US3776173A - Propulsion system for a boat - Google Patents

Propulsion system for a boat Download PDF

Info

Publication number
US3776173A
US3776173A US00193761A US3776173DA US3776173A US 3776173 A US3776173 A US 3776173A US 00193761 A US00193761 A US 00193761A US 3776173D A US3776173D A US 3776173DA US 3776173 A US3776173 A US 3776173A
Authority
US
United States
Prior art keywords
nozzle
pivot
support ring
boat
trim angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00193761A
Inventor
R Horwitz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3776173A publication Critical patent/US3776173A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H11/00Marine propulsion by water jets
    • B63H11/02Marine propulsion by water jets the propulsive medium being ambient water
    • B63H11/10Marine propulsion by water jets the propulsive medium being ambient water having means for deflecting jet or influencing cross-section thereof
    • B63H11/107Direction control of propulsive fluid
    • B63H11/113Pivoted outlet

Definitions

  • the present invention relates to a propulsion system [2-1] App! l9376l for a boat; and more particularly discloses a propulsion system that not only provides forward movement 52] us. (:1 115/12 R and directional control, but also p i means for [51] Int. Cl B63h 11/00 controlling the altitude of the at.
  • a nozzle supporting ring is mounted on the propulsion system housing in such a way that the support ring a can pivot only in a horizontal direction, thus causing It is another object of the present invention to pro- I vide an improved propulsion system for a speedboat.
  • FIG. 1 shows a side view of a speedboat utilizing a jet propulsion system
  • FIG. 2 shows a cutaway horizontal cross sectional view of the subject jet propulsion system in a dead -ahead driving orientation
  • FIG. 3 shows a cutaway horizontal cross sectional view of the subject jet propulsion. system in a turning orientation
  • FIG. 4 shows a cutaway vertical cross sectional view of the subject jet propulsion system in a flat attitude
  • FIG. 5 shows a schematic rear view of the pivoting arrangement of subject jet propulsion system.
  • the present invention discloses a dual purpose jet propulsion system for a speedboat; the jet nozzle being accomplished, in part, by forming part of the nozzle into a substantially spherically configurated bearing surface and by having this bearing surface coact with a suitable positioned O-ring. In this way, the O-ring.
  • the nozzle to also pivot in the horizontal direction so that independent direction control is thus obtained.
  • the nozzle is simultaneously mounted on the support ring in such a manner that the nozzle can pivot in a vertical direction; so that the independent attitude control is thus obtained.
  • the disclosed structure provides either pure directional control, pure attitude control, or any desired combination thereof.
  • the present application discloses means for control-v ling this trim angle without impairing the boats efficiency.
  • FIG. 1 shows-a boat 10 having a symbolically illus- 'trated jet propulsion system 11 that produces a high speed jet of water that is forced out of the propulsion system ll in a rearward direction. It is, of course, es-
  • the disclosed apparatus achieves control of the water jet in an improved manner that may be under-
  • the Jet Nozzle 3 Housing portion 20 partially encloses a jet nozzle 25 having a constricting passageway that further accelerates the water flow, whose direction in the nozzle 25 is indicated by arrow 17b; the water jet emerging from nozzle 25 being indicated by the directional arrow 170. Since the water jet is shown to emerge in an exact rearward direction in FIG. 2, the boat to which the propulsion system is attached will move forward in a dead-ahead manner.
  • nozzle 25 comprises a sub-.
  • the Sealing Arrangement Since the water in housing 19 and in nozzle 25 is under pressure, a seal is desirable between the exterior surface 27 of nozzle 25 and the interior surface 28 of housing portion 20.
  • the disclosed structure uses a seal comprising an O-ring" 29 that is fitted into a peripheral recess of the housing portion 20.
  • sealing O-ring 29 prevents the leakage of water and the loss of water pressure between the housing 19 and the nozzle 25.
  • FIG. 3 corresponds to FIG. 2 except that nozzle 25 has been pivoted and shows that the emerging jet now takes a new direction as indicated by arrow 17c.
  • the nozzle 25 may be pivoted horizontally to any desired extent and in either direction; the movement of the steering controlrod 31 in either of the directions indicated by the double ended arrow 34 causing the nozzle 25 to pivot horizontally in a corresponding direction as indicated by the double ended curved arrow 35.
  • O-ring 29 continues to provide the desired sealing function. This is accomplished because O-ring 29 is always in arcuate peripheral contact with the spherical bearing surface 27 of the nozzle 25. It should be noted in passing, that the sealing O-ring 29 establishes an O-ring plane whose significance will be discussed later.
  • FIG. 4 which .is a vertical cross sectional view, looking at the side of the subject propulsion system 15.
  • the arrows 17 indicate the direction of the water and jet flow, and it will be noted that the vertical cross section of FIG. 4 shows the emerging jet flow to be in a horizontal direction, as indicated by arrow 17c, so that the boats attitude is substantially the angle built into the boat by its design and construction.
  • FIG. 2 illustrated a dead-ahead horizontal orientation of the nozzle 25
  • FIG. 4 illustration about to be discussed illustrates a flat-out vertical orientation of the nozzle.
  • an attitude control rod36 and an attitude control linkage 37 provide for vertically pivoting the nozzle 25 around a horizontally oriented elevation" pivot axis 38, as indicated by the curved double ended arrow 39.
  • the vertical pivoting action is similar to the horizontal pivoting action previously described, except that a total of only about twenty degrees of vertical movement is needed to provide the desired change of attitude angle.
  • the sealing O-ring 29 establishes an O-ring plane and that during the vertical pivoting, the O-ring 29 continues to seal the housing 19 and the nozzle 25 in the same manner as for the horizontal pivoting of the'nozzle.
  • a relatively simple O-ring and a substantially, spherically configurated bearing surface provide a simple solution to the sealing problem.
  • FIG. 2 shows a support ring 40 that is positioned to peripherally encircle the end portion 20 of housing 19 and in a mannerand for reasons to be discussed later supporting ring 40 is affixed to housing portion 20 in such a way that the supporting ring 40 .cannot rotate, it can only pivot around the vertically oriented azimuth axis '33.
  • the support ring 40 therefore pivots in a first, horizontal mode.
  • the peripheral support ring 40 is shown to have diametrically oppositely positioned ring sockets for accepting pivot pins 42a and 42b that are fixed in respective ring sockets in any suitable manner; e.g., pins, threaded arrangements, adhesives, etc.
  • the pivot pins 42a and 42b are affixed in supporting ring 40 at diametrically opposite locations and these pivot pin locations always remain in the same horizontal plane as the support ring 40 pivots around the vertically oriented azimuth axis 33.
