US3780445A - Cleansing device for powder processing apparatuses - Google Patents
Cleansing device for powder processing apparatuses Download PDFInfo
- Publication number
- US3780445A US3780445A US00241031A US3780445DA US3780445A US 3780445 A US3780445 A US 3780445A US 00241031 A US00241031 A US 00241031A US 3780445D A US3780445D A US 3780445DA US 3780445 A US3780445 A US 3780445A
- Authority
- US
- United States
- Prior art keywords
- gas
- plate
- underside
- arm
- supporting plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F26—DRYING
- F26B—DRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
- F26B3/00—Drying solid materials or objects by processes involving the application of heat
- F26B3/02—Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air
- F26B3/06—Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour flowing through the materials or objects to be dried
- F26B3/08—Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour flowing through the materials or objects to be dried so as to loosen them, e.g. to form a fluidised bed
Definitions
- the present invention relates to a cleansing device for powder processing apparatuses in which one or several perforated supporting plates for powder are provided, as well as means for producing a flow of gas through the perforations of the supporting plate or plates for fluidizing a layer of powder present on the plate or plates and where the device is arranged in such a way that the path of one and the same volume of gas passes more than once through a supporting plate.
- the gas Once the gas has passed through the layer of powder, it will entrain a certain amount of fine particles or dust which were present in the powder and when the gas has to pass through a supporting plate more than once, it will, by the time a second or subsequent passage is completed, be carrying along with it so much dust that a considerable danger of the apertures provided in the supporting plates being rapidly blocked up arises.
- the gas jets will bring about an increase in the total speed of the gas flow at the time when they pass a number of holes, in practice, however, it has been found that this does not result in any deleterious effect since the volume of gas that is needed for the cleansing function can amount to a very small fraction of the total gas volume, added to which is the circumstance that the deposited dust particles do not lodge themselves in the apertures proper for so long as it is only a question of a beginning deposition, because this is produced on the underside of the plate around the apertures so that there is no call for a blowing through operation but only a blowing away of the deposited dust particles.
- the nozzles may thus with advantage be directed obliquely against the underside and it will therefore be possible to dimension the perforations and nozzles as well as the means for producing the flows of gas in such a way that the gas flows originating from a nozzle in the immediate proximity of the underside of the supporting plate have a speed exeeding the speed of the fluidizing gas flow through the perforations by several times.
- the arms When the device is constructed with a supporting plate of circular shape it is advantageous, according to the invention, for the arms to be mounted underneath the plate and pivotably around an axis which is at right angles to the plate through its centre. If, however, the supporting plate is of an elongated, rectangular shape, then it is most advantageous for the arms to be mounted perpendicularly on the longitudinal extension of the plate and displaceable perpendicularly in relation to itself in a reciprocating direction across the entire length of the plate.
- the arm In both instances it is of advantage for the arm to be connected to means whereby it becomes possible to move it at such a speed that the underside of the supporting plate is swept by cleaning gas several times per minute.
- HO. 1 shows an embodiment of an apparatus with a cleansing device according to the invention seen in side elevation and, partly, in axial section,
- FIG. 2 shows a detail of the item shown in FIG. 1 but on a larger scale
- FIG. 3 shows a diagrammatical illustration of a modified embodiment of the device according to FIG. 1, and
- FIGS. 4 and 5 show a modified embodiment of the cleansing device according to the invention seen in a plan view and in an end elevation.
- FlG.1 shows, seen diagrammatically in side elevation and, partly, in axial section, a processing apparatus for processing powder with a gas in a fluidized layer of powder.
- the gas may, for example, be air for producing a secondary drying of the powder or any other type of gas as, for instance, nitrogen, all depending upon the type of powder in question and the processing it is to undergo in the fluidized layer.
- the apparatus comprises a sealed chamber having an upper, cylindrical portion 1 and a lower, conical portion 2, as well as a ceiling 3 which seals the chamber at the top.
- a perforated plate 4 is mounted on which the fluidized layer of powder which is supplied through a feeder pipe 5 is formed with the aid of gas flowing through from below which is fed via a gas intake 6 in the conical portion 2.
