US3781518A - Vacuum pumps - Google Patents

Vacuum pumps Download PDF

Info

Publication number
US3781518A
US3781518A US00267413A US3781518DA US3781518A US 3781518 A US3781518 A US 3781518A US 00267413 A US00267413 A US 00267413A US 3781518D A US3781518D A US 3781518DA US 3781518 A US3781518 A US 3781518A
Authority
US
United States
Prior art keywords
heating element
tube
tubular
casing
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00267413A
Inventor
B Power
R Oswald
D Tooth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BOC Group Ltd
UK Atomic Energy Authority
Original Assignee
British Oxigen Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by British Oxigen Ltd filed Critical British Oxigen Ltd
Application granted granted Critical
Publication of US3781518A publication Critical patent/US3781518A/en
Assigned to UNITED KINGDOM ATOMIC ENERGY AUTHORITY reassignment UNITED KINGDOM ATOMIC ENERGY AUTHORITY ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: BOC INTERNATIONAL LIMITED, HAMMERSMITH HOUSE LONDON W6 9DX ENGLAND
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/28Methods of steam generation characterised by form of heating method in boilers heated electrically

Definitions

  • ABSTRACT 5 Claims 1 Drawing Figure VACUUM PUMPS FIELD OF THE INVENTION
  • This invention relates to a vapour generator and more particularly to an electrically heated vaporiser for producing a vapour stream for vacuum pumps.
  • vapour vacuum pumps the oil or other liquid to be vaporised is heated by a heater immersed in the liquid.
  • This has the disadvantage of having a high thermal inertia i.e. the pump takes a long time to be fully effective after the heater is first energised, and continues to operate for an appreciable period after the heater has been deenergised.
  • the present invention aims at providing a vapour vacuum pump-of low thermal inertia by the use of a vaporiser positioned adjacent to the vapour nozzles and to which the liquid to be vaporised is pumped from a separate source.
  • an electrically-heated vaporiser including a central support tube down which passes the liquid to be vaporised, the lower end of said tube being gagement with the support tube, the heating element being retained under an axial compression, despite thermalmovements thereof, by spring means positioned between the said slidable collar and an adjacent collar fixed to the support tube.
  • the said porous electricql insulation material is made of a ceramic fibre in the form of paper.
  • an electrically-heated vaporiser in which electric current is supplied to one end of a porous heating element through an inlet tube for the liquid to be vaporised, in which the tube is encircled by a longitudinal chamber in communication with the interior of the tube through passages in its walls, the chamber being in communication with the inner surface of the heating element whereby both surfaces of the tube are cooled by the incoming liquid while flowing to the heating element.
  • an electrically-heated vaporiser including a tubular porous, heating element having one of its ends connected to a flange, intended to remain at room or other relatively-cold temperature, through a thingauge tubular member of low thermal conductivity, such as stainless steel and in which the flange also supports a second tubular member of like low thermal conductivity supporting a nozzle for the vaporised liquid, the two tubular members being closely spaced apart to inhibit the passage of vapour to the cold flange through the space between the two members.
  • an electrically-heated vaporiser including a tubular, porous, heating element connected at both ends to metal caps intended to carry the heating current, in which the joints between the heating element and the caps are sealed in a fluid-tight manner by the use of gaskets of flexible electrically conductive material such graphite.
  • the vaporiser includes a central support tube 2, which is secured at its upper end, in a fluid-tight manner, to a mounting member (not shown) and to means for passing the liquid to be vaporised to the interior of the tube.
  • a collar 4 adjacent to a slidable collar 6 of insulating material, the two collars having positioned between them two or more appropriately-directed Schnorr or Belleville washers 8 which function as a spring.
  • Movable with collar 6 is a sleeve 10, which is sealed against the loss of liquid from the interior of the vaporiser, and is electrically insulated from the tube 2 by means of a layer 12 of plastics material.
  • a thin-walled tube 14 having its lower end fixed to an annular end cap 16 attached to a short, thin-walled, tube 18 of stainless steel.
  • Tube 18 is connected at its upper end to a support flange 20.
  • One end of an electric cable (not shown) for the heating current is clamped directly to the tube 14.
  • the cap 16 is in electroconductive contact with the upper end (as viewed) of a porous heating element 22 through an annular gasket 24 of flexible graphite.
  • a particularly-suitable form of graphite is that sold under the trade name Grafoil by Union Carbide Corporation.
  • a similar gasket 26 is positioned between the lower end of the element and a second end cap 28 which is secured to the lower end of tube 2, by a nut 30, in a manner which does not form part of the subject-matter of the present invention and which is therefore not described in further detail.
