US3781218A - Hydroxy-fatty acid amide polyoxy-alkylene ether:soap compositions - Google Patents

Hydroxy-fatty acid amide polyoxy-alkylene ether:soap compositions Download PDF

Info

Publication number
US3781218A
US3781218A US00119845A US3781218DA US3781218A US 3781218 A US3781218 A US 3781218A US 00119845 A US00119845 A US 00119845A US 3781218D A US3781218D A US 3781218DA US 3781218 A US3781218 A US 3781218A
Authority
US
United States
Prior art keywords
surface active
active agents
fatty acid
rust
acid amide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00119845A
Inventor
H Suzuki
Y Tsutsui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Application granted granted Critical
Publication of US3781218A publication Critical patent/US3781218A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/42Amides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/16Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
    • A61K47/18Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/10Washing or bathing preparations
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/16Amines or polyamines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S516/00Colloid systems and wetting agents; subcombinations thereof; processes of
    • Y10S516/01Wetting, emulsifying, dispersing, or stabilizing agents
    • Y10S516/07Organic amine, amide, or n-base containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S516/00Colloid systems and wetting agents; subcombinations thereof; processes of
    • Y10S516/905Agent composition per se for colloid system making or stabilizing, e.g. foaming, emulsifying, dispersing, or gelling
    • Y10S516/914The agent contains organic compound containing nitrogen, except if present solely as NH4+
    • Y10S516/915The compound contains -C[=O]NHH where substitution may be made for the hydrogen

