, said apparatus comprising base means, a nonrotatable nonshiftable mandrel shaft operatively mounted on said base means, a mandrel secured to said mandrel shaft and extending axially therefrom, a tubular shaft concentrically disposed about a portion of said mandrel shaft, first drive means to rotate said tubular shaft, a strand feeding element, second drive means for causing orbiting movement of said feeding element about said mandrel and reciprocatively shifting said feeding element in the direction of the central axis of said mandrel simultaneously with the orbiting movement thereof, a support shaft axially spaced from and being substantially parallel with respect to said mandrel, retaining means operatively associated with said support shaft and being operatively connected to said feeding element for carrying said feeding element on said shaft, and camming means operatively interposed between said shaft and retaining means to enable longitudinal shifting movement of said retaining means and said feeding element with respect to said mandrel during rotational movement thereof, so that strand issued from said feeding element is wound over the end of said mandrel to form a roving package on said mandrel and to thereby incorporate a twist in each turn of said strand during each orbiting revolution of said feeding element about said mandrel, and means operatively interposed between said first and second drive means to cause said tubular shaft to rotate at a speed substantially slower than the rate of orbiting movement of said feeding eye and just sufficient so that a turn of strand applied during one reciprocative shifting movement of said feeding eye will not be registered with a trun of strand applied during a previous reciprocative movement of said feeding eye.
16. The method of producing a package formed of a textile fiber strand which incorporates a twist in each turn of the strand in the package; said method comprising orbiting a strand feeding element with respEct to a nonrotating, nonshiftable mandrel receiving said strand, simultaneously shifting said feeding element back and forth with respect to a portion of the length of said mandrel, introducing strand from a remote source to a strand supply element located beyond one end of said mandrel, reciprocatively shifting said strand supply element in a direction substantially parallel to said mandrel and in the same direction as said feeding element and at substantially the same rate of speed as said feeding element, transmitting the strand from said supply element to said feeding element during said reciprocatively shifting movement to thereby provide strand to the feeding element on a relatively constant basis, and winding the strand issued from said feeding element about said mandrel over one end thereof to form a strand package on said mandrel and thereby incorporate a twist in said strand for each turn of said strand during each orbiting revolution of said feeding element about said mandrel.
17. The method of claim 16 further characterized in that said feeding element is held at a constant distance from the surface of the strand package being formed on the mandrel during its orbiting movement thereabout.
18. The method of claim 16 further characterized in that the speed of orbiting movement of said feeding element is regulated to compensate for the diametral size of the package being formed on said mandrel.
19. An apparatus for producing a package formed of a textile fiber strand with a twist incorporated in each turn of the strand in the package, said apparatus comprising base means, a nonrotatable, nonshiftable mandrel operatively mounted on said base means, a strand feeding element orbiting about said mandrel and reciprocatively shifting in the direction of the central axis of said mandrel simultaneously with the orbiting movement thereof, a strand supply element located beyond said mandrel and receiving strand from a remote source for ultimate delivery to said strand feeding element, means for reciprocatively shifting said strand supply element in direction substantially parallel to the central axis of said mandrel and in the same direction as the feeding element and at substantially the same rate of speed as the feeding element to thereby provide strand to the feeding element at a relatively constant basis, so that the strand issuing from said feeding element is wound over the end of said mandrel to form a strand package on said mandrel and to thereby incorporate a twist for each turn of said strand during each orbiting revolution of said feeding element about said mandrel.
20. The apparatus or claim 19 further characterized in that means is provided for regulating the speed of orbiting movement of the feeding element in response to the diametral size of the package being formed on the mandrel.
21. An apparatus for producing a package formed of a textile fiber strand with a twist incorporated in each turn of the strand in the package, said apparatus comprising base means, a nonrotatable, nonshiftable mandrel shaft operatively mounted on said base means, a mandrel secured to said mandrel shaft and extending axially therefrom, a tubular shaft concentrically disposed about a portion of said mandrel shaft, first drive means to rotate said tubular shaft in a first direction, a strand feeding element, second drive means for causing orbiting movement of said feeding element in a second direction opposite to said first direction about said mandrel and reciprocatively shifting said feeding element in the direction of the central axis of said mandrel simultaneously with the orbiting movement thereof, so that the strand issuing from said feeding element is wound over the end of said mandrel to form a strand package on said mandrel and to thereby incorporate a twist in said strand for each turn of said strand during each orbiting revolution of said feeding element about said mandrel, and means operatively interposed between said first and second drive means to cause said tubulAr shaft to rotate at a speed substantially slower than the rate of orbiting movement of said feeding eye and just sufficient so that a turn of strand applied during one reciprocative shifting movement of said feeding eye will not be registered with a turn of strand applied during a previous reciprocative movement of said feeding eye.
22. The apparatus of claim 21 further characterized in that means is provided for feeding a continuous strand to said feeding element.
23. An apparatus for producing a package formed of a textile fiber strand with a twist incorporated in each turn of the strand in the package, said apparatus comprising base means, a nonshiftable non-rotatable mandrel operatively mounted on said base means, an arm axially spaced from said mandrel, a strand feeding element carried by said arm, motive means rotating said arm about said mandrel and simultaneously reciprocatively shifting said feeding element along said arm in the direction of the central axis of said mandrel so that said feeding element orbits about and simultaneously reciprocatively shifts along said mandrel, so that strand issued from said feeding element is wound over the end of said mandrel to form a roving package on said member and to thereby incorporate a twist in each turn of said strand for each orbiting revolution of said feeding element about said mandrel, and sensing means operatively associated with said arm to monitor the thickness of the package being formed on said mandrel and adjusting the motive means and the speed of orbiting movement of said feeding eye accordingly.
24. The apparatus of claim 23 further characterized in that the sensing means is a photoelectric sensing mechanism.
25. The apparatus of claim 23 further characterized in that means is provided for feeding a continuous strand to said feeding element.
US00075524A 1970-09-25 1970-09-25 Apparatus and method for producing no-twist center-pull roving packages Expired - Lifetime US3782096A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US7552470A 1970-09-25 1970-09-25

