US3777371A - Method of controlling the characteristics impedance of coaxial cables - Google Patents

Method of controlling the characteristics impedance of coaxial cables Download PDF

Info

Publication number
US3777371A
US3777371A US00226881A US3777371DA US3777371A US 3777371 A US3777371 A US 3777371A US 00226881 A US00226881 A US 00226881A US 3777371D A US3777371D A US 3777371DA US 3777371 A US3777371 A US 3777371A
Authority
US
United States
Prior art keywords
discs
conductor
impedance
spacing
cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00226881A
Inventor
R Iyengar
D Davis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nortel Networks Ltd
Original Assignee
Northern Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northern Electric Co Ltd filed Critical Northern Electric Co Ltd
Application granted granted Critical
Publication of US3777371A publication Critical patent/US3777371A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/18Applying discontinuous insulation, e.g. discs, beads
    • H01B13/20Applying discontinuous insulation, e.g. discs, beads for concentric or coaxial cables
    • H01B13/204Applying discontinuous insulation, e.g. discs, beads for concentric or coaxial cables by punching spacers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49004Electrical device making including measuring or testing of device or component part
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49123Co-axial cable
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/53022Means to assemble or disassemble with means to test work or product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/5313Means to assemble electrical device
    • Y10T29/532Conductor
    • Y10T29/53243Multiple, independent conductors

Definitions

  • ABSTRACT A method for adjusting the characteristic impedance of disc insulated coaxial cables. The method consists of varying the spacing between adjacent discs mounted on the center conductor during the manufacturing operation. An increase in impedance results from an increase in the spacing of the discs and, conversely, a decrease in impedance results from a decrease in spacing.
  • the spacing between discs may be varied by changing the rate at which the discs are applied to the conductor which is moving at a constant linear speed.
  • thetolerance of a nominal 75 ohm cable not vary more than approximately i 0.2 ohms while remaining completely within the design tolerance of 75i 0.5 ohms.
  • the usual method of controlling the Z was on a trial and error basis, that is, a length of cable was manufactured and immediately tested for impedance. Corrective action consisted in varying the dimensions of either the center or outer conductors on the next length to be manufactured. Obviously, this method was both time consuming and very costly since the production of the next length had to be delayed while adjustments were made, such as changing the sizing die for the center conductor. Furthermore, it was usually necessary to and outer conductors are copper, however, the outer conductor 14 may comprise a combination of copper and steel.
  • the preferred material for the insulating discs 16 is polyethylene.
  • the impedance Z of the cable in FIG. 1 is a function of the inner diameter (D) of the outer conductor 14, the outer diameter (d) of the center conductor 12 and the effective dielectric constant (6 of the insulation.
  • D inner diameter
  • d outer diameter
  • 6 effective dielectric constant
  • the present invention is predicated upon our discovery that the impedance of a disc insulated coaxial cable can be controlled by varying the distance between adjacent discs mounted on the center conductor.
  • the present invention provides a practical method for continuously controlling the impedance of a coaxial cable during the manufacturing operation by varying the spacing between the insulating discs on the inner conductor. This is achieved either by changing the rate at which discs are applied to a center conductor advancing at a constant speed past a disc applying station or by changing the speed of the advancing conductor while applying the discs at a constant rate.
  • FIG. 1 is a cross sectional view of a typical disc insulated coaxial cable
  • FIG. 2 is a schematic view of a portion of an apparatus for applying insulating discs upon a center conductor.
  • FIG. 1 illustrates a typical disc insulated coaxial cable 10 which comprises a center conductor 12 coaxially spaced within a tubular outer conductor 14 by means of thin insulating discs 16 mounted at spaced intervals along the center conductor 12. Normally both the inner fected the characteristic impedance 2 of the cable.
  • the correlation of the characteristic impedance 2,, with respect to the spacing of the discs that we have discovered may be realized from the following mathematical derivation with reference to FIG. 1.
  • the variation of the impedance Z, with respect to the spacing L of the discs can be expressed as dZ /dL from which it follows that stant e for a disc insulated cable and the dielectric constant e for the polyethylene disc alone is:
  • FIG..2 there is shown a portion of an apparatus for applying discs to a conductor, the complete description of which is given in U. S. Pat. No. 3,634,606 issued .Ian. 11, 1972 entitled Method of and Apparatus for Applying Insulating Discs to Conductors.
  • the disc applying apparatus is synchronized with the linear speed of the advancing conductor to apply the discs at a uniform and predetermined spacing.
  • the spacing of the discs with such an apparatus may be altered either byincreasing or decreasing the speed of the advancing conductor while keeping the speed at which the discs are applied to the conductor constant or, alternately, by increasing or decreasing the note of application of the discs while keeping the linear speed of the conductor constant. While both methods are feasible, we prefer the latter method to maintain constant productive speeds.
  • a pair of disc applicator The apparatus is designed to operate at a nominal speed at which the peripheral speed of the applicator wheels equals the linear speed of conductor 12. This together with the diameter of the wheels determines the number of retaining teeth 20-20 to apply discs to conductor l2 at a nominal spacing.
  • such apparatus may be provided with a variable speed drive mechanism whereby the speed of the applicator wheels may be varied to alter the spacing of the discs on conductor 12.
  • Such an arrangement provides a simple system for adjusting the characteristic impedance of disc insulated coaxial cable and avoids the excessive down-time of the cable making apparatus that was previously required to change components thereof.
  • a first length of cable can be manufactured and tested for its characteristic impedance.
  • production can commence on another length of cable.
  • a corre-- sponding alteration in disc spacing can be made while the second length is being fabricated simply by adjusting the peripheral speed of the disc applicator wheels.
  • a method as defined in claim 1 further including the steps of:
  • Each of the applicator wheels is provided with a series of retaining teeth 2020 mounted in equally spaced relation around the periphery of each wheel which advance slotted discs 16 toward center conductor 12. Slotted discs 16 may be fed from a suitable feeding device such as is described in the previously referred to in U. S. Pat. No. 3,634,606.
  • the applicator wheels rotate at the same peripheral speed V and are synchronized to place the discs 16 on the conductor 12 alternately from one 0 conductor advancing at a constant linear speed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