Definitions

  • non-ionic surface active agents are generally low in toxicity they are commonly used as additives in pharmaceuticals, cosmetics, foodstuffs, etc. However, nonionic surface active agents which exhibit antimicrobial action or rust-inhibiting property have not hitherto been known.
  • the present invention uses hydroxy-fatty acid amide polyoxyalkylene ether, as the active ingredients.
  • the surface active agents manufactured according to the present invention exhibit not only the superior properties inherent in the conventional surface active agents, e.g., emulsifying and dispersing power, but also superior rust-inhibiting property and anti microbial action. Further, if metal soap is added to the surface active agents, the aforementioned properties become more conspicuous.
  • This invention relates to surface active agents containing, as active ingredients, novel hydroxy-fatty acid amide polyoxyalkylene ethers. More particularly, this invention relates to non-ionic surface active agents comprising, as active ingredients, hydroxy-fatty acid amide polyoxyalkylene ethers which exhibit excellent dispersing, rust-inhibiting, antimicrobial and emulsifying properties, and to surface active compositions comprising said ethers and metal soaps which exhibit further improved dispersing, rustinhibiting, antimicrobial, emulsifying and other general properties.
  • surface active agents having rust-inhibiting and antimicrobial properties have been known and the examples of such agents are amine-type cation surface active agents and some of the arnphoteric surface active agents.
  • these known agents are strongly toxic and, in addition, the activity of these agents in solution is readily affected by the pH value of the solution. Further, these known agents tend, at low temperatures, to decrease in their ability to solubilize other materials to be dissolved and to decrease their own solubility in a medium and thus these agents have the limited utilities.
  • non-ionic surface active agents now available are generally less toxic and, therefore, are often' acceptable as additives to pharmaceuticals, cosmetics as well as foodstuffs.
  • the non-ionic surface active agents are not useful for the bacteriocidal or germicidal purposes since they generally exhibit no such antimicrobial properties and are, on the contrary, known tohave a growth promoting property with respect to the microorganisms.
  • the primary object of this invention is to provide amide-type non-ionic surface active agents which are 3,781,218 Patented Dec. 25, 1973 highly effective as dispersing, rust-inhibiting, antimicrobial and emulsifying agents, as well as surface active compositions containing, as active ingredients, said amidetype non-ionic surface active agents.
  • the present inventors searched for surface active agents suitable for the above purposes and found that hydroxyfatty acid amide polyoxyalkylene ethers, one of the amidetype non-ionic surface active agents, have excellent antimicrobial and rust-inhibiting properties, and further that these properties are effectively improved by combining said ethers with metal soaps.
  • the improved activities obtainable by the surface active agents of this invention are the outstanding features of the present invention in view of the fact that the conventional non-ionic surface active agents generally have no rust-inhibiting property and the fact that, when they are combined with the metal soaps, the rust-inhibiting property inherent to metal soaps is generally lowered by the corrosive action due to the presence of the non-ionic surface active agents.
  • R is a hydrocarbon radical having 7 to 21 carbon atoms; R is selected from the group consisting of hydrogen and a lower alkyl group; y is an integer of from 0 to and z is an integer not less than 1.
  • the surface active composition of this invention comprises the above hydroxy-fatty acid acide polyoxyalkylene ethers and the metal soaps which have as their main component a substance represented by the formula (RCOO) M (2) wherein R represents a hydrocarbon radical having 2 to 21 carbon atoms; x is an integer between 1 and 5 equivalent to the atomic valence of the metal M; and M represents a metal, the amount of the metal soaps used being in the range of from equivalent weight to by weight, preferably from equivalent weight to on the basis of said ethers.
  • R represents a hydrocarbon radical having 2 to 21 carbon atoms
  • x is an integer between 1 and 5 equivalent to the atomic valence of the metal M
  • M represents a metal, the amount of the metal soaps used being in the range of from equivalent weight to by weight, preferably from equivalent weight to on the basis of said ethers.
  • novel hydroxy-fatty acid amide polyalkylene ethers of the present invention can be prepared, for example, by reacting a monoor polyhydroxy-fatty acid ester such as castor oil, hydrogenated castor oil, methyl ricinolate, 12-hydroxy-stearic acid ester, tetrahydroxy stearic acid ester and the like with an alkylene oxide such as ethylene oxide and propylene oxide to obtain a hydroxy-fatty acid ester polyoxyalkylene ether followed by ammonolysis with liquid ammonia, or by subjecting the above hydroxy-fatty acid ester to ammonolysis to obtain the corresponding acid amide which is then reacted with an alkylene oxide.
  • a monoor polyhydroxy-fatty acid ester such as castor oil, hydrogenated castor oil, methyl ricinolate, 12-hydroxy-stearic acid ester, tetrahydroxy stearic acid ester and the like
  • an alkylene oxide such as ethylene oxide and propylene oxide
  • hydroxy-fatty acid amide polyoxyalkylene ethers examples include castor oil fatty acid amide polyoxyethylene ether, ricinoleic acid amide polyoxy ropylene ether, hydrogenated castor oil fatty acid amide polyoxyethylene ether, etc.
  • the surface active agents of this invention contain free amide radicals having high hydrogen-bonding strength and bydrophilic radicals in the side chains and, therefore they are excellent in emulsifying, dispersing, wetting and antstatic properties.
  • Non-ionic surface active agents are, as previously mentioned, generally less toxic, but some of the agents such as alkylphenyl derivatives show a low LD value.
  • polyoxyethylene-(9,7)-p-tert-octylphcnyl ether is said to have a LD value of 1.7 mL/kg.
  • the surface active agents of this invention were found to have low toxicity as evidenced by the LD value of 20 ml./kg. (acute toxicity in mice) shown by castor oil fatty acid amide polyoxyethylene ether (6 mole addition product).
  • the LD value has been found to be 22 ml./kg., indicating that the toxicity is practically negligible.
  • the surface active agents of this invention give rise to almost no skin irritability or oversensitivity.
  • Mixtures formed by separately combining the 7 and 21 mole product of the above ether with a magnesium salt of castor oil fatty acid (5 :1 molar ratio) were diluted to form a 30% Water solution and applied to rabbits once daily over a period of ten days. At the end of the test period absolutely no abnormality would be found either by the naked eye or by microscopic inspection of the tissue in either case.
  • a further test was conducted wherein the same solutions were applied to marmots twice daily over a three day period. Neither an examination of either animals reactions nor a microscopic examination of its tissue showed any abnormality.
  • the metal soaps used in the composition of this invention are well known metal salts of hydroxy-fatty acids of saturated or unsaturated and straight or branched chain containing 2 to 21 carbon atoms or of naphthenic acid or resin acid.
  • the metal useful as the metal salts includes those of I to V valences in the Periodic Table, i.e., Group Ia (Li, Na, K, etc.), Group IIa (Mg, Ca, Ba, etc.), Group IIIa (B, Al, etc.), Group IVa (Si, Sn, Pb, etc.), Group Va (As, Sb, Bi), Group Ib (Cu, Ag, etc.), Group IIb (Zn, Cd, 'Hg), Group IVb (Ti, Zr, etc.), Group Vb (V, etc.), Group VIb (Cr, Mo, W, etc.), Group VIIB (Mn, etc.), Group VIII (Fe, Co, Ni, etc.), and the like.
  • the surface active composition of this invention can be obtained by blending the amidetype non-ionic surface active agent and the metal soap in a proportion of 1:1 to 1: by weight. This can be accomplished either by adding the metal soap to an aqueous solution of the amide-type non-ionic surface active agent or by merely blending together the two components. Since the amide-type non-ionic surface active agents of this invention are highly soluble in water and, in addition, have an excellent ability to dissolve a wide variety of metal soaps, it is possible to obtain a composition containing high concentrations of both the surface active agent and the metal soap.
  • the properties of the surface active agent and the composition according to the present invention can be controlled by changing the addition molar numbers of alkylene oxide in the amide-type surface active agent or by changing a proportion of the amide-type surface active agent and the metal soap.
  • the various properties of the hydroxy-fatty acid amide polyoxyethylene ether of the present invention are as follows: its solubility in petroleum solvents and ethyl ether is a little low, but it is easily soluble in most of the other solvents; the agents in which more than about 7 moles of ethylene oxide are added give a clear aqueous solution; the optimum chain length of polyoxyethylene group (:POE) for the emulsifying, solubilizing, and antistatic properties varies depending upon the type of substances for which such properties are utilized; the agents having relatively short chains are superior in lowering of surface tension, in wetting, rust-inhibiting and antimicrobial properties and in wettability; and the agents having relatively long chains are superior in the dispersing, cleaning and foaming properties. Hydroxy-fatty acid amide polyoxypropylene ether has lower water-solubility than that of POE ether and has, in some instances, a solubilizing activity inferior to POE ether.