  • the Horizontal Pivoting Action may be understood by briefly referring back to FIG. 2, which shows the nozzle in its dead-ahead horizontal orientation.
  • the horizontal pivoting shown in FIG. 3 has been accomplished by moving the steering control rod 31 leftward; the horizontal linkage 32 pulling though the pivot-pin 426 on its attached portion of ring 40, which acting through, the nozzle arms 45, and the radials 44 causes support ring and the nozzle 25 to pivot horizontally around the vertically oriented azimuth axis 33 to the horizontal orientation indicated in FIG. 3.
  • the amount and direction of horizontal pivoting is controlled by the steering control rod 31.
  • the steering control rod 31 is preferably provided with suitable holding or clamping means (not shown).
  • the Horizontal Linkage it will be noted from FIG. 3 that the lower shown pivot pin 42b extends outside of the support ring 40, and is indicated to terminate in a ball.
  • FIG. 3 further shows that the end portion of the steering control rod "31 contains a cutout that is adapted to receive the ball; a set screw causing a pair of pressure pads tocontact the ball, and to hold it in place.
  • many such type of ball joints arecommerciallyavailable.
  • FIG. 4 From this illustration, it will be recalled that the vertical pivoting action of nozzle 25 takes place around ahorizontally oriented elevation axis 38.
  • FIG. 4 also shows a pair of-diametrically oppositedly positioned pivot pins 48 that are affixed to housing portion 20 and are seated inbearing recesses of the support ring 40 suitable bearing sleeves being used as previously discussed. These pivot pins 48 define the ends'of the vertically oriented azimuth axis 33, and will therefore be referred to as azimuth pivot pins 48.
  • the Vertical Linkage FIG. 4 shows a vertical linkage 37 that is quite similar to the horizontal linkage 32 previously discussed in connection with FIG. 3.
  • the vertical, or attitude control linkage 37 comprises an attitude control rod 36 that accepts a ball which is affixed to a longitudinal arm 50 attached to a noz'zle'radial 51.
  • FIG. 5 also shows that nozzle 25 is supported on support ring 40 by means of a pair of oppositely positioned elevation pivot pins 42 that are always located in a horizontal plane on ring 40. Due to the fact that the pair of elevation pivot pins 42 are located in a horizontal plane, and are fixedly positioned with respect to the 1 ring, nozzle 25 cannot rotate peripherally, but, rather,
  • this horizontally oriented elevation axis 38 will be understood by referring back-to'FlGS. 2 and 3 and visualizing the vertically oriented elevation axis 38 as being defined by the elevation pivot pins 42.
  • the vertical is restricted to a vertical pivotal motion around the'hor izontally oriented elevation axis'33 to provide vertical attitude control.
  • the steering control rod 31, and the attitude control rod 36 are indicated to be at the near side and the top .side respectively of the overall structure, but these locations may bevaried as desired.
  • nozzle 25 may assume.
  • nozzle 25 may be horizontally pivot ed around its vertically oriented azimuth axis 38 defined azimuth pivot pins 42. As a result of this horizontal pivoting, the nozzle 25 may be pivoted rightward or leftward, depending upon the movement of the steering control rod 3]. ln this Way, directional control is achieved.
  • nozzle 25 may assume a level vertical orientation as indicated in FIG. 4; and that the nozzle 25 may be pivoted vertically about its horizontally oriented elevation axis 33 defined by elevation pivot pins 42. As a result of the vertical pivoting, the nozzle 25 may be pivoted upward or downwad depending upon the movement of attitude control rod 36. In this way, attitude control is achieved.
  • the disclosed boat propulsion system controls boat direction and the boats attitude.
  • the disclosed support ring pivoting arrangement gives the same mechanical effect as though the nozzle were rotating on its peripheral sealing O-ring, but has the additional advantage that the much stronger ring structure is adapted to take all of the necessary stresses, while still assuring a desired spherical relationship between the nozzle and the housing.
  • the O-ring has the sole function of providing a sealing effect; being completely relieved from the mechanical loading effects produced by the boats driving jet propulsion system.
  • the subject invention has many advantages over prior art propulsion systems. First of all, it controls boththe horizontal direction and the vertical attitude. Second, the structure is quite simple. Third, the sealing system is extremely efficient. Fourth, there is no feedback between the horizontal control system and the vertical control system; each is'substantially indepen-' dent of the other, and yet their actions may be 'combined to any extent desired. Fifth, on a given boat the planing speed was reduced from miles per hour to 17 miles per hour; thus providing improved overall effi-' ciency. Sixth, the boats top speed was increased by 7 miles per hour. Seventh, boat's attitude may be adjusted instantaneously, as soon as a different boating conditionmakes such a change desirable. And finally, these improved results are achieved without increasing the size of the engine.
  • a jet-propulsion system for a boat comprising:
  • said nozzle comprising a substantially spherically peripherally encircle said housing portion
  • a jet propulsion system for a boat comprising;
  • a housing having a flared housing portion adapted to partially enclose said bearing surface of sai nozzle; means, comprising a sealing O-ring positioned in the interior surface of said housing portion for providing a seal between the interior surface of said housing portion and said bearing surface of said nozzle; direction control means for pivoting said nozzle horizontally around a vertically oriented azimuth axis,
  • said direction control means comprising a support ring positioned to peripherally encircle said housing portion;
  • said direction control means further comprising pivot means, including a pivot pin arrangement between said support ring and said housing portion, for 'causing said support ring to be limited to a pivotal movement in only a horizontal direction;
  • said direction control means further comprising means for attaching said nozzle to said support ring, for causing said nozzle to pivot in said horizontal direction;
  • control means comprising a direction control rod and a direction control linkageinterlinking said direction. control rod and said support ring, for actuating said direction control means;
  • trim angle control means for pivoting said nozzle vertically around a horizontally oriented elevation axis, for controlling the vertical direction of said jet from said nozzle;
  • said trim angle control means comprising pivot means including a pivot pin arrangement between said support ring and said nozzle, for causing said nozzle to pivot in a vertical direction;
  • trim angle control means comprising ,a trim angle rod and'a trim angle linkage interlinking said trim angle rod and said nozzle, for actuating said trim angle control means.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Toys (AREA)