A method is disclosed for adjusting the characteristic impedance of disc insulated coaxial cables. The method consists of varying the spacing between adjacent discs mounted on the center conductor during the manufacturing operation. An increase in impedance results from an increase in the spacing of the discs and, conversely, a decrease in impedance results from a decrease in spacing. The spacing between discs may be varied by changing the rate at which the discs are applied to the conductor which is moving at a constant linear speed.

Description

United States Patent [1 1 lyengar et a1.
11 3,777,371 1 Dec. 11, 1973 METHOD 0 F CONTROLLING THE CHARACTERISTICS IMPEDANCE OF COAXlAL CABLES [75] Inventors: Rama Iyengar, Dollard Des Ormeaux; Dan Bryan Davis, lle Perrot, Quebec, both of Canada [73] Assignee: Northern Electric Company,
Limited, Montreal, Quebec, Canada [22] Filed: Feb. 16, 1972 [21] Appl. No.: 226,881
[52] US. Cl 29/624, 29/203 C, 29/593,
174/28, 333/96 [51] Int. Cl. 1101b 13/20 [58] Field of Search 29/203 C, 193.5,
29/203 P, 200 D, 200 P, 624, 593; 156/47, 50, 55; 264/138, 157, 163, 145; 174/28; 333/96; 324/57 R [56] References Cited UNITED STATES PATENTS 2,269,991 1/1942 Scheldorf 174/28 X 2,355,833 8/1944 Bertalan 29/203 C 2,515,487 7/1950 Bertalan 29/203 C 2,579,487 12/1951 Frankwich 29/203 C Primary ExaminerRichard J l-lerbst Assistant Examiner-Joseph A. Walkowski, Jr. Att0rneyPhilip T. Erickson [57] ABSTRACT A method is disclosed for adjusting the characteristic impedance of disc insulated coaxial cables. The method consists of varying the spacing between adjacent discs mounted on the center conductor during the manufacturing operation. An increase in impedance results from an increase in the spacing of the discs and, conversely, a decrease in impedance results from a decrease in spacing. The spacing between discs may be varied by changing the rate at which the discs are applied to the conductor which is moving at a constant linear speed.
4 Claims, 2 Drawing Figures WENTEDBEE 1 1 I973 LLA J FIG. I
METHOD OF CONTROLLING THE CHARACTERISTICS IMPEDANCE OF COAXIAL CABLES a nominal impedance of 75 ohms is i 05 ohms. While.
these remain as absolute limits for the impedance of the cable, present requirements are to control the actual tolerances of cables to even narrower limits for optimum impedance matching between spliced cables to minimize reflection which could be troublesome if not kept to extremely low energy levels. Thus, it is preferred that thetolerance of a nominal 75 ohm cable not vary more than approximately i 0.2 ohms while remaining completely within the design tolerance of 75i 0.5 ohms.
Prior manufacturing processes have been incapable of providing the required degree of control on the variation of impedance in a practical manner.
The usual method of controlling the Z, was on a trial and error basis, that is, a length of cable was manufactured and immediately tested for impedance. Corrective action consisted in varying the dimensions of either the center or outer conductors on the next length to be manufactured. Obviously, this method was both time consuming and very costly since the production of the next length had to be delayed while adjustments were made, such as changing the sizing die for the center conductor. Furthermore, it was usually necessary to and outer conductors are copper, however, the outer conductor 14 may comprise a combination of copper and steel. The preferred material for the insulating discs 16 is polyethylene.
The impedance Z of the cable in FIG. 1 is a function of the inner diameter (D) of the outer conductor 14, the outer diameter (d) of the center conductor 12 and the effective dielectric constant (6 of the insulation. We discovered that the effective dielectric constant of the insulation was affected by the spacing of the discs 16 on center conductor 12, and subsequently this afmake additional adjustments for several successive cable lengths before the permissible level of impedance tolerance was achieved.
The present invention is predicated upon our discovery that the impedance of a disc insulated coaxial cable can be controlled by varying the distance between adjacent discs mounted on the center conductor. Thus, the present invention provides a practical method for continuously controlling the impedance of a coaxial cable during the manufacturing operation by varying the spacing between the insulating discs on the inner conductor. This is achieved either by changing the rate at which discs are applied to a center conductor advancing at a constant speed past a disc applying station or by changing the speed of the advancing conductor while applying the discs at a constant rate.
A complete understanding of the invention may be had from thefollowing description of a method of spacing the discs, with reference to the accompanying drawing in which:
FIG. 1 is a cross sectional view of a typical disc insulated coaxial cable; and
FIG. 2 is a schematic view of a portion of an apparatus for applying insulating discs upon a center conductor.
FIG. 1 illustrates a typical disc insulated coaxial cable 10 which comprises a center conductor 12 coaxially spaced within a tubular outer conductor 14 by means of thin insulating discs 16 mounted at spaced intervals along the center conductor 12. Normally both the inner fected the characteristic impedance 2 of the cable. The correlation of the characteristic impedance 2,, with respect to the spacing of the discs that we have discovered may be realized from the following mathematical derivation with reference to FIG. 1.