  • the metal soap as one of the additives of the surface active composition of this invention shows the following tendency.
  • the order of higher solubility of the soap is K, Na Li, Mg Ba, Mn, Co Zn, Cd Pb, Fe, and, in the metal soap comprising a different fatty acid and a given metal, the shorter the chain length, the higher the unsaturation and the more branched chains, the higher the solubility.
  • hydroxylic acids are particularly soluble at a low temperature.
  • the activity of the metal soap is generally superior when the metal is an alkali earth metal, manganese or cobalt, but the metal soaps comprising other metals have also specific characteristics.
  • the surface active agent of this invention is further characterized by the fact that its activity is not adversely affected by the changes of pH value. Soaps are generally decomposed and precipitated at acidic pH values thereby losing their surface activity, and other ionic surface active agents are also precipitated more or less in an acidic or alkaline solution, resulting in decrease or loss of their surface activity.
  • the surface active composition of this invention shows less decomposition and precipitation over a wide range of pH values because the composition is a solubilized system of the metal soap with the hydroxy-fatty acid amide polyoxyalkylene ether, and, accordingly, the activity of the composition is not significantly lowered in either at acidic or alkaline pH values and is, rather, improved in some instances.
  • the increase in the cloud point due to the dissociation of the soap is observed in any cases when, of course, the soap is an alkali soap and even when the soap is a water-insoluble metal soap.
  • a castor oil fatty acid amide polyoxyethylene ether (6- mole addition product; cloud point, 47.0" C.) is combined with magnesium ricinolate at a molar ratio of 5:1
  • the cloud point rises more than 10 C. This means that the temperature range within which the composition is effective can be broadened, and this i svery advantageous in practical use.
  • the hydroxy-fatty acid amide polyoxyalkylene ethers of this invention can be combined with other substances than the metal soaps as illustrated above.
  • the surface active agents of this invention are incorporated into various surface active agents, the emulsifying, dispersing, cleaning, solubilizing, rust-inhibiting, solubility and foaming properties of the resulting blend are strengthened synergistically depending upon the length of the polyoxyalkylene chain in the former agents.
  • foam stability, sustained cleaning and wetting properties are significantly improved.
  • the hydroxyfatty acid amide polyoxyalkylene ethers of this invention exhibit an excellent solubilizing property.
  • those containing a relatively short chain exhibit a potent antimicrobial property. Such properties are useful when, for examthereby preparing an aqueous iodine solution which has excellent anti-microbial property and low toxicity.
  • the activities of the surface active agent and composition can often be increased by adding thereto various builders.
  • wetting, rust-inhibiting, emulsifying, cleaning and other properties, in particular, at acidic pH values, of the 5:1 mole mixture of hydroxy-fatty acid amide polyoxyethylene ether and a magnesium salt of castor oil fatty acid can be increased by incorporating sodium tripolyphosphate in an amount ranging from equimolar to /5 mole on the basis of said ether.
  • Suitable builders include a wide variety of phosphates, sulphates, nitrite, carbonates, borates, silicates, and ethanolamines and CMC, urea, EDTA, sodium nitrilotriacetate, sodium toluene sulfonate and the like which are known to those skilled in the art.
  • the hydroxy-fatty acid amide polyoxyalkylene ethers of this invention are easily dispersible or soluble in various organic solvents, and a dispersion or solution in such solvent as benzene, toluene, carbon tetrachloride, trichloroethane, trichloroethylene, iso-propyl alcohol, kerosene, etc. is highly effective in enhancing the cleaning, dispersing, emulsifying, solubilizing, wetting, rust-inhibiting and antistatic properties.
  • the mixture of the ether and the metal soap is also soluble in a wide variety of organic solvents, and a solution of the mixture in benzene, toluene, carbon tetrachloride, cottonseed oil, trichloroethane, trichloroethylene, iso-propanol, kerosene or the like often shows exthese examples are given for illustrative purpose only and --are notto be construed-aslimiting-the scope of this invention.
  • EXAMPLE 1 The various properties of the known surface active .agents were, c mp red with thos .Qf. tha b f y acid amide polyoxyethylene ethers (8- and 25-mole addition products) at a temperature of C. and a concentration of 0.02 mol/l. The results obtained as shown in Table 1. The numerical values in Table 1 were determined according to methods reported by one of the inventors [H. Suzuki, Yukagaku, 15, 475 (1966); ibid, 16, 667 (1967); ibid, 18, 136 (1969); H. Suzuki Kogyokagaku Zasshi, 72, 2253 (1969); ibid, Yukagaku, 19, 125 (1970)].
  • Foam volume (1111.) 240 262 113 242 151 Stability (percent) 25 19 5 92 46 75 21 Emulsilying (percent): Kerosene 75 89 90 0 84 90 85 Surface tension (dyne/cm. 35. 5 41. 4 36. 1 45. 2 37.7 42. 0 40. 7
  • Antistatic Nylon-fabric B B D D E E C ting, rust-inhibiting, antimicrobial and antistatic properties.
  • the surface active agents of this invention are non-ionic surface active agents being by nature of relatively low toxicity, but exhibiting an antimicrobial property on some species of the microorganism compara- 6 ble to that of the cationic surface active agents. Also, the
  • surface active agents of this invention are characterized in that they are useful rust-inhibiting agents with respect to aluminum, iron, copper, etc. Further, the surface active properties of the agents can be improved by incorporating metal soaps and/ or other additives.
  • EXAMPLE 2 The comparative test for various surface active properties was conducted at a temperature of 30 C. using each of the compositions consisting of a typical surface active agent and a magnesium salt of castor oil fatty acid in a molar ratio of 00220004 per liter. The results obtained are as shown in Table 2.-The compositions used in the above test were prepared in the following manner: 1.30 g. castor oil fatty acid amide polyoxyethylene ether (8-mole addition product) was dissolved in 40 m1. of water and 0.248 g. of a magnesium salt of castor oil fatty acid was added to the solution and the mixture was heated with shaking to dissolve the salt. After cooling, the volume of the resulting solution was made up to 100 ml. with water [the molar ratio of 5:1, 0.02:0.004 (mol/ 1.)].
  • Soft iron 3. 0 27. 0 8. 2 Aluminum- A B B Brass B C C Antimicrobial (mm/LX Penicillium citrinum 100 2, 000 1 2, 000 Bacillus subitilie C E A D Dispersing (percent):
  • Foaming 4O goanfivolume B A 3.91 g. of castor 011 fatty acid amide polyoxyethylene g i 'f fg -gg g g i ur ace tension ync cm 36. 0 34. 1 ether (11 mole addition product) was dlssolved in Water Anusmic: Nylomabm B A p to produce 40 ml. of an aqueous solution (1). 0.732 g. of
  • a barium salt of castor oil fatty acid was added to a portion of the solution (1), and the mixture was heated with shaking to dissolve the salt. After cooling, the total volume of the solution was made up to 100 ml. with water to produce an aqueous solution (2) of the surface active composition of this invention [the molar ratio of 5:1, 0.05:0.01 (mol/ 1.)].
  • the various surface activities of the resulting aqueous solutions (1) and (2) at a temperature of 15 C. were determined and compared with each other. The results obtained are as shown in Table 3.
  • Type (g.) ratio (moi/1 4 COAd-20 0.589 Na laurate 0. 037 3/1 0. 005/0. 00167 4. 350 Ni castor oil fatty acid 0.033 100/1 0. 05/0. 0005 0. 056 Mg castor oil fatty acid 0. 012 5/1 0. 001/0. 0002 0. 347 Ca oleate 0. 030 10/1 0. 005/0. 0005 1. 046 Mn laurate 0. 045 10/1 0. 01/0. 001
  • RCONH R 12 carbon atom of said RCONH R is selected from the group consisting of hydrogen and a lower alkyl group, y is an integer of from 1 to and a metal soap represented by the formula:
  • R represents a hydrocarbon radical having 2 to 21 carbon atoms, at represents an integer of from 1 to 5 equivalent to the atomic valence of the metal M, and M is one metal selected from the Periodic Table group consisting of Group Ia, Group 1111, Group IIIa, Group IVa, Group Va, Group Ib, Group -IIb, Group IVb, Group Vb, Group VIb, Group VII and Group VIII; said hydroxyfatty acid amide polyoxyalkylene ether and metal soap being present in a proportion of 1:1 to 121/ 1000 parts by weight of ether to soap.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Birds (AREA)
  • Dermatology (AREA)
  • Materials Engineering (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Detergent Compositions (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Lubricants (AREA)
  • Polyethers (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