  • a porous, temperature;-resistant, material 32 Positioned in intimate contact with the inner surface of the heating element 22 are three layers of a porous, temperature;-resistant, material 32.
  • a preferred material is of ceramic fibre in paper form: one particularlysuitable material is that sold under the registered trade mark Fiberfrax by the Carborundum Company Ltd. Because of the necessity that the material be in intimate contact with the inner surface of the heating element 22, a light helical spring (not shown) is positioned within chamber 34 so as to press the fibrous material outwardly into contact with element 22.
  • the sleeve 10, tube 14, end cap 16, porous material 32 and end cap 28 define the chamber 34.
  • the liquid to be vaporised enters this chamber through passages 36 formed in the walls of tube 2.
  • the tube has its inner and outer surfaces contacted by a stream of the incoming liquid to be cooled thereby. Because the tube 2 functions as an input lead for the heating current, any Joule heat released in the tube by the passage of this current serves to preheat the liquid and which also serves to prevent or reduce the occurrence of local hot-spots in the tube 2.
  • the inner end of nozzle 40 extends above the end wall 42 of casing 38. This is to ensure that any unvaporised liquid which passes through the element 22, and any condensate produced in the interior of casing 38, flow through a drip tube 44 in preference to passing down the nozzle 40.
  • the drip tube 44 preferably extends to the exterior of the pump housing, or to adjacent the exterior water-cooled surfaces thereof, so that the liquid from the tube does not interfere with operation of the pump.
  • the casing 38 is supported from a flange 46 which is secured to flange 20 in a fluid-tight manner and forms a connection with heating element 22.
  • the connection is through a thin-walled tube 48 of stainless steel which is spaced radially by only a short distance from tube 18.
  • This spacing leaves only a small gap intended to inhibit I the passage of vapour through the gap and into contact with the cold flange 20. This thus reduces the effective loss of vapour caused by condensation thereof internally of the vaporiser.
  • a radiation shield 52 is also secured to flange 46, by means of an intermediate tapered support 50. This is provided primarily to keep the enclosed boiler unit hot and to reduce recondensation of vapour inside the boiler unit, and only secondarily to prevent radiation from the heated parts of the vaporiser from falling directly on the inner surfaces of the vacuum pump. This is important because, under operating conditions, the evacuated interior of the pump favours the transference of heat by radiation rather than by either conduction or convection, so that the shield 52 acts to main tain the temperature differential between-the vaporiser and the pump housing.
  • the illustrated vaporiser would be usedwith its axis vertical and oriented as shown.
  • the basic components of the vaporiser would be unchanged, but minor changes might have to be made to the nozzle and drip tube construction to ensure, as far as possible, that no liquid issues from nozzle 40, but only vapour.
  • Element 22 has the highest electrical resistance, so that it dissipates the largest amount of Joule heat. After a relatively-short time element 22 reaches such a temperature that when liquid is forced radially outwardly through its pores it is vaporised before or as it reaches the outer surface of element 22. To prevent the element 22 from being overheated it is normally arranged for the flow of heating current to be started only after starting of the pump which supplies liquid to the interior of the vaporiser. Because of the small mass of the material to be heated, the vaporiser hasonly a short warming-up period before it reaches its operating conditions.
  • the present invention provides a vaporiser with very low thermal inertia useful for vaporising oils or other liquids which are nonconductors of electricity.
  • An electrically heated vaporizer comprising an elongated support tube through which the liquid to be vaporized passes, a casing enclosing the lower portion of said tube, a tubular, porous electrical heating element within said casing and encircling said support tube at the lower portion thereof, means placing said electrical heating element under axial compression, at least one layer of porous insulating material in intimate contact with the inner surface of said heating element and radially spaced from said tube at the lower end thereof, a first collar member welded to said tube portion that extends outside said casing, a second collar in sliding, fluid tight engagement with a portion of said tube that extends outside said casing and below and adjacent said first collar, means connecting said electrical heating element to said second collar, and spring means between said first collar and said second collar to retain said heating element under axial compression during thermal movements.
  • said support tube comprises an inlet tube for the liquid to be vaporized, said tube having passages formed in the walls thereof for the passage of liquid therethrough, means forming a chamber encircling said tube and having a portion extending within said casing, said portion within said casing disposed within said heating element, whereby said chamber is in communication with the inner surface of said heating element to thereby cool the inner and outer surfaces of said tube as liquid is passed to said heating element.