The variation of the impedance Z, with respect to the spacing L of the discs can be expressed as dZ /dL from which it follows that stant e for a disc insulated cable and the dielectric constant e for the polyethylene disc alone is:
where t the thickness of a disc. It follows from equation (2) that:
and differentiating the above equation yields the following result:
The standard equation for the characteristic impedance Z, is:
0 (138/ V5) g 1o( where D inner diameter of outer conductor and d outer diameter of center conductor. Therefore it follows that:
dZolde (d/de [(138/ VT log (D/d) and differentiating equation (5) yields dz /d 138 log (D/d) l -3W2] Substituting equations (3) and (6) in equation (1) gives:
D/d 3.75 1 t 0.085 inch L 1.0 inch The solution of equation (7) gives: dZ /dL 3.73 ohms/inchv or expressed in a different way,
dZ 3.73 X dL ohms i.e., the change in impedance (dZ equals 3.73 times the change in spacing (dL) between adjacent discs.
For example, if the spacing of the discs is changed by percent;
then dL 0.05 inch and (IL, 3.73 X 0.05
therefore dZ 0.1865 ohms It can be seen from equation (8) that if the characteristic impedance of a length of cable is high, a reduction in the spacing between the discs will reduce the impedance and alternately, if the impedance is low, an increase in the spacing of the discs will result in an increase in the impedance.
Referring now to FIG..2, there is shown a portion of an apparatus for applying discs to a conductor, the complete description of which is given in U. S. Pat. No. 3,634,606 issued .Ian. 11, 1972 entitled Method of and Apparatus for Applying Insulating Discs to Conductors. There, the disc applying apparatus is synchronized with the linear speed of the advancing conductor to apply the discs at a uniform and predetermined spacing. The spacing of the discs with such an apparatus may be altered either byincreasing or decreasing the speed of the advancing conductor while keeping the speed at which the discs are applied to the conductor constant or, alternately, by increasing or decreasing the note of application of the discs while keeping the linear speed of the conductor constant. While both methods are feasible, we prefer the latter method to maintain constant productive speeds.
As illustrated in FIG. 2, a pair of disc applicator The apparatus is designed to operate at a nominal speed at which the peripheral speed of the applicator wheels equals the linear speed of conductor 12. This together with the diameter of the wheels determines the number of retaining teeth 20-20 to apply discs to conductor l2 at a nominal spacing. For the purpose of the present invention, such apparatus may be provided with a variable speed drive mechanism whereby the speed of the applicator wheels may be varied to alter the spacing of the discs on conductor 12.
Such an arrangement provides a simple system for adjusting the characteristic impedance of disc insulated coaxial cable and avoids the excessive down-time of the cable making apparatus that was previously required to change components thereof. A first length of cable can be manufactured and tested for its characteristic impedance. In the meantime, production can commence on another length of cable. Once any change in impedance is determined from the first length of cable, a corre-- sponding alteration in disc spacing can be made while the second length is being fabricated simply by adjusting the peripheral speed of the disc applicator wheels.
What is claimed is:
1. A method of controlling the characteristic impedance of a disc insulated coaxial cable comprising the steps of:
a. advancing an elongated conductor past a disc applying station; b. applying discs to the conductor at said station; and c. changing the rate of application of discs relative to the speed of the conductor in response to a variation in cable impedance while the conductor is being advanced past said station to change the spacing between successive discs on the conductor from one uniform spacing to a different uniform spacing. 2. A method as defined in claim 1 further including the steps of:
detecting a change in impedance from a predetermined value on a completed length of cable;
determining the change in uniform spacing between successive discs required to restore the impedance to said predetermined value; and
changing the rate of applying the discs to the conductor of a successive cable length to achieve said required uniform spacing while said conductor is being advanced past said station.
3. A method as defined in claim 2 wherein the relationship between the impedance and disc spacing is dewheels 18-18 are mounted on either side of a conducterrnined from the formula:
tor 12 advancing at a constant velocity V,,. Each of the applicator wheels is provided with a series of retaining teeth 2020 mounted in equally spaced relation around the periphery of each wheel which advance slotted discs 16 toward center conductor 12. Slotted discs 16 may be fed from a suitable feeding device such as is described in the previously referred to in U. S. Pat. No. 3,634,606. The applicator wheels rotate at the same peripheral speed V and are synchronized to place the discs 16 on the conductor 12 alternately from one 0 conductor advancing at a constant linear speed.
wheel and then the other.