AS NON-IONIC SURFACE ACTIVE AGENTS ARE GENERALLY LOW IN TOXICITY THEY ARE COMMONLY USED AS ADDITIVES IN PHARMACEUTICALS, COSMETICS, FOODSTUFFS, ETC. HOWEVER, NONIONIC SURFACE ACTIVE AGENTS WHICH EXHIBIT ANTIMICROBIAL ACTION OR RUST-INHIBITING PROPERTY HAVE NOT HITHERTO BEEN KNOWN. THE PRESENT INVENTION USES HYDROXY-FATTY ACID AMIDE POLYOXYALKYLENE ETHER, AS THE ACTIVE INGREDIENTS. AS THIS SUBSTANCE IS SUPERIOR IN ANTIMICROBIAL ACTION AND RUST-INHIBITING PROPERTY, THE SURFACE ACTIVE AGENTS MANUFACTURED ACCORDING TO THE PRESENT INVENTION EXHIBIT NOT ONLY THE SUPERIOR PROPERTIES INHERENT IN THE CONVENTIONAL SURFACE ACTIVE AGENTS, E.G., EMULSIFYING AND DISPERSING POWER, BUT ALSO SUPERIOR RUST-INHIBITING PROPERTY AND ANTIMICROBIAL ACTION. FURTHER, IF METAL SOAP IS ADDED TO THE SURFACE ACTIVE AGENTS, THE AFOREMENTIONED PROPERTIES BECOME MORE CONSPICUOUS.