- a spiral guiding wall 8 is fastened which extends down to the perforated plate 4 in the form of a vertical, spiral wall whereby, from within and to the outside, a spiral path is formed for the fluidized powder so that it is able to move from the inside, from powder inlet 5 and to the outside, to a powder outlet pipe 9, whose mouth is situated a distance above the perforated plate 4 and which, thereby, determines a certain layer thickness of the fluidized layer.
- An outlet pipe stub 11 for processing gas is fitted in ceiling 3.
- the discharge gas 12 is forced through a cyclone l3 and a heater 14 back into the gas intake 6.
- a cleansing device which consists of a pipe 15 that is mounted below the perforated plate a short distance from it and is equipped with a plurality of nozzles 16 that are directed obliquely upwards against the underside plate 4.
- Pipe 15 is secured to a hollow shaft 17 which is pivotably and coaxially journalled in the conical portion 2 in a bearing 18 and which is driven by means of a driving motor that may, for example, be an oil motor.
- Pipe 15 with shaft 17 and bearing 18 are shown more clearly in FIG. 2 in that the bearing surrounds a space 20 airtightly surrounding shaft 17, which space communicates with a gas inlet 21 while shaft 17, outside this space, has a plurality of apertures 21 by means of which communication is established between space 20 and the inside of hollow shaft 17 and, thereby, likewise communication between inlet 21 and nozzles 16.
- gas is led under pressure so that a plurality of gas jets are directed through nozzles 16 obliquely upwards against the underside of plate 4, while pipe 15 rotates and thereby sweeps the entire plate 4. Powder deposits that are beginning to form are thereby blown away from the underside of plate 4 and the risk of the holes in it becoming blocked up is eliminated.
- the gas which is supplied via inlet 21 should be of the same type as the gas that is supplied via intake 6 so as to form the fluidized layer.
- the gas should be fed under considerable pressure so that a sufficiently high outflow speed via the jets may be achieved, however, on account of the relatively small area taken up by the nozzles as compared to the area occupied by the apertures of the perforated plate, only a small volume of gas is required in comparison with the one that brings about the fluidization and this circumstance, in connection with the nozzles being directed obliquely against the underside of the plate, results in the volume of gas being discharged via nozzles 16 while having, to all intents and purposes, no influence on the fluidization process.
- FIG. 3 shows diagrammatically an embodiment in which no recirculation of the processing gas is utilized, which gas in consequence will generally be air.
- two perforated plates 25 and 26 are provided and the powder is first conveyed down onto plate 25 and, from there, to plate 26 located underneath while the processing gas flows in the opposite direction and thus first passes through plate 26 and, subsequently, through plate 25.
- a cleansing device according to the invention has been incorporated constructed exactly as described in connection with FIGS. 1 and 2 and mounted underneath the topmost plate 25.'So far as plate 26 is concerned, no cleansing device has been provided as the air underneath this plate has not passed any layer of powder yet.
- the cleaning arms are provided with nozzles or holes whose diameter is 1 mm and which number 40-100 per meter.
- a cleaning air pressure that is to say a pressure drop of 1.5-3 atmospheres is applied above the nozzle. If, for instance, the number of holes is 50 per meter of arm, a cleaning air volume of 0.5 to 3 kg/h per hole is obtained, i.e., 25-150 kg/h per meter of arm.
- the number of revolutions of the arm may be between 4-100 revolutions per hour.
- An area of 7 m is covered with a total arm length of 3 m.
- the cleaning air thus totals 1 1-65 kg/h m If the rate of fluidization is 0.2 m/sec. at C and the air density is calculated to be approximately I kg/m", the fluidization air volume amounts to l X 0.2 X 3,600 X l 720 kg/h m and the volume of cleaning air thus is of the order of magnitude of 1.5-9 percent of the fluidization air volume.
- the device is circular in cross-section and the perforated plate is circular, for which reason the cleansing arm, in keeping herewith, is rotatingly mounted.