Claims (4)

1. A method of controlling the characteristic impedance of a disc insulated coaxial cable comprising the steps of: a. advancing an elongated conductor past a disc applying station; b. applying discs to the conductor at said station; and c. changing the rate of application of discs relative to the speed of the conductor in response to a variation in cable impedance while the conductor is being advanced past said station to change the spacing between successive discs on the conductor fRom one uniform spacing to a different uniform spacing.
2. A method as defined in claim 1 further including the steps of: detecting a change in impedance from a predetermined value on a completed length of cable; determining the change in uniform spacing between successive discs required to restore the impedance to said predetermined value; and changing the rate of applying the discs to the conductor of a successive cable length to achieve said required uniform spacing while said conductor is being advanced past said station.
3. A method as defined in claim 2 wherein the relationship between the impedance and disc spacing is determined from the formula: dZo/dL 69 log10 (D/d) . epsilon e 3/2 ( epsilon -1)tL 2 where dZo change in impedance and dL change in spacing between discs and where D, d, epsilon e, epsilon , t and L are known parameters of a given cable.
4. A method as defined in claim 3 wherein the uniform spacing between successive discs is changed by altering the rate at which the discs are applied to the conductor advancing at a constant linear speed.
US00226881A 1972-02-16 1972-02-16 Method of controlling the characteristics impedance of coaxial cables Expired - Lifetime US3777371A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US22688172A 1972-02-16 1972-02-16

Publications (1)

Publication Number Publication Date
US3777371A true US3777371A (en) 1973-12-11

Family

ID=22850809

Family Applications (1)

Application Number Title Priority Date Filing Date
US00226881A Expired - Lifetime US3777371A (en) 1972-02-16 1972-02-16 Method of controlling the characteristics impedance of coaxial cables

Country Status (1)

