US3773303A - Method and means to operate pumping system - Google Patents

Method and means to operate pumping system Download PDF

Info

Publication number
US3773303A
US3773303A US00192045A US3773303DA US3773303A US 3773303 A US3773303 A US 3773303A US 00192045 A US00192045 A US 00192045A US 3773303D A US3773303D A US 3773303DA US 3773303 A US3773303 A US 3773303A
Authority
US
United States
Prior art keywords
asphalt
pump
pumping
pumping means
vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00192045A
Inventor
J Griffith
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3773303A publication Critical patent/US3773303A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10CWORKING-UP PITCH, ASPHALT, BITUMEN, TAR; PYROLIGNEOUS ACID
    • C10C3/00Working-up pitch, asphalt, bitumen
    • C10C3/10Melting
    • C10C3/12Devices therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C13/00Adaptations of machines or pumps for special use, e.g. for extremely high pressures
    • F04C13/001Pumps for particular liquids
    • F04C13/002Pumps for particular liquids for homogeneous viscous liquids

Definitions

  • This invention relates to improvements in the method and means for handling liquid molten congealable hydrocarbons.
  • One aspect relates to mixing.
  • it relates to cleaning pumping systems that handle hot liquids that congeal or solidify at ambient temperatures.
  • a specific aspect of the invention relates to improvements in storing, pumping and cleaning a hot liquid asphalt pumping system by passing air reversely through it using the asphalt pump as an air compressor to accomplish this, in connection with which the invention will be described.
  • Asphalt at ambient temperatures is a solid material. It can be worked at temperatures from about 350 F., or higher, depending on what kind of asphalt or tar is being handled. For example, roofing asphalt becomes liquid at about 350 F. Similarly they each solidify at temperatures at or below those temperatures. Thus, in applying such materials on construction sites and while using them it is necessary to liquefy them and maintain them liquid which is done by the application of heat. It is also necessary to take precaution against the asphalt hardening in pipelines and the like by reason of getting too cool. One way of doing this is to empty the pipelines (normally by draining them onto the ground) as soon as the particular job or item of work is finished, thereby giving the asphalt no opportunity for cooling to the point where it congeals.
  • Asphalt is kept molten or liquid during storage by applying heat. This is commonly done with a fire tube (or equivalent heating means) that extends into the storage vessel that holds the asphalt.
  • the storage vessels with which I am concerned are normally mobile being mounted on trucks or trailers and are generally quite large (e.g., from about 6 ft.- to about 9 ft. in their vertical dimension) hence a significant thermal gradient (e.g., at least 20 F. in a ft. diameter tank of the sort in the drawing or an amount sufficient to cause vigorous and readily visible thermosyphonic action upon applying heat through the fire tube) is established within the asphalt in the vessel.
  • the portion of the asphalt below the fire tube thus is colder, even though molten, than that above the fire tube.
  • the present invention resolves many of these problems because it provides means to agitate and mix the colder asphalt with the hotter material above it. This is done by providing a conduit that extends well below the fire tube to almost the bottom of the storage vessel and providing a reversible pump that is selectively operated to force air through this conduit in a quantity sufficient to agitate the colder material and/or to lower its density by bubble entrainment therein. This action mixes the colder and hotter portions of asphalt and disperses the debris (solid particles, etc.) throughout.
  • the pump Upon completion of the mixing the pump is reversed (preferably by driving it in its normal pumping direction, i.e., forward) thus drawing the freshly mixed asphalt from the bottom of the storage tank and dispensing it for use on such tanks as roofing, highway or road surfacing and repair, and the like.
  • Advantages realized include use of the full volume of the storage vessel, withdrawal of the debris in dispersed form, reduction or elimination of downtime for cleaning the tank, and of course elimination of need for cleaning the tank.
  • the present invention is also concerned with cleaning out liquid asphalt from a pumping system, including the pump and the pipelines connected between it and the storage tank, so that asphalt will not have a chance to congeal or harden therein.
  • this involves reversing the direction of the asphalt pump in such a way as to pump air as aforesaid through the pump, through the flow paths connected between the pump and the asphalt tank, and into the asphalt tank.