- apparatuses that are rectangular in cross-section also exist which are fitted with rectangular, perforated plates on which the fluidized powder moves from one end of the plate to the other.
- the device illustrated in FIGS. 4 and 5 has a perforated plate 30 mounted in a portion 31 of the device that has a rectangular cross-section.
- Portion 31 is composed of two sections 32 and 33 which are interconnected by means of angle irons 34 that are secured to the sections so as to form flanges on them and, by their being assembled, perforated plate 30 is fixed between angle irons 34.
- the cleansing arm consists of a pipe 35 provided with nozzles or holes 36, through which the cleaning gas is able to escape upwards against the underside of the perforated plate 30.
- This pipe is fitted with a shaft pin 37 in each end on which a wheel 38 is journalled and this wheel may run on rails 39 which are secured to the inside of section 32.
- the supply of cleaning gas to pipe 35 is effected via a flexible hose 40, as appears from FIG. 4.
- pipe 35 is made to run forward and backward with wheels 38 on rails 39 by means of a telescopic rod which, in the embodiment shown, consists of three pieces of tubing 41, 42 and 43, as well as a rod 44, all of which are telescopically connected.
- Tubing 41 is sealed at its outermost end and has an inlet pipe stub 45 for pressure fluid.
- Tubing 41 thus acts as a cylinder and rod 44 as a piston, while tubings 42 and 43 act as telescopic extension pieces of the cylinder. In this way it is possible for pipe 35, which is connected to rod 44, to be moved forward and backward underneath perforated plate 30, e.g., 4-100 times per hour.
- the processing gas is introduced into the device via an intake pipe stub 46 and removed at the top via and outlet pipe stub (not shown).
- the device is intended to use recirculated processing gas in a manner similar to the one shown in FIG. 1.
- a cleansing device for the lowermost plates can be dis-pensed with in the case where the processing gas happens to be air.
- the need for cleaning may vary considerably all depending on the type of materials undergoing treatment since the formation of deposits depends, on the one hand, on the properties of the material and, on the other hand, on the quantity of dust particles entrained by the fluidization gas.
- the cleansing device it will be advantageous according to the invention for the cleansing device to be constructed with means for intermittently supplying the cleaning gas so that the cleaning operation may be effected during certain periods and discontinued in others.
- the cleaning periods may have a duration of minutes and the intervening periods in which no cleaning takes place may likewise have a duration of 10 minutes, they may, however, be of varying length depending on the circumstances.
- the volumes of air per hour as stated in the foregoing refer, in this case only, to the condition during those periods when cleaning air is supplied and must, therefore, not be calculated as average values for those periods and the intervening periods when no cleaning air arrives.
- a cleansing device for powder processing apparatuses including at least one perforated supporting plate, and means for producing a flow of gas through the perforations of the supporting plate for fluidizing a layer of powder present on the plate, the device being arranged such that the same volume of gas passes more than once through the supporting plate, the improvements characterized in that on the underside of the supporting plate which is intersected by the path of the gas flow at a point which, taken in the direction of the gas flow, is situated past a point where the path has already intersected the supporting plate, an arm is mounted parallel to the underside and has a plurality of gas nozzles directed against the underside, means connected to the arm for producing jets of gas from the nozzles shooting upwards against the underside, and means connected to the arm for moving it in a plane parallel to the underside.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Microbiology (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Cleaning In General (AREA)