Abstract

An electrically heated vaporiser particularly for a vapour vacuum pump, comprising a porous electrical heating element through which the liquid to be vaporised is pumped and having means for retaining the mechanical integrity of the heating element despite thermal movements and for reducing heat losses.

Description

United States Patent [191 Power et al.
[ Dec. 25, 1973 VACUUM PUMPS Inventors: Basil Dixon Power; Roger Derek Oswald; David Michael Tooth, all of Crawley, England The British Oxygen Company Limited, London, England Filed: June 29, 1972 Appl. No.: 267,413
Assignee:
U.S. Cl 219/271, 219/275, 417/152, 417/208 Int. Cl. F221) 1/28 Field of Search 219/271, 272, 273,
References Cited UNITED STATES PATENTS 8/1972 Rice et al 219/275 X Pope 219/381 x Power 219/275 x Primary Examiner-C. L. Albritton AtmrneyRobert l. Dennison et al.
[ 5 7] ABSTRACT 5 Claims, 1 Drawing Figure VACUUM PUMPS FIELD OF THE INVENTION This invention relates to a vapour generator and more particularly to an electrically heated vaporiser for producing a vapour stream for vacuum pumps.
DESCRIPTION OF THE PRIOR ART In known vapour vacuum pumps the oil or other liquid to be vaporised is heated by a heater immersed in the liquid. This has the disadvantage of having a high thermal inertia i.e. the pump takes a long time to be fully effective after the heater is first energised, and continues to operate for an appreciable period after the heater has been deenergised. In cantradistinction the present invention aims at providing a vapour vacuum pump-of low thermal inertia by the use of a vaporiser positioned adjacent to the vapour nozzles and to which the liquid to be vaporised is pumped from a separate source.
SUMMARY OF THE INVENTION According to one feature of the present invention there is provided an electrically-heated vaporiser including a central support tube down which passes the liquid to be vaporised, the lower end of said tube being gagement with the support tube, the heating element being retained under an axial compression, despite thermalmovements thereof, by spring means positioned between the said slidable collar and an adjacent collar fixed to the support tube.
Preferably the said porous electricql insulation material is made of a ceramic fibre in the form of paper.
According to another feature of the present invention there is provided an electrically-heated vaporiser in which electric current is supplied to one end of a porous heating element through an inlet tube for the liquid to be vaporised, in which the tube is encircled by a longitudinal chamber in communication with the interior of the tube through passages in its walls, the chamber being in communication with the inner surface of the heating element whereby both surfaces of the tube are cooled by the incoming liquid while flowing to the heating element.
According to yet another feature of the present invention there is provided an electrically-heated vaporiser including a tubular porous, heating element having one of its ends connected to a flange, intended to remain at room or other relatively-cold temperature, through a thingauge tubular member of low thermal conductivity, such as stainless steel and in which the flange also supports a second tubular member of like low thermal conductivity supporting a nozzle for the vaporised liquid, the two tubular members being closely spaced apart to inhibit the passage of vapour to the cold flange through the space between the two members.
According to still another feature of the present invention there is provided an electrically-heated vaporiser including a tubular, porous, heating element connected at both ends to metal caps intended to carry the heating current, in which the joints between the heating element and the caps are sealed in a fluid-tight manner by the use of gaskets of flexible electrically conductive material such graphite.
The present invention will now be described by way of example with reference to the accompanying drawing, which is a sectional view of a vaporiser of the present invention, intended for use in a vapour vacuum pump.
The vaporiser includes a central support tube 2, which is secured at its upper end, in a fluid-tight manner, to a mounting member (not shown) and to means for passing the liquid to be vaporised to the interior of the tube. Welded or otherwise secured to the tube is a collar 4 adjacent to a slidable collar 6 of insulating material, the two collars having positioned between them two or more appropriately-directed Schnorr or Belleville washers 8 which function as a spring.