Publications (1)

Publication Number Publication Date
US3782096A true US3782096A (en) 1974-01-01

Family

ID=22126335

Family Applications (1)

Application Number Title Priority Date Filing Date
US00075524A Expired - Lifetime US3782096A (en) 1970-09-25 1970-09-25 Apparatus and method for producing no-twist center-pull roving packages

Country Status (1)

Country Link
US (1) US3782096A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4920738A (en) * 1987-03-31 1990-05-01 The Boeing Company Apparatus for winding optical fiber on a bobbin
US5104053A (en) * 1990-09-17 1992-04-14 Bradshaw John A Strand winding machine

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1588938A (en) * 1924-10-03 1926-06-15 Calkins James Birdsall Winding apparatus
US2484178A (en) * 1945-09-25 1949-10-11 Sunbury Wire Rope Mfg Company Wire rope making machine
US2532304A (en) * 1946-12-19 1950-12-05 Specialties Dev Corp Control device for winding machines
US2568960A (en) * 1948-11-12 1951-09-25 Drummondville Cotton Company L Winder
US2623347A (en) * 1949-07-01 1952-12-30 Bishop Alfonso Obispo Apparatus for spinning textile fibers and the like
US3070319A (en) * 1960-02-04 1962-12-25 Mackie & Sons Ltd J Textile winding machine
US3073537A (en) * 1960-03-10 1963-01-15 Mackie & Sons Ltd J Textile winding machine
US3498550A (en) * 1965-05-14 1970-03-03 Owens Corning Fiberglass Corp Apparatus for forming,processing and packaging multi-strand roving
US3543503A (en) * 1967-05-26 1970-12-01 Teijin Ltd Apparatus for winding a yarn
US3545192A (en) * 1966-06-29 1970-12-08 Certain Teed Prod Corp Apparatus for winding roving

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1588938A (en) * 1924-10-03 1926-06-15 Calkins James Birdsall Winding apparatus
US2484178A (en) * 1945-09-25 1949-10-11 Sunbury Wire Rope Mfg Company Wire rope making machine
US2532304A (en) * 1946-12-19 1950-12-05 Specialties Dev Corp Control device for winding machines
US2568960A (en) * 1948-11-12 1951-09-25 Drummondville Cotton Company L Winder
US2623347A (en) * 1949-07-01 1952-12-30 Bishop Alfonso Obispo Apparatus for spinning textile fibers and the like
US3070319A (en) * 1960-02-04 1962-12-25 Mackie & Sons Ltd J Textile winding machine
US3073537A (en) * 1960-03-10 1963-01-15 Mackie & Sons Ltd J Textile winding machine
US3498550A (en) * 1965-05-14 1970-03-03 Owens Corning Fiberglass Corp Apparatus for forming,processing and packaging multi-strand roving
US3545192A (en) * 1966-06-29 1970-12-08 Certain Teed Prod Corp Apparatus for winding roving
US3543503A (en) * 1967-05-26 1970-12-01 Teijin Ltd Apparatus for winding a yarn

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4920738A (en) * 1987-03-31 1990-05-01 The Boeing Company Apparatus for winding optical fiber on a bobbin
US5104053A (en) * 1990-09-17 1992-04-14 Bradshaw John A Strand winding machine

Similar Documents

Publication Publication Date Title
US2550136A (en) Method of twisting strands together to form a ply construction
US2778578A (en) Winding machine
US2737773A (en) Apparatus for making elastic yarn
US3785137A (en) Apparatus and method for producing no-twist center-pull roving packages
US2503242A (en) Mechanism for twisting together two strands
US3848405A (en) Apparatus and method for producing no-twist center pull roving packages
US3328946A (en) Apparatus for making corkscrew-type yarns
US2830431A (en) Strand twisting machine
GB1399775A (en) Winding machine for producing coil springs
US3822833A (en) Thread supply device for textile machines
US3383851A (en) Method of producing roving
US3782096A (en) Apparatus and method for producing no-twist center-pull roving packages
US3545192A (en) Apparatus for winding roving
US3866403A (en) Untwisting mechanism
US2631787A (en) Winding machine
US2635413A (en) Strand-former balloon control
IL28651A (en) Apparatus for the production of chenille
US3430312A (en) Fiber winding machine
US3066472A (en) Method and apparatus for handling strands
US4754599A (en) Yarn twisting apparatus
US2990603A (en) Apparatus for draw-stretching and winding yarn
US4026484A (en) Apparatus for controlling a winding device for a continuously supplied fiber sliver
US3330103A (en) Machine for manufacturing chenille and garlands
US4603545A (en) Yarn twisting and winding apparatus
US3503197A (en) Process and apparatus for drawing and twisting fibrous slivers