Description

United States Patent Office Int. Cl. B01f 17/22; C1c 103/12; Clld 9/46 US. Cl. 252--356 1 Claim ABSTRACT OF THE DISCLOSURE As non-ionic surface active agents are generally low in toxicity they are commonly used as additives in pharmaceuticals, cosmetics, foodstuffs, etc. However, nonionic surface active agents which exhibit antimicrobial action or rust-inhibiting property have not hitherto been known. The present invention uses hydroxy-fatty acid amide polyoxyalkylene ether, as the active ingredients. As this substance is superior in antimicrobial action and rust-inhibiting property, the surface active agents manufactured according to the present invention exhibit not only the superior properties inherent in the conventional surface active agents, e.g., emulsifying and dispersing power, but also superior rust-inhibiting property and anti microbial action. Further, if metal soap is added to the surface active agents, the aforementioned properties become more conspicuous.
This invention relates to surface active agents containing, as active ingredients, novel hydroxy-fatty acid amide polyoxyalkylene ethers. More particularly, this invention relates to non-ionic surface active agents comprising, as active ingredients, hydroxy-fatty acid amide polyoxyalkylene ethers which exhibit excellent dispersing, rust-inhibiting, antimicrobial and emulsifying properties, and to surface active compositions comprising said ethers and metal soaps which exhibit further improved dispersing, rustinhibiting, antimicrobial, emulsifying and other general properties.
Heretofore, surface active agents having rust-inhibiting and antimicrobial properties have been known and the examples of such agents are amine-type cation surface active agents and some of the arnphoteric surface active agents. However, many of these known agents are strongly toxic and, in addition, the activity of these agents in solution is readily affected by the pH value of the solution. Further, these known agents tend, at low temperatures, to decrease in their ability to solubilize other materials to be dissolved and to decrease their own solubility in a medium and thus these agents have the limited utilities.
The non-ionic surface active agents now available are generally less toxic and, therefore, are often' acceptable as additives to pharmaceuticals, cosmetics as well as foodstuffs. However, the non-ionic surface active agents are not useful for the bacteriocidal or germicidal purposes since they generally exhibit no such antimicrobial properties and are, on the contrary, known tohave a growth promoting property with respect to the microorganisms. Further, there are many non-ionic surface active agents which are corrosive in nature, but the agents having rustinhibiting properties are almost unknown. Accordingly, surface active agents which are both suitable for application to the apparatus, instruments, packages, etc. employ ed particularly in industries requiring a high degree of sanitation such as the foodstuff, cosmetic and pharmaceutical industries and which also have cleaning, preserving and rust-inhibiting properties were hitherto unknown.
The primary object of this invention is to provide amide-type non-ionic surface active agents which are 3,781,218 Patented Dec. 25, 1973 highly effective as dispersing, rust-inhibiting, antimicrobial and emulsifying agents, as well as surface active compositions containing, as active ingredients, said amidetype non-ionic surface active agents.
The present inventors searched for surface active agents suitable for the above purposes and found that hydroxyfatty acid amide polyoxyalkylene ethers, one of the amidetype non-ionic surface active agents, have excellent antimicrobial and rust-inhibiting properties, and further that these properties are effectively improved by combining said ethers with metal soaps.
The improved activities obtainable by the surface active agents of this invention are the outstanding features of the present invention in view of the fact that the conventional non-ionic surface active agents generally have no rust-inhibiting property and the fact that, when they are combined with the metal soaps, the rust-inhibiting property inherent to metal soaps is generally lowered by the corrosive action due to the presence of the non-ionic surface active agents.
The surface active agents of this invention are represented by the formula wherein R is a hydrocarbon radical having 7 to 21 carbon atoms; R is selected from the group consisting of hydrogen and a lower alkyl group; y is an integer of from 0 to and z is an integer not less than 1.
The surface active composition of this invention comprises the above hydroxy-fatty acid acide polyoxyalkylene ethers and the metal soaps which have as their main component a substance represented by the formula (RCOO) M (2) wherein R represents a hydrocarbon radical having 2 to 21 carbon atoms; x is an integer between 1 and 5 equivalent to the atomic valence of the metal M; and M represents a metal, the amount of the metal soaps used being in the range of from equivalent weight to by weight, preferably from equivalent weight to on the basis of said ethers.
The novel hydroxy-fatty acid amide polyalkylene ethers of the present invention can be prepared, for example, by reacting a monoor polyhydroxy-fatty acid ester such as castor oil, hydrogenated castor oil, methyl ricinolate, 12-hydroxy-stearic acid ester, tetrahydroxy stearic acid ester and the like with an alkylene oxide such as ethylene oxide and propylene oxide to obtain a hydroxy-fatty acid ester polyoxyalkylene ether followed by ammonolysis with liquid ammonia, or by subjecting the above hydroxy-fatty acid ester to ammonolysis to obtain the corresponding acid amide which is then reacted with an alkylene oxide. Examples of the hydroxy-fatty acid amide polyoxyalkylene ethers include castor oil fatty acid amide polyoxyethylene ether, ricinoleic acid amide polyoxy ropylene ether, hydrogenated castor oil fatty acid amide polyoxyethylene ether, etc. In contrast to the conventional substituted amide-type nonionic surface active agents, the surface active agents of this invention contain free amide radicals having high hydrogen-bonding strength and bydrophilic radicals in the side chains and, therefore they are excellent in emulsifying, dispersing, wetting and antstatic properties. They also exhibit a potent antimicrobial property and a rust-inhibiting property on a wide variety of metals and alloys such as iron, aluminum, copper, zinc, nickel, lead, tin, brass, bronze, solder, phosphorus bronze and the like because of their food affinity to the surface of the metals.
Non-ionic surface active agents are, as previously mentioned, generally less toxic, but some of the agents such as alkylphenyl derivatives show a low LD value. For example, polyoxyethylene-(9,7)-p-tert-octylphcnyl ether is said to have a LD value of 1.7 mL/kg. (acute toxicity in rat, Handbook, p. 267 (1968), issued by Nikko Chemicals Co., Ltd.). The surface active agents of this invention were found to have low toxicity as evidenced by the LD value of 20 ml./kg. (acute toxicity in mice) shown by castor oil fatty acid amide polyoxyethylene ether (6 mole addition product). Also, in the mixture of said ether and a metal soap, for example, a mixture of the above ether and a magnesium salt of castor oil fatty acid (:1 molar ratio), the LD value has been found to be 22 ml./kg., indicating that the toxicity is practically negligible.
The surface active agents of this invention give rise to almost no skin irritability or oversensitivity. Mixtures formed by separately combining the 7 and 21 mole product of the above ether with a magnesium salt of castor oil fatty acid (5 :1 molar ratio) were diluted to form a 30% Water solution and applied to rabbits once daily over a period of ten days. At the end of the test period absolutely no abnormality would be found either by the naked eye or by microscopic inspection of the tissue in either case. A further test was conducted wherein the same solutions were applied to marmots twice daily over a three day period. Neither an examination of either animals reactions nor a microscopic examination of its tissue showed any abnormality.
The metal soaps used in the composition of this invention are well known metal salts of hydroxy-fatty acids of saturated or unsaturated and straight or branched chain containing 2 to 21 carbon atoms or of naphthenic acid or resin acid. The metal useful as the metal salts includes those of I to V valences in the Periodic Table, i.e., Group Ia (Li, Na, K, etc.), Group IIa (Mg, Ca, Ba, etc.), Group IIIa (B, Al, etc.), Group IVa (Si, Sn, Pb, etc.), Group Va (As, Sb, Bi), Group Ib (Cu, Ag, etc.), Group IIb (Zn, Cd, 'Hg), Group IVb (Ti, Zr, etc.), Group Vb (V, etc.), Group VIb (Cr, Mo, W, etc.), Group VIIB (Mn, etc.), Group VIII (Fe, Co, Ni, etc.), and the like.