Movable with collar 6 is a sleeve 10, which is sealed against the loss of liquid from the interior of the vaporiser, and is electrically insulated from the tube 2 by means of a layer 12 of plastics material.
Extending from sleeve 10 is a thin-walled tube 14 having its lower end fixed to an annular end cap 16 attached to a short, thin-walled, tube 18 of stainless steel. Tube 18 is connected at its upper end to a support flange 20. One end of an electric cable (not shown) for the heating current is clamped directly to the tube 14.
The cap 16 is in electroconductive contact with the upper end (as viewed) of a porous heating element 22 through an annular gasket 24 of flexible graphite. A particularly-suitable form of graphite is that sold under the trade name Grafoil by Union Carbide Corporation.
A similar gasket 26 is positioned between the lower end of the element and a second end cap 28 which is secured to the lower end of tube 2, by a nut 30, in a manner which does not form part of the subject-matter of the present invention and which is therefore not described in further detail.
Positioned in intimate contact with the inner surface of the heating element 22 are three layers of a porous, temperature;-resistant, material 32. A preferred material is of ceramic fibre in paper form: one particularlysuitable material is that sold under the registered trade mark Fiberfrax by the Carborundum Company Ltd. Because of the necessity that the material be in intimate contact with the inner surface of the heating element 22, a light helical spring (not shown) is positioned within chamber 34 so as to press the fibrous material outwardly into contact with element 22.
It will be seen that the sleeve 10, tube 14, end cap 16, porous material 32 and end cap 28 define the chamber 34. The liquid to be vaporised enters this chamber through passages 36 formed in the walls of tube 2. Thus the tube has its inner and outer surfaces contacted by a stream of the incoming liquid to be cooled thereby. Because the tube 2 functions as an input lead for the heating current, any Joule heat released in the tube by the passage of this current serves to preheat the liquid and which also serves to prevent or reduce the occurrence of local hot-spots in the tube 2.
Surrounding the heating element 22, and spaced from it, is a casing 38 leading to a nozzle 40 arranged to direct the emitted vapour into the interior of a vapour vacuum pump, of which the other components are conventional and are therefore not shown in the drawing. A feature to note is that the inner end of nozzle 40 extends above the end wall 42 of casing 38. This is to ensure that any unvaporised liquid which passes through the element 22, and any condensate produced in the interior of casing 38, flow through a drip tube 44 in preference to passing down the nozzle 40. The drip tube 44 preferably extends to the exterior of the pump housing, or to adjacent the exterior water-cooled surfaces thereof, so that the liquid from the tube does not interfere with operation of the pump.
The casing 38 is supported from a flange 46 which is secured to flange 20 in a fluid-tight manner and forms a connection with heating element 22. The connection is through a thin-walled tube 48 of stainless steel which is spaced radially by only a short distance from tube 18.
This spacing leaves only a small gap intended to inhibit I the passage of vapour through the gap and into contact with the cold flange 20. This thus reduces the effective loss of vapour caused by condensation thereof internally of the vaporiser.
Also secured to flange 46, by means of an intermediate tapered support 50, is a radiation shield 52. This is provided primarily to keep the enclosed boiler unit hot and to reduce recondensation of vapour inside the boiler unit, and only secondarily to prevent radiation from the heated parts of the vaporiser from falling directly on the inner surfaces of the vacuum pump. This is important because, under operating conditions, the evacuated interior of the pump favours the transference of heat by radiation rather than by either conduction or convection, so that the shield 52 acts to main tain the temperature differential between-the vaporiser and the pump housing.
' In operation it is intended that the illustrated vaporiser would be usedwith its axis vertical and oriented as shown. For other applications it may be desirable to mount the vaporiser at an acute angle to the horizontal. In such a case the basic components of the vaporiser would be unchanged, but minor changes might have to be made to the nozzle and drip tube construction to ensure, as far as possible, that no liquid issues from nozzle 40, but only vapour.