Abstract

The present invention relates to a propulsion system for a boat; and more particularly discloses a propulsion system that not only provides forward movement and directional control, but also provides means for controlling the attitude of the boat. The disclosed system accomplishes this dual result by the use of a novel jet nozzle mounting structure that permits the nozzle to pivot in a horizontal direction and/or in a vertical direction. Pivoting in either direction is independent of the other, but may still be combined with the other one when so desired, so that any combination of boat heading and attitude may be provided.

Description

United States Patent Horwitz Dec. 4, 1973 PROPULSION SYSTEM FOR A BOAT P imary Examiner-George E. A. l-lalvosa Assistant Examiner-S. D. Basinger [76] Inventor: Robert P. Horwitz, PO. Box 2063, An0mey -Harvey Nienow et a].
Newport Beach, Calif. 92663 22 Filed: Oct. 29, 1971 [57] ABSTRACT The present invention relates to a propulsion system [2-1] App! l9376l for a boat; and more particularly discloses a propulsion system that not only provides forward movement 52] us. (:1 115/12 R and directional control, but also p i means for [51] Int. Cl B63h 11/00 controlling the altitude of the at. [58] Field of Search 115/12 R, 12 A, 11, The disclosed system accomplishes this dual result by 115/14, 15, 16; 60/221, 232; 114/151; the use of a novel jet nozzle mounting structure that 239/l27.l, 265.11, 265.35 permits the nozzle to pivot in a horizontal direction and/or in a vertical direction. Pivoting in either [56] References Cited direction is independent of the other, but may still be UNITED STATES PATENTS combined with the other one when so desired, so that 3,401,887 10 1972 Sheppard 239/265.35 any combmat'o boat headmg and name may be provided.
6 Claims, 5 Drawing Figures WENIEDBUJ 4 1975 sum 10? 2 INVENTO'R ROBERT P HORWITZ ATTORNEYS PATENTEDBEB 4m 3,776,173
SHEET 20F 13 v INVENTOR ROBERT P HORWITZ ATTORNEYS BACKGROUND In using and handling speedboats, there are many factors that enter into the pleasure obtained from these water craft and one of the most exhilarating factors is their high speeds. One way of obtaining even, higher speeds is to use a more powerful engine, but there is a practicable limit to the engine size that is feasible for each boat. Therefore, as a practical. matter, the power input cannot be continuously increasedto too great an extent.
However, as is well known,speedboatsexperience an appreciable amount of water drag, especially up tothe speed at which the boat begins to plane." It would therefore be advantageous to cause the boat to begin its planing operation at a lower speed. Unfortunately, the planing characteristic of a boat .or its trim angle that controls the planing characteristic is inherent in a boats design and construction, but if this trim angle were able to be changed, it would improve the boats efficiency, increase the boats speed, and improve the boats stability for various different boating conditions.
OBJECTS AND DRAWINGS It is therefore the principal object of the present invention to provide an improved speedboat.
' 2 A nozzle supporting ring is mounted on the propulsion system housing in such a way that the support ring a can pivot only in a horizontal direction, thus causing It is another object of the present invention to pro- I vide an improved propulsion system for a speedboat.
It is still another object of the present invention to provide an improved jet propulsion system for a speedboat.
It is a further object of the present invention to pro videan improved jet propulsion system that,in part, controls the boat's attitude.
It is a still further object of the present invention to provide an improved structure for a boats propulsion system.
The attainment of these objects and others will be realized from a study of the following description, taken in conjunction with the drawings of which:
FIG. 1 shows a side view of a speedboat utilizing a jet propulsion system;
FIG. 2 shows a cutaway horizontal cross sectional view of the subject jet propulsion system in a dead -ahead driving orientation; 4
FIG. 3 shows a cutaway horizontal cross sectional view of the subject jet propulsion. system in a turning orientation;
FIG. 4 shows a cutaway vertical cross sectional view of the subject jet propulsion system in a flat attitude;
and
FIG. 5 shows a schematic rear view of the pivoting arrangement of subject jet propulsion system.
SYNOPSIS The present invention discloses a dual purpose jet propulsion system for a speedboat; the jet nozzle being accomplished, in part, by forming part of the nozzle into a substantially spherically configurated bearing surface and by having this bearing surface coact with a suitable positioned O-ring. In this way, the O-ring.
provides a seal regardless of the direction in which the nozzle happens to be pointing.
the nozzle to also pivot in the horizontal direction so that independent direction control is thus obtained.
The nozzle is simultaneously mounted on the support ring in such a manner that the nozzle can pivot in a vertical direction; so that the independent attitude control is thus obtained.
In this way, the disclosed structure provides either pure directional control, pure attitude control, or any desired combination thereof.
Operation of a Jet Propulsion System In thepast, most speedboats used underwater propellers to propel the boat through the water and in response to the constant demand for greater speed the propellers were made larger, were made to rotate faster, were designed with different angles, etc. While these modifications tended to achieve their purpose, they alsointroduced new problems such as cavitation of the propeller, undue breakage, undesirable slippage, wastage of power, etc. Thus, while these propeller modifications provided a limited increase in speed, they were not completely satisfactory.
The newer. trend for speedboats is the use of a jet,
As the speeds of the boats increased, their trim angle became much more important then previously, because this angle controlled the speed at which the boat began to plane, i.e., to rise from the surface of the water. This trim angle was usually conservatively designed for safety during average boating conditions, but if the boat was used under unusual boating conditions, this angle tended to be a disadvantage in many cases causing the boat to porpoise or bounce onthe water. This behaviour is, of course, not only undesirable, but may become dangerous at high speed.
The present application discloses means for control-v ling this trim angle without impairing the boats efficiency.
Overall Operation 1 --FIG. 1 shows-a boat 10 having a symbolically illus- 'trated jet propulsion system 11 that produces a high speed jet of water that is forced out of the propulsion system ll in a rearward direction. It is, of course, es-
sential to be able to control the direction of the water jet and this horizontal direction control has been accomplished in a number of ways.
, The disclosed apparatus achieves control of the water jet in an improved manner that may be under- The Jet Nozzle 3 Housing portion 20 partially encloses a jet nozzle 25 having a constricting passageway that further accelerates the water flow, whose direction in the nozzle 25 is indicated by arrow 17b; the water jet emerging from nozzle 25 being indicated by the directional arrow 170. Since the water jet is shown to emerge in an exact rearward direction in FIG. 2, the boat to which the propulsion system is attached will move forward in a dead-ahead manner.
It should be noted that nozzle 25 comprises a sub-.
stantially spherically configurated bearing surface 27 that is partially enclosed by the flared housing portion 20.
The Sealing Arrangement Since the water in housing 19 and in nozzle 25 is under pressure, a seal is desirable between the exterior surface 27 of nozzle 25 and the interior surface 28 of housing portion 20. For reasons that will become apparent from a later discussion, the disclosed structure uses a seal comprising an O-ring" 29 that is fitted into a peripheral recess of the housing portion 20. Thus, sealing O-ring 29 prevents the leakage of water and the loss of water pressure between the housing 19 and the nozzle 25.