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
- Drying Of Solid Materials (AREA)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DK179871AA DK124901B (da) | 1971-04-15 | 1971-04-15 | Renseanordning til pulverbehandlingsapparater. |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3780445A true US3780445A (en) | 1973-12-25 |
Family
ID=8108123
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US00241031A Expired - Lifetime US3780445A (en) | 1971-04-15 | 1972-04-04 | Cleansing device for powder processing apparatuses |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US3780445A (cs) |
| DE (1) | DE2217496A1 (cs) |
| DK (1) | DK124901B (cs) |
| GB (1) | GB1381322A (cs) |
| IT (1) | IT954643B (cs) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3849900A (en) * | 1973-07-02 | 1974-11-26 | Universal Foods Corp | Fluid bed air distribution apparatus and drying method |
| US4190963A (en) * | 1977-02-25 | 1980-03-04 | A/S Niro Atomizer | Cleansing device for fluidized bed reactors |
| US4320584A (en) * | 1979-08-13 | 1982-03-23 | Huettlin Herbert | Fluidized bed apparatus |
| US4379368A (en) * | 1981-04-23 | 1983-04-12 | Whey Systems, Inc. | Hot air drier |
| US6253463B1 (en) * | 1999-04-26 | 2001-07-03 | Niro A/S | Method of spray drying |
| US20070178211A1 (en) * | 2002-03-04 | 2007-08-02 | Keller A K | Process for drying high-lactose aqueous fluids |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE2718841C3 (de) * | 1977-04-28 | 1980-04-17 | Amazonen-Werke H. Dreyer Gmbh & Co Kg, 4507 Hasbergen | Maschine zum pneumatischen Ausbringen von körnigem Material |
| CN110411152B (zh) * | 2019-08-26 | 2024-09-27 | 湖南昌迅科技环保股份有限公司 | 卸料打散干燥炉 |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2412057A (en) * | 1944-03-06 | 1946-12-03 | Charles W Nichols Jr | Furnace construction |
| US2761769A (en) * | 1952-07-17 | 1956-09-04 | Gulf Research Development Co | Fluidized catalytic apparatus |
| US3119605A (en) * | 1961-06-30 | 1964-01-28 | Berz Wolfgang | Process and device for preheating pulverulent material |
| US3140864A (en) * | 1961-12-26 | 1964-07-14 | Allis Chalmers Mfg Co | Shaft kiln |
| US3298792A (en) * | 1961-09-28 | 1967-01-17 | Montedison Spa | Apparatus for improved fluidized beds and reactors containing same |
| US3305940A (en) * | 1963-10-14 | 1967-02-28 | Isler Walter | Heat exchange between granular material and gas |
| US3411465A (en) * | 1966-02-23 | 1968-11-19 | Shirai Takashi | Method for incinerating moist materials and an apparatus therefor |
| US3423843A (en) * | 1966-04-21 | 1969-01-28 | Laguilharre Pierre R | Equipment for drying by spray atomization |
-
1971
- 1971-04-15 DK DK179871AA patent/DK124901B/da unknown
-
1972
- 1972-04-04 US US00241031A patent/US3780445A/en not_active Expired - Lifetime
- 1972-04-04 GB GB1554372A patent/GB1381322A/en not_active Expired
- 1972-04-11 IT IT68109/72A patent/IT954643B/it active
- 1972-04-12 DE DE19722217496 patent/DE2217496A1/de active Pending
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2412057A (en) * | 1944-03-06 | 1946-12-03 | Charles W Nichols Jr | Furnace construction |
| US2761769A (en) * | 1952-07-17 | 1956-09-04 | Gulf Research Development Co | Fluidized catalytic apparatus |
| US3119605A (en) * | 1961-06-30 | 1964-01-28 | Berz Wolfgang | Process and device for preheating pulverulent material |
| US3298792A (en) * | 1961-09-28 | 1967-01-17 | Montedison Spa | Apparatus for improved fluidized beds and reactors containing same |
| US3140864A (en) * | 1961-12-26 | 1964-07-14 | Allis Chalmers Mfg Co | Shaft kiln |