As previously described, the surface active composition of this invention can be obtained by blending the amidetype non-ionic surface active agent and the metal soap in a proportion of 1:1 to 1: by weight. This can be accomplished either by adding the metal soap to an aqueous solution of the amide-type non-ionic surface active agent or by merely blending together the two components. Since the amide-type non-ionic surface active agents of this invention are highly soluble in water and, in addition, have an excellent ability to dissolve a wide variety of metal soaps, it is possible to obtain a composition containing high concentrations of both the surface active agent and the metal soap. Further, for various applications, the properties of the surface active agent and the composition according to the present invention can be controlled by changing the addition molar numbers of alkylene oxide in the amide-type surface active agent or by changing a proportion of the amide-type surface active agent and the metal soap.
The various properties of the hydroxy-fatty acid amide polyoxyethylene ether of the present invention are as follows: its solubility in petroleum solvents and ethyl ether is a little low, but it is easily soluble in most of the other solvents; the agents in which more than about 7 moles of ethylene oxide are added give a clear aqueous solution; the optimum chain length of polyoxyethylene group (:POE) for the emulsifying, solubilizing, and antistatic properties varies depending upon the type of substances for which such properties are utilized; the agents having relatively short chains are superior in lowering of surface tension, in wetting, rust-inhibiting and antimicrobial properties and in wettability; and the agents having relatively long chains are superior in the dispersing, cleaning and foaming properties. Hydroxy-fatty acid amide polyoxypropylene ether has lower water-solubility than that of POE ether and has, in some instances, a solubilizing activity inferior to POE ether.
The metal soap as one of the additives of the surface active composition of this invention shows the following tendency. In the metal soap comprising a different metal and a given fatty acid, the order of higher solubility of the soap is K, Na Li, Mg Ba, Mn, Co Zn, Cd Pb, Fe, and, in the metal soap comprising a different fatty acid and a given metal, the shorter the chain length, the higher the unsaturation and the more branched chains, the higher the solubility. Also, hydroxylic acids are particularly soluble at a low temperature. The activity of the metal soap is generally superior when the metal is an alkali earth metal, manganese or cobalt, but the metal soaps comprising other metals have also specific characteristics. A potassium and sodium soap and a lithium salt of a hydroxylic acid exhibit an increased solubility in water, and a mixture of one of the above soaps and a hydroxy-fatty acid amide polyalkylene ether (y=0-3) having a short POE chain or a hydroxy-fatty amide polyoxypropylene ether give a clear aqueous solution, and is often superior in cleaning and dispersing properties. Further, superior antimicrobial properties are exhibited by silver, lead and bismuth soaps, superior dispersing properties by zinc, zirconium and vanadium soaps, superior emulsifying properties by chrome soap and superior rust-inhibiting and other properties by aluminum soap.
The surface active agent of this invention is further characterized by the fact that its activity is not adversely affected by the changes of pH value. Soaps are generally decomposed and precipitated at acidic pH values thereby losing their surface activity, and other ionic surface active agents are also precipitated more or less in an acidic or alkaline solution, resulting in decrease or loss of their surface activity. In contrast, the surface active composition of this invention shows less decomposition and precipitation over a wide range of pH values because the composition is a solubilized system of the metal soap with the hydroxy-fatty acid amide polyoxyalkylene ether, and, accordingly, the activity of the composition is not significantly lowered in either at acidic or alkaline pH values and is, rather, improved in some instances. In aqueous solutions of non-ionic surface active agents, the shorter the polyoxyethylene chain the lower the cloud point, and their activity sharply decreases at a temperature above the cloud point. However, in the surface active composition of this invention, the increase in the cloud point due to the dissociation of the soap is observed in any cases when, of course, the soap is an alkali soap and even when the soap is a water-insoluble metal soap. For example, when a castor oil fatty acid amide polyoxyethylene ether (6- mole addition product; cloud point, 47.0" C.) is combined with magnesium ricinolate at a molar ratio of 5:1, the cloud point rises more than 10 C. This means that the temperature range within which the composition is effective can be broadened, and this i svery advantageous in practical use.
The hydroxy-fatty acid amide polyoxyalkylene ethers of this invention can be combined with other substances than the metal soaps as illustrated above. When the surface active agents of this invention are incorporated into various surface active agents, the emulsifying, dispersing, cleaning, solubilizing, rust-inhibiting, solubility and foaming properties of the resulting blend are strengthened synergistically depending upon the length of the polyoxyalkylene chain in the former agents. When the chain length is relatively short, foam stability, sustained cleaning and wetting properties are significantly improved. The hydroxyfatty acid amide polyoxyalkylene ethers of this invention exhibit an excellent solubilizing property. Also, those containing a relatively short chain exhibit a potent antimicrobial property. Such properties are useful when, for examthereby preparing an aqueous iodine solution which has excellent anti-microbial property and low toxicity.
The activities of the surface active agent and composition can often be increased by adding thereto various builders. For example, wetting, rust-inhibiting, emulsifying, cleaning and other properties, in particular, at acidic pH values, of the 5:1 mole mixture of hydroxy-fatty acid amide polyoxyethylene ether and a magnesium salt of castor oil fatty acid can be increased by incorporating sodium tripolyphosphate in an amount ranging from equimolar to /5 mole on the basis of said ether. Other suitable builders include a wide variety of phosphates, sulphates, nitrite, carbonates, borates, silicates, and ethanolamines and CMC, urea, EDTA, sodium nitrilotriacetate, sodium toluene sulfonate and the like which are known to those skilled in the art.
The hydroxy-fatty acid amide polyoxyalkylene ethers of this invention are easily dispersible or soluble in various organic solvents, and a dispersion or solution in such solvent as benzene, toluene, carbon tetrachloride, trichloroethane, trichloroethylene, iso-propyl alcohol, kerosene, etc. is highly effective in enhancing the cleaning, dispersing, emulsifying, solubilizing, wetting, rust-inhibiting and antistatic properties. The mixture of the ether and the metal soap is also soluble in a wide variety of organic solvents, and a solution of the mixture in benzene, toluene, carbon tetrachloride, cottonseed oil, trichloroethane, trichloroethylene, iso-propanol, kerosene or the like often shows exthese examples are given for illustrative purpose only and --are notto be construed-aslimiting-the scope of this invention.
EXAMPLE 1 The various properties of the known surface active .agents were, c mp red with thos .Qf. tha b f y acid amide polyoxyethylene ethers (8- and 25-mole addition products) at a temperature of C. and a concentration of 0.02 mol/l. The results obtained as shown in Table 1. The numerical values in Table 1 were determined according to methods reported by one of the inventors [H. Suzuki, Yukagaku, 15, 475 (1966); ibid, 16, 667 (1967); ibid, 18, 136 (1969); H. Suzuki Kogyokagaku Zasshi, 72, 2253 (1969); ibid, Yukagaku, 19, 125 (1970)]. That is to say, surface tension was determined by the ring method, wetting power for felt and cotton by the disk method, foaming power by the semi-micro improved T-K method and in each of these cases the temperature was 30 C. The results obtained in respect of emulsifying property is that obtained after two hours after shaking at C. Dispersing power was determined from the cloudiness after the solution had stood four hours after shaking and the antimicrobial action is expressed as the minimum inhibitory concentration obtained by the plate culture method after three days at 30 C. The rust-inhibiting property is expressed in terms of change in weight of the metal plate after soaking 10 days at 30 C. The other re sults are represented in terms of A to E in the order cellent cleaning, dispersing, emulsifying, solubilizing, wet- 30 better to poorer results.