When the pump is to be operated electric current is passed down tube 2 and then flows along the length of element 22 through the annular end cap 16 to tube 14. Element 22 has the highest electrical resistance, so that it dissipates the largest amount of Joule heat. After a relatively-short time element 22 reaches such a temperature that when liquid is forced radially outwardly through its pores it is vaporised before or as it reaches the outer surface of element 22. To prevent the element 22 from being overheated it is normally arranged for the flow of heating current to be started only after starting of the pump which supplies liquid to the interior of the vaporiser. Because of the small mass of the material to be heated, the vaporiser hasonly a short warming-up period before it reaches its operating conditions. The same applies when thepump is to be stopped, for the supply of heating current is stopped a short time before the liquid pump is stopped. This ensures that the element 22 is cooled quickly by fresh liquid which is pumped through it until it is cool enough to vaporise only a negligible amount, if any, of the liquid passing through it. When this has happened the supply of liquid is stopped.
It will thus be seen that the present invention provides a vaporiser with very low thermal inertia useful for vaporising oils or other liquids which are nonconductors of electricity.
We claim:
1. An electrically heated vaporizer comprising an elongated support tube through which the liquid to be vaporized passes, a casing enclosing the lower portion of said tube, a tubular, porous electrical heating element within said casing and encircling said support tube at the lower portion thereof, means placing said electrical heating element under axial compression, at least one layer of porous insulating material in intimate contact with the inner surface of said heating element and radially spaced from said tube at the lower end thereof, a first collar member welded to said tube portion that extends outside said casing, a second collar in sliding, fluid tight engagement with a portion of said tube that extends outside said casing and below and adjacent said first collar, means connecting said electrical heating element to said second collar, and spring means between said first collar and said second collar to retain said heating element under axial compression during thermal movements.
2. An electrically heated vaporiser as claimed in claim 1 wherein said porous electrical insulation material is made of a ceramic fibre in the form of paper.
3. The vaporizer set forth in claim 1 in which said support tube comprises an inlet tube for the liquid to be vaporized, said tube having passages formed in the walls thereof for the passage of liquid therethrough, means forming a chamber encircling said tube and having a portion extending within said casing, said portion within said casing disposed within said heating element, whereby said chamber is in communication with the inner surface of said heating element to thereby cool the inner and outer surfaces of said tube as liquid is passed to said heating element.
4. The vaporizer of claim 1 and further including a metal cap secured to said tubular, porous heating element at each end thereof in electroconductive contact therewith, means for sealing the joints between the respective ends of said tubular, porous heating element and the caps secured thereto, said sealing means comprising an annular gasket of flexible electrically conductive material between each cap and the respective ends of said tubular element.
5. The vaporizer of claim 1 and further including a flange outside said casing and exposed to ambient temperature to be thereby maintained relatively cool, means interconnecting said flange to said tubular, porous electrical heating element, said interconnecting means comprising a first tubular member of low thermal conductivity connected at one end to said flange and at the other end to said heating element, and a second tubular member of low thermal conductivity connected at one end to said flange and closely spaced from said first tubular member at the flange connected end and forms a supporting means at the other end for a nozzle through which vaporized liquid is passed, said close spacing between the respective ends of the first and second tubular members inhibiting the passage of vapor to the relatively cool flange.