Horizontal Directional Control In order to provide horizontal directional control for t the boat, the emerging water jet whose direction is indicated by aroow 17c must be diverted from its exact rearward direction. This diversion is accomplished by means of a steering control rod 31 and a steering control linkage 32, both of which will be more fully discussed later.
For the moment, attention is directed to the horizontal cross sectional view of the FIG. 3. This illustration corresponds to FIG. 2 except that nozzle 25 has been pivoted and shows that the emerging jet now takes a new direction as indicated by arrow 17c.
This result has been achieved as follows. The steering control rod 31 has been moved leftward in the illustrating of FIG. 3, causing the nozzle 25 to pivot around a vertically oriented azimuth" pivot axis 33; so that the water jet now emerges at an angle relative to the center line of the boat thus causing the boat to turn from its originaldead-ahead course.
Thus, the nozzle 25 may be pivoted horizontally to any desired extent and in either direction; the movement of the steering controlrod 31 in either of the directions indicated by the double ended arrow 34 causing the nozzle 25 to pivot horizontally in a corresponding direction as indicated by the double ended curved arrow 35.
It should be noted that during the above discussed horizontal pivoting of the nozzle 25, the previously mentioned O-ring 29 continues to provide the desired sealing function. This is accomplished because O-ring 29 is always in arcuate peripheral contact with the spherical bearing surface 27 of the nozzle 25. It should be noted in passing, that the sealing O-ring 29 establishes an O-ring plane whose significance will be discussed later.
In this way, the horizontal direction of the boat's movement is readily controlled by the jet propulsion system; without danger of losing water pressure at any particular angle, and without losing overall efficiency. Boat Attitude As indicated above, it is frequently desirable to control, and to change, the boats attitude in order to pretude control is accomplished in a manner that is similar.
to that explained above in connection with the horizontal direction control. The attitudecontrol will be better understood from FIG. 4, which .is a vertical cross sectional view, looking at the side of the subject propulsion system 15.
As indicated previously, the arrows 17 indicate the direction of the water and jet flow, and it will be noted that the vertical cross section of FIG. 4 shows the emerging jet flow to be in a horizontal direction, as indicated by arrow 17c, so that the boats attitude is substantially the angle built into the boat by its design and construction.
It should be noted that the previously discussed FIG. 2 illustrated a dead-ahead horizontal orientation of the nozzle 25, and that the FIG. 4 illustration about to be discussed illustrates a flat-out vertical orientation of the nozzle.
Referring again to FIG. 4, an attitude control rod36 and an attitude control linkage 37 provide for vertically pivoting the nozzle 25 around a horizontally oriented elevation" pivot axis 38, as indicated by the curved double ended arrow 39.
The vertical pivoting action is similar to the horizontal pivoting action previously described, except that a total of only about twenty degrees of vertical movement is needed to provide the desired change of attitude angle.
It is readily apparent that as nozzle 25 is vertically pivoted around this elevation axis 38, the water jet will be directed either upwards or downwardsHThus, by controlling the vertical angle of the water jet, the effective attitude of the boat may be quickly and easily adjusted for changing boating conditions; without adversely affecting the boats forward direction, the boats speeds, or the boats efficiency during the vertical pivoting action.
It will benoted, as indicated above, that the sealing O-ring 29 establishes an O-ring plane and that during the vertical pivoting, the O-ring 29 continues to seal the housing 19 and the nozzle 25 in the same manner as for the horizontal pivoting of the'nozzle. Thus, a relatively simple O-ring and a substantially, spherically configurated bearing surface provide a simple solution to the sealing problem.
The Horizontal Pivoting Mechanism In order to provide coordinated horizontal and vertical pivoting, it has been found desirable to use a ring and pivot arrangement that will be best understood by referring back to FIG. 2. This shows a support ring 40 that is positioned to peripherally encircle the end portion 20 of housing 19 and in a mannerand for reasons to be discussed later supporting ring 40 is affixed to housing portion 20 in such a way that the supporting ring 40 .cannot rotate, it can only pivot around the vertically oriented azimuth axis '33. The support ring 40 therefore pivots in a first, horizontal mode.
The peripheral support ring 40 is shown to have diametrically oppositely positioned ring sockets for accepting pivot pins 42a and 42b that are fixed in respective ring sockets in any suitable manner; e.g., pins, threaded arrangements, adhesives, etc. Thus, the pivot pins 42a and 42b are affixed in supporting ring 40 at diametrically opposite locations and these pivot pin locations always remain in the same horizontal plane as the support ring 40 pivots around the vertically oriented azimuth axis 33.
' pivot pins 42 and their recesses.
The Horizontal Pivoting Action The resultant horizontal pivoting action may be understood by briefly referring back to FIG. 2, which shows the nozzle in its dead-ahead horizontal orientation. The horizontal pivoting shown in FIG. 3 has been accomplished by moving the steering control rod 31 leftward; the horizontal linkage 32 pulling though the pivot-pin 426 on its attached portion of ring 40, which acting through, the nozzle arms 45, and the radials 44 causes support ring and the nozzle 25 to pivot horizontally around the vertically oriented azimuth axis 33 to the horizontal orientation indicated in FIG. 3. Thus, the amount and direction of horizontal pivoting is controlled by the steering control rod 31.
Since nozzle 25 is exposed to appreciable water flow and water pressure, the steering control rod 31 is preferably provided with suitable holding or clamping means (not shown). The Horizontal Linkage it will be noted from FIG. 3 that the lower shown pivot pin 42b extends outside of the support ring 40, and is indicated to terminate in a ball. FIG. 3 further shows that the end portion of the steering control rod "31 contains a cutout that is adapted to receive the ball; a set screw causing a pair of pressure pads tocontact the ball, and to hold it in place. Of course, many such type of ball joints arecommerciallyavailable.
' A threaded rod and a lock nut are used'to provide length adjustment of the steering controlrod 31. Vertical Pivoting It was pointed out above in connection with FIG; 2 and 3, that support ring 40 was pivoted horizontally around an azimuth axis 33, but could not rotate. Therefore, the pivot pins 42 mounted on support ring 40'are always in and always remains in the same horizontal plane regardless of the instantaneous position' of the support ring 40. As a result of this always horizontal orientation of the pivot pins 42, nozzle 25 which is mounted on pivot pins 42, is adapted to pivot vertically around the always horizontal pivot pins 42. Therefore, these pivot pins142 define the above mentioned elevation axis 38" around which the nozzle '25 pivots vertically and the pivot pins 42 will therefore be designated as the elevation pivot pins 42." I
The vertical pivoting action may be better understood by referring back to the vertical cross sectional:
view of FIG. 4. From this illustration, it will be recalled that the vertical pivoting action of nozzle 25 takes place around ahorizontally oriented elevation axis 38.