  • This has the advantage of saving some asphalt by returning it reversely through the pipeline or other conduit in which it has been traveling and eliminates the well-known prior art practice of opening a valve and letting the asphalt run out on the ground where it is wasted.
  • FIG. 1 schematically represents an asphalt storage, pumping, mixing and cleaning system, according to the present invention suitable for roofing asphalt it being understood that such system may be mobile, i.e., mounted on a truck or trailer;
  • FIG. 2 schematically illustrates a preferred form of gear pump
  • FIG. 3 schematically illustrates one assembled system for piping, pumping, control, and power supply.
  • a body of molten asphalt l is stored in an insulated storage tank comprising the inner holding tank 2, an outer jacket in the form of a lightweight tank 3 and a layer of suitable insulation 4 between the two tanks.
  • the construction details of the tanks are well-known and inasmuch as they comprise no part of the present invention, are not further described.
  • the tank may be mounted on a suitable vehicle 5 such as a trailer, a truck, or it may be mounted on a frame and be stationary at a work site.
  • the asphalt l is kept hot from the heat it receives from fire tube 7 which preferably is of the return tube type.
  • Fuel gases from propane tank 8 and valve 9 are burned by the burning apparatus 10 and delivered into the lower end of the fire tube 7 which is U-shaped, and are thereafter vented to the atmosphere in a suitable fashion.
  • Propane tank 8 is connected by manifolding 11 to the burner valve and burner 9, 10.
  • the propane tank 8 also preferably serves as a fuel source for the prime mover engine 41.
  • asphalt is withdrawn from adjacent the bottom of the storage tank 2 by means of a flow path that includes vertically extending dip tube 14 which preferably goes to about one to two inches from the bottom of tank 2.
  • the conduit 14 is part of the suction system for an asphalt pump 15.
  • the rest of the flow path or tank to pump connection system comprises a horizontal line 16, a further vertical line 17 and tees l8, l9 and 20 interconnecting the same. Tees are preferred in lieu of elbows so that gases can be vented and lines can be opened up and inspected or cleaned out.
  • the flow path from adjacent the bottom of tank 2 to the inlet or suction side of pump 15 comprises vertically upward through dip tube 14, the tee 18, horizontal line 16, the tee 19, then downwardly through pipeline 17 and tee directly into the pump.
  • the tee 19 could as easily be an elbow except that it is desired as good design practice to have a pipe plug 23, which is removable, available as a means for inspecting the vertical line 17 and cleaning same should it become coked up, plugged or the like.
  • a valve 22 functions as a vacuum breaker valve to avoid syphoning out the tank.
  • Valve 22 is opened after pumping, mixing, and pipe cleaning are completed.
  • Valve 22 is closed during pumping, mixing and cleaning operations. In case of pump failure or breakdown, the flow path from tube 16 through 17 and 20 can be drained by opening valves 22 and 24.
  • Valve 22 is optional inmy system.
  • the drain valve 24 is part of the well-known prior art apparatus and in the past has been used to drain the pipelines 16, 17 and the pump 15 so that asphalt would not have a chance to harden therein. While my invention prefers a system constructed with the valve 24 as a guard against emergencies, the benefits derived from using my present invention include not having to drain asphalt through the valve 24 and waste it by letting it run out on the ground.
  • asphalt is withdrawn from adjacent the bottom of the tank 2 by means of the heretofore described pump suction line and delivered by the pump 15 through its discharge line 30.
  • l have illustrated a system suitable for supplying roofing asphalt which ordinarily means that the tank 2 and its associated apthrough which it falls back into the body of liquid asphalt 1.
  • Conduit 35 is a pipe which terminates adjacent the top of storage tank 2.
  • the bottom part of vertical pipe 35 does not depend down into the body of asphalt but instead is in communication with the air space 12.
  • the pump 15 ' is preferably a reversible gear pump. It
  • the gear transmission has multiple forward speeds and one reverse speed.
  • the motor 41 is preferablya-four-cycle gasoline engine adapted to run on propane from tank 8 although it may be any suitable internal combustion, electrical, or other sort of drive means. Fuel is preferably supplied to motor 41 from propane tank 8 via fuel line 11.
  • the clutch 42 is a suitably selected part of power transmission equipment and may include, in combination with the engine and the reversible gear transmission (RGT) a torque converter, automatic transmission of the sort so commonly found in automobiles, or the like.
  • gear pump 15 can be reversed in such a manner as to reverse the direction that gear pump 15 turns. It is also essential that gear pump 15, or more broadly the pumping means, be reversible, able to pump gas in the reverse direction, and able to pump liquid in the forward direction.