Claims (5)

1. An electrically heated vaporizer comprising an elongated support tube through which the liquid to be vaporized passes, a casing enclosing the lower portion of said tube, a tubular, porous electrical heating element within said casing and encircling said support tube at the lower portion thereof, means placing said electrical heating element under axial compression, at least one layer of porous insulating material in intimate contact with the inner surface of said heating element and radially spaced from said tube at the lower end thereof, a first collar member welded to said tube portion that extends outside said casing, a second collar in sliding, fluid tight engagement with a portion of said tube that extends outside said casing and below and adjacent said first collar, means connecting said electrical heating element to said second collar, and spring means betwEen said first collar and said second collar to retain said heating element under axial compression during thermal movements.
2. An electrically heated vaporiser as claimed in claim 1 wherein said porous electrical insulation material is made of a ceramic fibre in the form of paper.
3. The vaporizer set forth in claim 1 in which said support tube comprises an inlet tube for the liquid to be vaporized, said tube having passages formed in the walls thereof for the passage of liquid therethrough, means forming a chamber encircling said tube and having a portion extending within said casing, said portion within said casing disposed within said heating element, whereby said chamber is in communication with the inner surface of said heating element to thereby cool the inner and outer surfaces of said tube as liquid is passed to said heating element.
4. The vaporizer of claim 1 and further including a metal cap secured to said tubular, porous heating element at each end thereof in electroconductive contact therewith, means for sealing the joints between the respective ends of said tubular, porous heating element and the caps secured thereto, said sealing means comprising an annular gasket of flexible electrically conductive material between each cap and the respective ends of said tubular element.
5. The vaporizer of claim 1 and further including a flange outside said casing and exposed to ambient temperature to be thereby maintained relatively cool, means interconnecting said flange to said tubular, porous electrical heating element, said interconnecting means comprising a first tubular member of low thermal conductivity connected at one end to said flange and at the other end to said heating element, and a second tubular member of low thermal conductivity connected at one end to said flange and closely spaced from said first tubular member at the flange connected end and forms a supporting means at the other end for a nozzle through which vaporized liquid is passed, said close spacing between the respective ends of the first and second tubular members inhibiting the passage of vapor to the relatively cool flange.
US00267413A 1972-06-29 1972-06-29 Vacuum pumps Expired - Lifetime US3781518A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US26741372A 1972-06-29 1972-06-29

Publications (1)

Publication Number Publication Date
US3781518A true US3781518A (en) 1973-12-25

Family

ID=23018663

Family Applications (1)

Application Number Title Priority Date Filing Date
US00267413A Expired - Lifetime US3781518A (en) 1972-06-29 1972-06-29 Vacuum pumps

Country Status (1)

Country Link
US (1) US3781518A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3943330A (en) * 1973-02-26 1976-03-09 United Kingdom Atomic Energy Authority Method and apparatus for electrically heating a fluid
US3998738A (en) * 1972-11-22 1976-12-21 Boc Limited Vacuum drying and degassing
US4020321A (en) * 1974-03-14 1977-04-26 Boc Limited Electric heaters
US4327271A (en) * 1979-05-18 1982-04-27 United Kingdom Atomic Energy Authority Condensation heating apparatus
WO1988002087A2 (en) * 1986-09-08 1988-03-24 Michael Laumen Thermotechnik Continuous steam generator and steam recovery unit
US4843215A (en) * 1986-11-20 1989-06-27 Black & Decker Inc. Wallpaper steamer
US5175996A (en) * 1990-10-16 1993-01-05 Olin Corporation Apparatus for propellant flow control at low mass flow rates in zero G environment
US5267584A (en) * 1990-10-16 1993-12-07 Smith Richard D Method of fluid flow control using a porous media
US6299076B1 (en) 2000-03-10 2001-10-09 Jeffrey E. Sloan Steam cleaning system
US20070193533A1 (en) * 2006-02-21 2007-08-23 Casio Computer Co., Ltd. Vaporizer, fuel cell having vaporizer, and vaporizing method
WO2007064909A3 (en) * 2005-12-01 2008-11-20 Vapore Inc Advanced capillary force vaporizers
US20090224064A1 (en) * 2008-03-10 2009-09-10 Vapore, Inc. Low Energy Vaporization of Liquids: Apparatus and Methods
US20210137733A1 (en) * 2017-01-17 2021-05-13 Omera Medical, Inc. Device and method to treat eye conditions, eyelids conditions, or both

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3578416A (en) * 1968-12-19 1971-05-11 Bill J Pope High temperature reactor
US3686474A (en) * 1969-05-27 1972-08-22 British Oxygen Co Ltd Vacuum pumps
US3688083A (en) * 1970-07-31 1972-08-29 Atomic Energy Authority Uk Electric fluid heater