pivoting of nozzle 25 will therefore cause the nozzle to point upward, point downward, or point horizontally as indicated in FIG. 4, regardless of the instantaneous direction of the nozzle 25/support'ring 40 combination. FIG. 4 also shows a pair of-diametrically oppositedly positioned pivot pins 48 that are affixed to housing portion 20 and are seated inbearing recesses of the support ring 40 suitable bearing sleeves being used as previously discussed. These pivot pins 48 define the ends'of the vertically oriented azimuth axis 33, and will therefore be referred to as azimuth pivot pins 48. Thus, the azimuth pivot pins 48 attach the support ring 40 to housing portion 20; preventing support ring 40 from rotating, and limiting the support ring 40 to a horizontal pivoting movement. The Vertical Linkage FIG. 4 shows a vertical linkage 37 that is quite similar to the horizontal linkage 32 previously discussed in connection with FIG. 3. The vertical, or attitude control linkage 37, comprises an attitude control rod 36 that accepts a ball which is affixed to a longitudinal arm 50 attached to a noz'zle'radial 51.
However, it shouldbe noted that, unlike the prev-iport ring 40, rather it causes the nozzle 25 to pivot vertically around its elevation axis 38 which is carried positioned azimuth pivot pins 48 that are affixed in a vertical plane on housing portion 20. Due to the fact that the pair 'of azimu'th pivot pins 48 are located in a vertical plane, and are fixedly positioned with respect to the housing'portion 20, support ring 40 cannot rotate peripherally; but, rather, is restricted to a horizontal pivoting motion around the vertically oriented azimuth'axis 38. Thus, asindicated previously, support ring 40 pivots horizontally as indicated in FIG. 2 and 3 to produce horizontal direction control.
FIG. 5 also shows that nozzle 25 is supported on support ring 40 by means of a pair of oppositely positioned elevation pivot pins 42 that are always located in a horizontal plane on ring 40. Due to the fact that the pair of elevation pivot pins 42 are located in a horizontal plane, and are fixedly positioned with respect to the 1 ring, nozzle 25 cannot rotate peripherally, but, rather,
The, operation of this horizontally oriented elevation axis 38 will be understood by referring back-to'FlGS. 2 and 3 and visualizing the vertically oriented elevation axis 38 as being defined by the elevation pivot pins 42.
Since the elevation axis 38 and the elevation pins 42 are always in the same horizontal plane, the vertical is restricted to a vertical pivotal motion around the'hor izontally oriented elevation axis'33 to provide vertical attitude control.
The steering control rod 31, and the attitude control rod 36 are indicated to be at the near side and the top .side respectively of the overall structure, but these locations may bevaried as desired.
It can now be understood that nozzle 25 may assume.
2, and that entire nozzle 25 may be horizontally pivot ed around its vertically oriented azimuth axis 38 defined azimuth pivot pins 42. As a result of this horizontal pivoting, the nozzle 25 may be pivoted rightward or leftward, depending upon the movement of the steering control rod 3]. ln this Way, directional control is achieved.
It may also be understood that nozzle 25 may assume a level vertical orientation as indicated in FIG. 4; and that the nozzle 25 may be pivoted vertically about its horizontally oriented elevation axis 33 defined by elevation pivot pins 42. As a result of the vertical pivoting, the nozzle 25 may be pivoted upward or downwad depending upon the movement of attitude control rod 36. In this way, attitude control is achieved.
Thus, the disclosed boat propulsion system controls boat direction and the boats attitude.
it should be noted that the disclosed support ring pivoting arrangement gives the same mechanical effect as though the nozzle were rotating on its peripheral sealing O-ring, but has the additional advantage that the much stronger ring structure is adapted to take all of the necessary stresses, while still assuring a desired spherical relationship between the nozzle and the housing. In this way, the O-ring has the sole function of providing a sealing effect; being completely relieved from the mechanical loading effects produced by the boats driving jet propulsion system.
SUMMARY The subject invention has many advantages over prior art propulsion systems. First of all, it controls boththe horizontal direction and the vertical attitude. Second, the structure is quite simple. Third, the sealing system is extremely efficient. Fourth, there is no feedback between the horizontal control system and the vertical control system; each is'substantially indepen-' dent of the other, and yet their actions may be 'combined to any extent desired. Fifth, on a given boat the planing speed was reduced from miles per hour to 17 miles per hour; thus providing improved overall effi-' ciency. Sixth, the boats top speed was increased by 7 miles per hour. Seventh, boat's attitude may be adjusted instantaneously, as soon as a different boating conditionmakes such a change desirable. And finally, these improved results are achieved without increasing the size of the engine.
What is claimed'is:
l. A jet-propulsion system for a boat, comprising:
a jet producing nozzle;
said nozzle comprising a substantially spherically peripherally encircle said housing portion;
means for pivotally attaching said support ring on said housing portion for causing said support ring to pivot in only a first manner; means for attaching said nozzle to said support ring for causing said nozzle to pivot in said first manner. 2. The combination of claim 1 including; means for attaching said nozzle to said support ring for causing said nozzle to pivot in a second manner. 3. The combination of claim 2 including means comprising a directional control rod and a directional control linkage interlinking said directional control rod and said support ring, for causing said nozzle to pivot in said first manner.
4. The combination of claim 2 including means, comprising a trimangle control rod and a trim angle control linkage interlinking said trim angle control rod and said nozzle, for causing said nozzle to pivot in said second manner.
5. The combination of claim 2 wherein said first pivotal manner is horizontal, and said second pivotal manner is vertical.
6. A jet propulsion system for a boat, comprising;
a jet producing nozzle having a substantially spherically configurated bearing surface;
a housing having a flared housing portion adapted to partially enclose said bearing surface of sai nozzle; means, comprising a sealing O-ring positioned in the interior surface of said housing portion for providing a seal between the interior surface of said housing portion and said bearing surface of said nozzle; direction control means for pivoting said nozzle horizontally around a vertically oriented azimuth axis,
for controlling the horizontal direction of said jet from said nozzle;
said direction control means comprising a support ring positioned to peripherally encircle said housing portion;
said direction control means further comprising pivot means, including a pivot pin arrangement between said support ring and said housing portion, for 'causing said support ring to be limited to a pivotal movement in only a horizontal direction;
said direction control means further comprising means for attaching said nozzle to said support ring, for causing said nozzle to pivot in said horizontal direction;
means, comprising a direction control rod and a direction control linkageinterlinking said direction. control rod and said support ring, for actuating said direction control means;
trim angle control means for pivoting said nozzle vertically around a horizontally oriented elevation axis, for controlling the vertical direction of said jet from said nozzle;
said trim angle control means comprising pivot means including a pivot pin arrangement between said support ring and said nozzle, for causing said nozzle to pivot in a vertical direction;
means, comprising ,a trim angle rod and'a trim angle linkage interlinking said trim angle rod and said nozzle, for actuating said trim angle control means.
t! 0 II l l