Country Link
US (1) US3777371A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3943470A (en) * 1973-08-06 1976-03-09 Sealectro Corporation Right angle connector
DE2845987A1 (en) * 1978-08-24 1980-03-13 Daetwyler Ag Coaxial HF cable prodn. with air insulation - involves extruding thermoplastic material at constant rate while inner conductor runs at variable speed
US20070108987A1 (en) * 2003-09-22 2007-05-17 Hirakawa Hewtech Corporation Current measuring apparatus, test apparatus, and coaxial cable and assembled cable for the apparatuses
US7777130B2 (en) 2007-06-18 2010-08-17 Vivant Medical, Inc. Microwave cable cooling

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2269991A (en) * 1940-03-08 1942-01-13 Gen Electric High frequency transmission line
US2355833A (en) * 1943-06-18 1944-08-15 Western Electric Co Assembling apparatus
US2515487A (en) * 1946-07-11 1950-07-18 Western Electric Co Article assembling apparatus
US2579487A (en) * 1946-10-10 1951-12-25 Western Electric Co Method of and apparatus for feeding and applying insulating disks to conductors

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2269991A (en) * 1940-03-08 1942-01-13 Gen Electric High frequency transmission line
US2355833A (en) * 1943-06-18 1944-08-15 Western Electric Co Assembling apparatus
US2515487A (en) * 1946-07-11 1950-07-18 Western Electric Co Article assembling apparatus
US2579487A (en) * 1946-10-10 1951-12-25 Western Electric Co Method of and apparatus for feeding and applying insulating disks to conductors

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3943470A (en) * 1973-08-06 1976-03-09 Sealectro Corporation Right angle connector
DE2845987A1 (en) * 1978-08-24 1980-03-13 Daetwyler Ag Coaxial HF cable prodn. with air insulation - involves extruding thermoplastic material at constant rate while inner conductor runs at variable speed
US20070108987A1 (en) * 2003-09-22 2007-05-17 Hirakawa Hewtech Corporation Current measuring apparatus, test apparatus, and coaxial cable and assembled cable for the apparatuses
US7548076B2 (en) * 2003-09-22 2009-06-16 Hirakawa Hewtech Corporation Current measuring apparatus, test apparatus, and coaxial cable and assembled cable for the apparatuses
US7777130B2 (en) 2007-06-18 2010-08-17 Vivant Medical, Inc. Microwave cable cooling
US20100243287A1 (en) * 2007-06-18 2010-09-30 Vivant Medical, Inc. Microwave Cable Cooling
US8093500B2 (en) 2007-06-18 2012-01-10 Vivant Medical, Inc. Microwave cable cooling

Similar Documents

Publication Publication Date Title
US3887761A (en) Tape wrapped conductor
US3728424A (en) Method of making flat cables
US5133121A (en) Stranded electric conductor manufacture
SE7707625L (en) PROCEDURE FOR PRODUCING AN INSULATED ELECTRIC CONDUCTOR BY EXTENSION
US3777371A (en) Method of controlling the characteristics impedance of coaxial cables
US3546357A (en) Cable with fully controllable pair twist length
US3433687A (en) Method of repairing low-noise transmission cable
US4368613A (en) Tape wrapped conductor
US2248840A (en) Apparatus for and method of treating strand material
US3356790A (en) Coaxial cable
US5334271A (en) Process for manufacture of twisted pair electrical cables having conductors of equal length
US11342732B2 (en) Apparatus and process for preparing an end portion of a shielded electrical cable
US6959533B2 (en) Apparatus and method for producing twisted pair cables with reduced propagation delay and crosstalk
US4359597A (en) Twisted pair multi-conductor ribbon cable with intermittent straight sections
US4183888A (en) Method of coating wire
GB1410897A (en) Method of controlling the characteristic impedance of coaxial cables
US4482412A (en) Method of making a coaxial cable
EP0098666B1 (en) Method of and device for manufacturing wire strands
US4818311A (en) Methods of and apparatus for heating a moving metallic strand material
WO1996034400A1 (en) Low skew transmission line
US3515848A (en) Temperature controllable strand annealer
US1957212A (en) Device for applying coatings to electric conductors
FI69530B (en) FOERFARANDE OCH ANORDNING FOER PAOLAEGGNING AV ETT TRAODLAGER PAO ETT TVINNAT FOEREMAOL
US3789480A (en) Method of and apparatus for applying insulating discs to conductors
GB1363010A (en) Method and apparatus for use in sealing a cable against the lengthwise passage of water