TABLE 1 Surface active agent Products of this invention Anionic Cationic Non-ionie Property GOAd-S I COAd-25 b ABS u DPO d T-20 8 NP-15 StAd-15 1 Remarks Rust-inhibiting h (mgJdmF/lO days):
Soft iron 5. 2 17. 0 22. 7 85. 0 -19. 1 77. 0 81. 5
Aluminum B C E E D D Brass. C C E E C D Antimicrobial i (Biol/LX10 PP citr 1, 000 500 5 2, 000 2,000 1,000
Bacillus subitilis C D D A E E E Dispersing (percent):
Manganese dioxide 41. 0 46. 2 37. 2 2. 6 2. 2 3. 3 26. 5
Carbon black A B E A C D Wetting (see):
Felt l3. 1 253 16. 3 16. 4 260 320 180 Cotton 75. 1 500 7. 5 500 500 500 500 Foaming:
Foam volume (1111.) 240 262 113 242 151 Stability (percent) 25 19 5 92 46 75 21 Emulsilying (percent): Kerosene 75 89 90 0 84 90 85 Surface tension (dyne/cm. 35. 5 41. 4 36. 1 45. 2 37.7 42. 0 40. 7 Antistatic: Nylon-fabric B B D D E E C ting, rust-inhibiting, antimicrobial and antistatic properties.
As set forth above, the surface active agents of this invention are non-ionic surface active agents being by nature of relatively low toxicity, but exhibiting an antimicrobial property on some species of the microorganism compara- 6 ble to that of the cationic surface active agents. Also, the
surface active agents of this invention are characterized in that they are useful rust-inhibiting agents with respect to aluminum, iron, copper, etc. Further, the surface active properties of the agents can be improved by incorporating metal soaps and/ or other additives.
The following examples illustrate the surface active agents of this invention comprising hydroxy-fatty acid amide polyoxyethylene ether, and the surface active composition comprising said ethers and the metal soaps, but
h Determined as difference in weight.
1 Minimum inhibitory concentration.
1 Foam brealdng ratio (determined after one minute); the smaller the more stable.
The smaller the better.
I The larger the better.
EXAMPLE 2 The comparative test for various surface active properties was conducted at a temperature of 30 C. using each of the compositions consisting of a typical surface active agent and a magnesium salt of castor oil fatty acid in a molar ratio of 00220004 per liter. The results obtained are as shown in Table 2.-The compositions used in the above test were prepared in the following manner: 1.30 g. castor oil fatty acid amide polyoxyethylene ether (8-mole addition product) was dissolved in 40 m1. of water and 0.248 g. of a magnesium salt of castor oil fatty acid was added to the solution and the mixture was heated with shaking to dissolve the salt. After cooling, the volume of the resulting solution was made up to 100 ml. with water [the molar ratio of 5:1, 0.02:0.004 (mol/ 1.)].
TABLE 2 Surface active agent Products of this Non-ionic Cationic Anionic invention surfactant surfactant surfactant Property COAd-8 NP-15 DPC ABS Rust-inhibiting (mgJdmJ/IO days):
Soft iron 3. 0 27. 0 8. 2 Aluminum- A B B Brass B C C Antimicrobial (mm/LX Penicillium citrinum 100 2, 000 1 2, 000 Bacillus subitilie C E A D Dispersing (percent):
Manganese dioxide 57. 5 41. 5 40. 3 50. 3 Carbon black B C B Wetting (see):
Felt 1. 3 15. 2 2. 2 2. 7 Cotton. 6. 1 2. 9 13. 5 2. 4 Foaming:
Foam volume (mL) 220 255 194 152 Stability (percent) 64 12 23 Emulsifying (percent): Kerosene.- 91 92 61 95 Surface tension (dyne/cm.) 33. 4 35. 1 32.0 30. 3 Antistatic: Nylon-fabric B B TABLE 3 As is clear from the results shown in Table 2, the Prop rty Solution 1 Solution (2 composition of this invention exhibits the best activity 30 Rumnmbmng: in the rust-inhibiting of the metal and the best antimicro- 9 C A Aluminun1 B A bial action second to the when surface active agent WhlCh Brass... C B Antimicrobial: 1s toxic in nature, as Well as the best antistatic property, Penicillium citrinum c A Bacillus subitilis E C the best dispersing power for manganese dioxide and the Djspersjng (percent); best Wetting Power into the felt b iiilliiifiifi fji::::::::::::::::: 1% B Wetting (sec.):
Felt 3. 5 2. 0 EXAMPLE 3 Cotton 3.0 1.3
Foaming: 4O goanfivolume B A 3.91 g. of castor 011 fatty acid amide polyoxyethylene g i 'f fg -gg g g i ur ace tension ync cm 36. 0 34. 1 ether (11 mole addition product) was dlssolved in Water Anusmic: Nylomabm B A p to produce 40 ml. of an aqueous solution (1). 0.732 g. of
a barium salt of castor oil fatty acid was added to a portion of the solution (1), and the mixture was heated with shaking to dissolve the salt. After cooling, the total volume of the solution was made up to 100 ml. with water to produce an aqueous solution (2) of the surface active composition of this invention [the molar ratio of 5:1, 0.05:0.01 (mol/ 1.)]. The various surface activities of the resulting aqueous solutions (1) and (2) at a temperature of 15 C. were determined and compared with each other. The results obtained are as shown in Table 3.
EXAMPLES 4 TO 10 In the same manner as set forth in Example 2, aqueous solutions comprising 1) various addition products of a castor oil fatty acid amide-type non-ionic surface active agent and ethylene oxide in different molar ratios, and (2) various metal soaps in different amounts were prepared, and surface activities were determined and compared with those of the aqueous solutions containing only the corresponding addition products. The results obtained are as shown in Table 5. Further, Table 4 shows the composition of the example aqueous solutions shown in Table 5. The volume of each aqueous solution in Table 4 is ml.
TAB LE 4 Amide type surfactant Metal soap Surfactant/metal soap Amount Amount Molar Concentration Example Type (g.) Type (g.) ratio (moi/1 4 COAd-20 0.589 Na laurate 0. 037 3/1 0. 005/0. 00167 4. 350 Ni castor oil fatty acid 0.033 100/1 0. 05/0. 0005 0. 056 Mg castor oil fatty acid 0. 012 5/1 0. 001/0. 0002 0. 347 Ca oleate 0. 030 10/1 0. 005/0. 0005 1. 046 Mn laurate 0. 045 10/1 0. 01/0. 001
0. 237 K castor oil fatty acid 0. 1/0. 8 U. 005/0. 004
0. 914 C0 laurate 0. 076 6/1 0. 01/0. 00167 I The value indicates the molar number of ethylene oxide.
Mix.
Sol.
s01. Mix. s01. Mix.
Sol. Mix.
Sol. Mix.
Rust-inhibiting:
Example....
Temperature of solution C.).-......
Solution- Property:
6 4 AAB BB Ac AA AAA B ME X B MM 3 m M 5 BBO E BC BB BBB 0 QW Q Tflfl w 22 2 22 0 5 M n m "u AABAcBBBBBBBmB fi m" "m 3 m 11.?" T a B AD 00 DD D0D .o d t 2 QA t 3 P a fl t C a n6 S mkhdl AAB AG AB AA AAAJB E m mi a c T orm mr mmhfmimwhmwm 000 0B BB 00 BBBBO m S &W&D&%USC "w e D R E wmmmm n ABB A B0 BB BABBB H wwwwwwww Mm N//////// BB0 BE 00 0 cBcBB 66090033 5790 0052 ,23 ,33 AAB AB A0 0E cBBmB mfimflmwnmw 3 .Q99,I.,2:2,4.,.J. 2223 333 0B0 AD 00 E D 2 5 2 d n V. o BAB Ac AA 0B AAA NA m .wN M a we ri S Ch mm mm t B BD BB DD BBB B aw Nu mm 1 l d n an we h m .1 h ABB 0B BB DD AABJB of mm v m Ym 66 t X S h 0% S a on m 8 000 E B0 En BBc .o mm H m Q m .wk 1 d m a S1 a3 m na 0 rh a OW 2 C u u. .u w u c 2 H n o H 0 06 II: hw bw .5 .nluO 00!! m .nn u hp 0 y .4 1 "IL me a we R o 0 m. N r d Ia uI n uIi b m xn dY "Im m I mw ma iom Wm 0 .1 H; a e n m a a .m nmu oh .Knfl. a m m 0 3 S l ...0 0S .1 03 p n u w 0V. .SN if p 1 S s mm m 1 wm Mm u ia mmammemwmemmw m m m wm m m Rd o m fl an o. m w it .1 MO H sAB PB Mo BcmFsm mm m ff m n B e 0 mmn SS 68 A D W F EsA sh mm am y h mb WM OTHER REFERENCES Chemical Abstracts, vol. 73, at 5234w, Synthesis of Surfactants Using Ethylene Oxide (1970).
Surface Active Agents, vol. I, by A. M. Schwartz and I. W. Perry, Interscience Publishers, 1949, p. 205.
LEON D. ROSDOL, Primary Examiner D. L. ALBRECHT, Assistant Examiner US. Cl. X.R.
117l38.8 N, 139.5 CQ; 2528.8, 106, 107, 117, 357, 389, 392, 529, 548, Digests 1, 5; 260561 B; 424-320, 290, 293, 296
12 carbon atom of said RCONH R is selected from the group consisting of hydrogen and a lower alkyl group, y is an integer of from 1 to and a metal soap represented by the formula:
(RCOO) M wherein R represents a hydrocarbon radical having 2 to 21 carbon atoms, at represents an integer of from 1 to 5 equivalent to the atomic valence of the metal M, and M is one metal selected from the Periodic Table group consisting of Group Ia, Group 1111, Group IIIa, Group IVa, Group Va, Group Ib, Group -IIb, Group IVb, Group Vb, Group VIb, Group VII and Group VIII; said hydroxyfatty acid amide polyoxyalkylene ether and metal soap being present in a proportion of 1:1 to 121/ 1000 parts by weight of ether to soap.
US00119845A 1970-03-07 1971-03-01 Hydroxy-fatty acid amide polyoxy-alkylene ether:soap compositions Expired - Lifetime US3781218A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP45019500A JPS4918550B1 (en) 1970-03-07 1970-03-07