Claims (6)

1. A jet propulsion system for a boat, comprising: a jet producing nozzle; said nozzle comprising a substantially spherically configurated bearing surface; direction control means for pivoting said nozzle horizontalLy around a vertically oriented azimuth pivot axis, for controlling the direction of said boat; trim angle control means for pivoting said nozzle vertically around a horizontally oriented elevation pivot axis, for controlling the attitude of said boat; a housing having a flared housing portion adapted to partially enclose said bearing surface of said nozzle; a support ring positioned to peripherally encircle said housing portion; means for pivotally attaching said support ring on said housing portion for causing said support ring to pivot in only a first manner; means for attaching said nozzle to said support ring for causing said nozzle to pivot in said first manner.
2. The combination of claim 1 including; means for attaching said nozzle to said support ring for causing said nozzle to pivot in a second manner.
3. The combination of claim 2 including means comprising a directional control rod and a directional control linkage interlinking said directional control rod and said support ring, for causing said nozzle to pivot in said first manner.
4. The combination of claim 2 including means, comprising a trim angle control rod and a trim angle control linkage interlinking said trim angle control rod and said nozzle, for causing said nozzle to pivot in said second manner.
5. The combination of claim 2 wherein said first pivotal manner is horizontal, and said second pivotal manner is vertical.
6. A jet propulsion system for a boat, comprising; a jet producing nozzle having a substantially spherically configurated bearing surface; a housing having a flared housing portion adapted to partially enclose said bearing surface of sai nozzle; means, comprising a sealing O-ring positioned in the interior surface of said housing portion for providing a seal between the interior surface of said housing portion and said bearing surface of said nozzle; direction control means for pivoting said nozzle horizontally around a vertically oriented azimuth axis, for controlling the horizontal direction of said jet from said nozzle; said direction control means comprising a support ring positioned to peripherally encircle said housing portion; said direction control means further comprising pivot means, including a pivot pin arrangement between said support ring and said housing portion, for causing said support ring to be limited to a pivotal movement in only a horizontal direction; said direction control means further comprising means for attaching said nozzle to said support ring, for causing said nozzle to pivot in said horizontal direction; means, comprising a direction control rod and a direction control linkage interlinking said direction control rod and said support ring, for actuating said direction control means; trim angle control means for pivoting said nozzle vertically around a horizontally oriented elevation axis, for controlling the vertical direction of said jet from said nozzle; said trim angle control means comprising pivot means, including a pivot pin arrangement between said support ring and said nozzle, for causing said nozzle to pivot in a vertical direction; means, comprising a trim angle rod and a trim angle linkage interlinking said trim angle rod and said nozzle, for actuating said trim angle control means.
US00193761A 1971-10-29 1971-10-29 Propulsion system for a boat Expired - Lifetime US3776173A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US19376171A 1971-10-29 1971-10-29