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3578416A (en) * 1968-12-19 1971-05-11 Bill J Pope High temperature reactor
US3686474A (en) * 1969-05-27 1972-08-22 British Oxygen Co Ltd Vacuum pumps
US3688083A (en) * 1970-07-31 1972-08-29 Atomic Energy Authority Uk Electric fluid heater

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3998738A (en) * 1972-11-22 1976-12-21 Boc Limited Vacuum drying and degassing
US3943330A (en) * 1973-02-26 1976-03-09 United Kingdom Atomic Energy Authority Method and apparatus for electrically heating a fluid
US4020321A (en) * 1974-03-14 1977-04-26 Boc Limited Electric heaters
US4327271A (en) * 1979-05-18 1982-04-27 United Kingdom Atomic Energy Authority Condensation heating apparatus
WO1988002087A2 (en) * 1986-09-08 1988-03-24 Michael Laumen Thermotechnik Continuous steam generator and steam recovery unit
WO1988002087A3 (en) * 1986-09-08 1988-05-19 Laumen Michael Thermotech Continuous steam generator and steam recovery unit
US4843215A (en) * 1986-11-20 1989-06-27 Black & Decker Inc. Wallpaper steamer
US5267584A (en) * 1990-10-16 1993-12-07 Smith Richard D Method of fluid flow control using a porous media
US5175996A (en) * 1990-10-16 1993-01-05 Olin Corporation Apparatus for propellant flow control at low mass flow rates in zero G environment
US6299076B1 (en) 2000-03-10 2001-10-09 Jeffrey E. Sloan Steam cleaning system
WO2007064909A3 (en) * 2005-12-01 2008-11-20 Vapore Inc Advanced capillary force vaporizers
US20100142934A1 (en) * 2005-12-01 2010-06-10 Vapore, Inc. Advanced Capillary Force Vaporizers
US20070193533A1 (en) * 2006-02-21 2007-08-23 Casio Computer Co., Ltd. Vaporizer, fuel cell having vaporizer, and vaporizing method
US7971862B2 (en) * 2006-02-21 2011-07-05 Casio Computer Co., Ltd. Vaporizer, fuel cell having vaporizer, and vaporizing method
US20090224064A1 (en) * 2008-03-10 2009-09-10 Vapore, Inc. Low Energy Vaporization of Liquids: Apparatus and Methods
US8201752B2 (en) 2008-03-10 2012-06-19 Vapore, Inc. Low energy vaporization of liquids: apparatus and methods
US20210137733A1 (en) * 2017-01-17 2021-05-13 Omera Medical, Inc. Device and method to treat eye conditions, eyelids conditions, or both

Similar Documents

Publication Publication Date Title
US3781518A (en) Vacuum pumps
US3943330A (en) Method and apparatus for electrically heating a fluid
US3869242A (en) Process for vaporizing fuel oil
KR970008577B1 (en) Spark plug temperature control
US20040028396A1 (en) Electric heating device
GB1463164A (en) Process of and device for using the energy given off by a heat source
US2432169A (en) Electric immersion heater
US4105895A (en) Electric water heater utilizing a heat pipe
JPS60164108A (en) Evaporation type burner
US2884920A (en) Glow plugs for compression ignition engines
GB1335996A (en) Heat-transfer device
KR930006373A (en) Burner with thermal insulation and reheating air preheat between burner inner cap and recuperator
CA2214228A1 (en) Fuel control and preheating system for a fuel-burning heater
US4106891A (en) Electrical heating device
US3804154A (en) Heating systems and heater units therefore
US2231236A (en) Heating means
US4610603A (en) Protective control system for diffusion pump
JPS5833362Y2 (en) Electrically heated evaporator
CN111076543A (en) High-temperature evaporation source device arranged in vacuum of space strontium optical clock
US3141621A (en) Luminaire with lamp temperature control
KR200284929Y1 (en) A heat-keeping boiler using graphite material
US2803734A (en) Electric heater
JPH10510619A (en) Apparatus for supplying and igniting gasoline, especially as fuel, used in evaporative burners of heating systems
CN108759086A (en) A kind of uniformly heated sealing thermoacoustic heater
JPS589046Y2 (en) Vaporizer for oil burning appliances