Publications (1)

Publication Number Publication Date
US3781218A true US3781218A (en) 1973-12-25

Family

ID=12001078

Family Applications (1)

Application Number Title Priority Date Filing Date
US00119845A Expired - Lifetime US3781218A (en) 1970-03-07 1971-03-01 Hydroxy-fatty acid amide polyoxy-alkylene ether:soap compositions

Country Status (4)

Country Link
US (1) US3781218A (en)
JP (1) JPS4918550B1 (en)
DE (1) DE2110651B2 (en)
GB (1) GB1311608A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4525288A (en) * 1983-08-15 1985-06-25 Texaco Inc. Lubricants containing hydroxyalkoxy acid amides of alkyl amines as friction reducers
US20130330564A1 (en) * 2011-03-28 2013-12-12 Straetmans Hightac Gmbh Polymeric corrosion inhibiter for metal surfaces and the production thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4007985A1 (en) * 1989-03-17 1990-10-04 Mitsubishi Electric Corp Aq. compsn. contg. fatty acid amide and saccharide
JPH078543A (en) * 1993-06-28 1995-01-13 Iwao Hishida Sterilizing, disinfecting, and deodorizing composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4525288A (en) * 1983-08-15 1985-06-25 Texaco Inc. Lubricants containing hydroxyalkoxy acid amides of alkyl amines as friction reducers
US20130330564A1 (en) * 2011-03-28 2013-12-12 Straetmans Hightac Gmbh Polymeric corrosion inhibiter for metal surfaces and the production thereof

Also Published As

Publication number Publication date
GB1311608A (en) 1973-03-28
DE2110651B2 (en) 1977-02-17
JPS4918550B1 (en) 1974-05-10
DE2110651A1 (en) 1971-10-07

Similar Documents

Publication Publication Date Title
DE69131849T2 (en) CONVEYOR SYSTEM LUBRICANT COMPATIBLE WITH PLASTIC CONTAINERS
US3277013A (en) Waterless skin cleaner and process for producing the same
US4207421A (en) Biodegradable, alkali stable, non-ionic surfactants
EP1318720A2 (en) Antimicrobial ternary surfactant blend comprising cationic, anionic, and bridging surfactants, and methods of preparing same
WO1993025650A1 (en) Viscosity-adjusted surfactant concentrate compositions
US3281365A (en) Antiseptic detergent compositions
JPH08502993A (en) Uses of 2-propylheptanol alkoxylates
US6087320A (en) Viscosity-adjusted surfactant concentrate compositions
EP1141212B1 (en) Pasty washing agent
US3916003A (en) Surface active agents
EP0510565B1 (en) Surface-active agents derived from sulfosuccinic esters
US3382285A (en) Liquid nonionic polyoxyalkylene surface-active materials
US6008261A (en) Aqueous surfactant compositions with a high viscosity
US3781218A (en) Hydroxy-fatty acid amide polyoxy-alkylene ether:soap compositions
US3717579A (en) Biocidal preparation
CA2328206A1 (en) Blooming type germicidal hard-surface cleaners
US4324797A (en) Metal soap compositions
US3840661A (en) Iodine and bromine adducts of 1,3,5-tri(beta-hydroxy)ethylhexahydro-s-triazine and the use thereof as a bactericide or fungicide
JPS62298435A (en) Aqueous formulation of lauryl- and myristyl -sodium sulfate having low clouding point
US4198304A (en) Compositions containing beta substituted acrylic acid amides as preservatives
JP3525848B2 (en) Anionic surfactant and detergent composition
GB2031941A (en) Concentrated aqueous surfactant compositions
CA1049026A (en) ADDUCTS OF EPOXY COMPOUNDS AND PRODUCTS OF REACTION OF .epsilon.-CAPROLACTAM WITH N-ALKYLALKYLENEDIAMINE AND METHODS OF PREPARATION AND USE
JPH0631417B2 (en) Cleaning agent for local sterilization
US5185101A (en) Compositions containing salts of acyloxyalkanesulfonates