Publications (1)

Publication Number Publication Date
US3776173A true US3776173A (en) 1973-12-04

Family

ID=22714896

Family Applications (1)

Application Number Title Priority Date Filing Date
US00193761A Expired - Lifetime US3776173A (en) 1971-10-29 1971-10-29 Propulsion system for a boat

Country Status (1)

Country Link
US (1) US3776173A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3889623A (en) * 1974-01-31 1975-06-17 Robert W Arnold Jet propulsion unit for boats
US3906885A (en) * 1973-11-30 1975-09-23 Brunswick Corp Marine jet drive with power trim control and auxiliary rudder steering
US3957207A (en) * 1974-08-05 1976-05-18 Chronic Bill M Gimball nozzle-trim
US4026235A (en) * 1976-04-19 1977-05-31 Brunswick Corporation Jet drive apparatus with non-steering jet reverse deflector
FR2390329A1 (en) * 1977-05-12 1978-12-08 Kawasaki Heavy Ind Ltd WATER EJECTION PROPELLER
US4223630A (en) * 1978-09-07 1980-09-23 Keeney Lloyd E Jet boat reversing unit
EP0316219A1 (en) * 1987-11-04 1989-05-17 Jean-Charles Hoube Ship's propulsion system using an action turbine like a Pelton-type one connected to an engine and a hydraulic pump
JPH0241999A (en) * 1988-08-03 1990-02-13 Sanshin Ind Co Ltd Water jet driving device
US5123867A (en) * 1990-05-10 1992-06-23 Stefan Broinowski Marine jet propulsion unit
US5395272A (en) * 1992-12-22 1995-03-07 Smith; Kenneth R. Steering device for jet boat
US5551898A (en) * 1995-03-09 1996-09-03 Sanshin Kogyo Kabushiki Kaisha Discharge nozzle arrangement for water jet propulsion unit
WO1996033910A1 (en) * 1995-04-26 1996-10-31 Per Werenskiold An arrangement for the reduction of wave-induced motions of a vessel with a water jet propulsion system
US5598700A (en) * 1994-06-30 1997-02-04 Dimotech Ltd. Underwater two phase ramjet engine
US5879209A (en) * 1997-08-13 1999-03-09 Brunswick Corporation Automatic trim control system for jet propelled watercraft
US6071156A (en) * 1998-10-30 2000-06-06 Bird-Johnson Company Surface vessel with a fully submerged waterjet propulsion system
US6299494B1 (en) 2000-06-09 2001-10-09 Outboard Marine Corporation Articulating nozzle assembly for water jet apparatus
US20030068934A1 (en) * 2001-09-18 2003-04-10 Tomohiro Fuse Steering nozzle angle adjusting mechanism for jet propulsion watercraft
US6558211B2 (en) * 2001-08-11 2003-05-06 Michael W. Freitag Low-profile steering nozzle for water jet propulsion system
US20040116007A1 (en) * 2002-09-11 2004-06-17 Honda Giken Kogyo Kabushiki Kaisha Personal watercraft
WO2008009302A1 (en) * 2006-07-19 2008-01-24 Leo Capital Partners Fund Spc, Mechanical fluid dynamic device for the propulsion and flow control in the water-jet propelled boats
US20100237167A1 (en) * 2009-03-19 2010-09-23 Crystal Fountains Inc. Articulated water nozzle system
US20120137951A1 (en) * 2010-04-07 2012-06-07 Maurizio Porfiri Streamline submersible vehicle with internal propulsion and a multidirectional thrust vectoring mechanism for steering
WO2013012344A1 (en) * 2011-07-18 2013-01-24 Cwf Hamilton & Co Limited Trimmable steering nozzle arrangement
ES2823928A1 (en) * 2019-11-07 2021-05-10 M Torres Disenos Ind S A Unipersonal UNMANNED UNDERWATER VEHICLE (Machine-translation by Google Translate, not legally binding)
BE1029611B1 (en) * 2021-07-20 2023-02-20 Lien Goetghebeur WATERJET PROPULSION SYSTEM

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3401887A (en) * 1966-05-02 1968-09-17 Thiokol Chemical Corp Controllable rocket nozzle with pressure amplifier for reducing actuating force

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3401887A (en) * 1966-05-02 1968-09-17 Thiokol Chemical Corp Controllable rocket nozzle with pressure amplifier for reducing actuating force