| US3305940A (en) * | 1963-10-14 | 1967-02-28 | Isler Walter | Heat exchange between granular material and gas |
| US3411465A (en) * | 1966-02-23 | 1968-11-19 | Shirai Takashi | Method for incinerating moist materials and an apparatus therefor |
| US3423843A (en) * | 1966-04-21 | 1969-01-28 | Laguilharre Pierre R | Equipment for drying by spray atomization |
Cited By (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3849900A (en) * | 1973-07-02 | 1974-11-26 | Universal Foods Corp | Fluid bed air distribution apparatus and drying method |
| US4190963A (en) * | 1977-02-25 | 1980-03-04 | A/S Niro Atomizer | Cleansing device for fluidized bed reactors |
| US4320584A (en) * | 1979-08-13 | 1982-03-23 | Huettlin Herbert | Fluidized bed apparatus |
| US4379368A (en) * | 1981-04-23 | 1983-04-12 | Whey Systems, Inc. | Hot air drier |
| US6253463B1 (en) * | 1999-04-26 | 2001-07-03 | Niro A/S | Method of spray drying |
| US20070178211A1 (en) * | 2002-03-04 | 2007-08-02 | Keller A K | Process for drying high-lactose aqueous fluids |
| US20070178210A1 (en) * | 2002-03-04 | 2007-08-02 | Keller A K | Process for drying high-lactose aqueous fluids |
| US20070184171A1 (en) * | 2002-03-04 | 2007-08-09 | Keller A K | Process for drying high-lactose aqueous fluids |
| US20070184169A1 (en) * | 2002-03-04 | 2007-08-09 | Keller A K | Process for drying high-lactose aqueous fluids |
| US20070184170A1 (en) * | 2002-03-04 | 2007-08-09 | Keller A K | Process for drying high-lactose aqueous fluids |
| US7651714B2 (en) | 2002-03-04 | 2010-01-26 | Relco Unisystems Corporation | Process for drying high-lactose aqueous fluids |
| US7651711B2 (en) | 2002-03-04 | 2010-01-26 | Relco Unisystems Corporation | Process for drying high-lactose aqueous fluids |
| US7651712B2 (en) | 2002-03-04 | 2010-01-26 | Relco Unisystems Corporation | Process for drying high-lactose aqueous fluids |
| US7651713B2 (en) | 2002-03-04 | 2010-01-26 | Relco Unisystems Corporation | Process for drying high-lactose aqueous fluids |
| US7765920B2 (en) * | 2002-03-04 | 2010-08-03 | Relco Unisystems Corporation | Air-lift dryer for processing high-lactose aqueous fluids |
Also Published As
| Publication number | Publication date |
|---|---|
| IT954643B (it) | 1973-09-15 |
| DK124901B (da) | 1972-12-04 |
| DK124901C (cs) | 1975-06-16 |
| DE2217496A1 (de) | 1972-10-19 |
| GB1381322A (en) | 1975-01-22 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5366560A (en) | Cleaning method utilizing sodium bicarbonate particles | |
| US2770924A (en) | Instant stop and start blasting device | |
| US4409009A (en) | Powder spray booth | |
| US3780445A (en) | Cleansing device for powder processing apparatuses | |
| US3960323A (en) | Powder spray system | |
| CA1299361C (en) | Apparatus for cleaning cartridge filters in a powder spray system | |
| JP2763806B2 (ja) | 造粒コーティング方法および装置 | |
| US4885012A (en) | Rotary screen for pneumatic grain handling | |
| US2665118A (en) | Apparatus for cleaning gas swept heating surfaces | |
| JPS62721B2 (cs) | ||
| US3086538A (en) | Cleaning device | |
| US3103311A (en) | Centrifugal atomizer and method | |
| US2292665A (en) | Ventilating apparatus | |
| CA1143144A (en) | Dusting apparatus | |
| US4531570A (en) | Method and apparatus for continuously cleaning a heat exchanger during operation | |
| US4210427A (en) | Method and apparatus for cleaning gas | |
| JPH04326968A (ja) | 砂または細流を成す類似材料のふるい分け装置およびふるい分け方法 | |
| JPH09292175A (ja) | 容器乾燥装置 | |
| JP3179338B2 (ja) | ブラスト加工装置 | |
| GB937628A (en) | Shot blasting and the like machines | |
| US2555516A (en) | Spray drier | |
| US3007575A (en) | Screening apparatus | |
| US5921001A (en) | Oscillating feeder with opposing feed angle | |
| US3396477A (en) | Agglomerating apparatus | |
| US3133319A (en) | Process and apparatus for cleaning, separating and felting fibrous materials |