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3906885A (en) * 1973-11-30 1975-09-23 Brunswick Corp Marine jet drive with power trim control and auxiliary rudder steering
US3889623A (en) * 1974-01-31 1975-06-17 Robert W Arnold Jet propulsion unit for boats
US3957207A (en) * 1974-08-05 1976-05-18 Chronic Bill M Gimball nozzle-trim
US4026235A (en) * 1976-04-19 1977-05-31 Brunswick Corporation Jet drive apparatus with non-steering jet reverse deflector
FR2390329A1 (en) * 1977-05-12 1978-12-08 Kawasaki Heavy Ind Ltd WATER EJECTION PROPELLER
US4223630A (en) * 1978-09-07 1980-09-23 Keeney Lloyd E Jet boat reversing unit
EP0316219A1 (en) * 1987-11-04 1989-05-17 Jean-Charles Hoube Ship's propulsion system using an action turbine like a Pelton-type one connected to an engine and a hydraulic pump
WO1989004275A1 (en) * 1987-11-04 1989-05-18 Hoube Jean Charles Marine propulsion system using a pelton wheel turbine associated with a motor and a hydraulic pump
JPH0241999A (en) * 1988-08-03 1990-02-13 Sanshin Ind Co Ltd Water jet driving device
US5123867A (en) * 1990-05-10 1992-06-23 Stefan Broinowski Marine jet propulsion unit
US6027383A (en) * 1990-05-10 2000-02-22 Broinowski; Stefan Marine ducted propeller jet propulsion unit
US5395272A (en) * 1992-12-22 1995-03-07 Smith; Kenneth R. Steering device for jet boat
AU661645B2 (en) * 1992-12-22 1995-07-27 Kenneth Raymond Smith Steering device for jet boat
US5598700A (en) * 1994-06-30 1997-02-04 Dimotech Ltd. Underwater two phase ramjet engine
US5692371A (en) * 1994-06-30 1997-12-02 Varshay; Hezi Underwater two phase ramjet engine
US5551898A (en) * 1995-03-09 1996-09-03 Sanshin Kogyo Kabushiki Kaisha Discharge nozzle arrangement for water jet propulsion unit
WO1996033910A1 (en) * 1995-04-26 1996-10-31 Per Werenskiold An arrangement for the reduction of wave-induced motions of a vessel with a water jet propulsion system
US5879209A (en) * 1997-08-13 1999-03-09 Brunswick Corporation Automatic trim control system for jet propelled watercraft
US6071156A (en) * 1998-10-30 2000-06-06 Bird-Johnson Company Surface vessel with a fully submerged waterjet propulsion system
US6299494B1 (en) 2000-06-09 2001-10-09 Outboard Marine Corporation Articulating nozzle assembly for water jet apparatus
US6558211B2 (en) * 2001-08-11 2003-05-06 Michael W. Freitag Low-profile steering nozzle for water jet propulsion system
US20030068934A1 (en) * 2001-09-18 2003-04-10 Tomohiro Fuse Steering nozzle angle adjusting mechanism for jet propulsion watercraft
US6716075B2 (en) * 2001-09-18 2004-04-06 Honda Giken Kogyo Kabushiki Kaisha Steering nozzle angle adjusting mechanism for jet propulsion watercraft
US6948987B2 (en) * 2002-09-11 2005-09-27 Honda Giken Kogyo Kabushiki Kaisha Personal watercraft
US20040116007A1 (en) * 2002-09-11 2004-06-17 Honda Giken Kogyo Kabushiki Kaisha Personal watercraft
WO2008009302A1 (en) * 2006-07-19 2008-01-24 Leo Capital Partners Fund Spc, Mechanical fluid dynamic device for the propulsion and flow control in the water-jet propelled boats
US20100237167A1 (en) * 2009-03-19 2010-09-23 Crystal Fountains Inc. Articulated water nozzle system
US8403237B2 (en) 2009-03-19 2013-03-26 Zachary Ficyk Articulated water nozzle system
US20120137951A1 (en) * 2010-04-07 2012-06-07 Maurizio Porfiri Streamline submersible vehicle with internal propulsion and a multidirectional thrust vectoring mechanism for steering
WO2013012344A1 (en) * 2011-07-18 2013-01-24 Cwf Hamilton & Co Limited Trimmable steering nozzle arrangement
ES2823928A1 (en) * 2019-11-07 2021-05-10 M Torres Disenos Ind S A Unipersonal UNMANNED UNDERWATER VEHICLE (Machine-translation by Google Translate, not legally binding)
BE1029611B1 (en) * 2021-07-20 2023-02-20 Lien Goetghebeur WATERJET PROPULSION SYSTEM

Similar Documents

Publication Publication Date Title
US3776173A (en) Propulsion system for a boat
US3906885A (en) Marine jet drive with power trim control and auxiliary rudder steering
US3324815A (en) Pivotally mounted keel hydrofoil
US4228750A (en) Hydrofoil sailboat with control tiller
US3983834A (en) Propulsion system for watercraft and the like
US3646902A (en) Aerohydrofoil steering control
US3455268A (en) Nonsymmetric shroud-propeller combination for directional control
US3106178A (en) Trim control device
US2585502A (en) Propeller thrust coordinating mechanism
US3179078A (en) Dual hydrofoil mechanism for sailboats
GB1031118A (en) Water borne vessel
US3094961A (en) Hydrofoil sailboat
US3179081A (en) Combined propulsion and steering apparatus for vessels
US3422789A (en) Marine propulsion unit
US3336890A (en) Keel structure
US3256849A (en) Maneuver device for submergence vessels
US3631828A (en) Sailboat hydrofoils
US3149600A (en) Integrated propulsion and control system for hydrofoil craft
GB1038471A (en) Water craft
US3807346A (en) Waterjet steering and reversing mechanism
US3442244A (en) Propulsive systems for vessels
US3556035A (en) Sailing vessel
US4808132A (en) Marine drive apparatus
US3467045A (en) Ship's rudder
GB1401095A (en) Sailing gear for water craft