  • the drive means 40, 41, 42 are all commercially available as is the gear pump 15.
  • FIG. 2 schematically shows a preferred form of reversible gear pump 15 installed in the flow path to receive asphalt from a suction line that includes the vertical flow portion dip tube 14 and conduits l6, 17 plus the fittings 18, 19, 20 and to discharge through conduit 30.
  • FIG. 2 also shows how the piping can be simplified I from the schematic of FIG. 1 if the pump has a diswhich rotor is driven by motor 41, a stator or vane 55,
  • Valve 32 is preferably a lever opening gate valve that is closed when pumping into the barrel 31.
  • a rope or cable 32A may extend from the lever to either the roof or the ground to facilitate operating valve 32.
  • Valve 32 is opened to stop asphalt going to the roof by pumping the asphalt through the return path comprising horizontal conduit or pipe 33, elbow 34'andvertical return pipe 35 into the air space 12 and an idler or pinion gear 56 that is driven by the rotor 54.
  • My invention comprises the method of mixing asphalt in the tank and of cleaning the hot molten liquid asphalt out of the pumping circuit which primarily comprises the delivery or pump suction lines 14, 16 and 17. This is done by opening valve 32 and by manipulating the clutch 42 and reversible drive 40 putting the pump in reverse so that fluid passing therethrough goes in a direction opposite to that indicated by the arrows in the drawing.
  • the valve 32 may be either open ervoir 2. By moving air through such lines for a sufficient length of time, almost all of the asphalt can be removed from the lines thus assuring that it will not be able to congeal therein and plug them up thus creating a problem when the system has started up again.
  • valve 32 is optionally (preferably) opened and valves 22 and 24 are closed, the engine 41 is started and the gear transmission 40 is shifted to the reverse (i.e., the air pumpin'g) speed, the clutch 42 is engaged, and the pump is therefore caused to act as an air compressor to draw air in through conduits 30 and 33 and their inter-connecting fittings l8, 19, and direct it through the conduits 17, 16, 14 and their connecting fittings (e.g., tees 18, 19, 20) to where it emerges from the lower end 60 of conduit 14 into the colder portion 61 of the asphalt 1 (below the fire tube 7).
  • the reverse i.e., the air pumpin'g
  • the clutch 42 is engaged
  • the pump is therefore caused to act as an air compressor to draw air in through conduits 30 and 33 and their inter-connecting fittings l8, 19, and direct it through the conduits 17, 16, 14 and their connecting fittings (e.g., tees 18, 19, 20) to where it emerges from the lower end 60 of conduit 14 into the
  • the burner 10 is meanwhile op erating to send hot gases through the fire tube 7 and continues to do so.
  • the pump 15 is driven for a time sufficient to agitate and mix the colder asphalt and hot asphalt.
  • this operating time is about 10 minutes minimum when running at 550 rpm a pump capable of delivering 35 gpm at 400 rpm.
  • My preferred speeds at 550 rpm with the Viking gear pump of FIG. 2 are about 550 rpm for air pumping and 2200 rpm for asphalt pumping.
  • valve 32 is closed (valves 22, 24 remain closed during all normal operations), the clutch is disengaged, the gear transmission is shifted to the appropriate forward speed and the clutch is re-engaged whereupon asphalt is drawn into the lower end 60 of conduit 14, thence vertically upward and on to the intake of pump 15, and then discharged from the pump through conduit 30, to a place of use shown in FIG. 1.
  • a process of storing and pumping liquid congealable hydrocarbon comprising the steps of providing a storage vessel, a reversible pumping means, and a flow path between the bottom of the vessel and the pumping means,
  • step of first operating said pumping means further comprises drawing at least part of the air from the air space above said body of liquid hydrocarbon within said vessel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Civil Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Road Paving Machines (AREA)

Abstract

Hot and cold liquid molten congealable hydrocarbons are mixed and otherwise prepared for pumping by a conduit and pump system for pumping such liquids (e.g., hot asphalt). The system is cleaned by reversing the direction of the asphalt pump to thereby pass air reversely through the pump and the lines handling the asphalt, returning the asphalt to the place from whence it has been withdrawn. Air is pumped through the system prior to asphalt pumping to mix the hot and cold asphalt.

Description

United States Patent 11 1 Griffith Nov. 20, 1973 [5 METHOD AND MEANS TO OPERATE 3,316,851 5/1967 Hagenes 418/169 PUMPING SYSTEM 2,698,167 12/1954 Baumgardner. 259/156 591,839 10/1897 Greene 259 151 Inventor: James Griffith, 3069 Aries 873,345 12 1907 Canniff.... 259 151 Cincinnati, Ohio 45239 2,645,524 7/1953 Kelly 222/424 [22 Filed: Oct. 26, 1971 Appl. No.: 192,045
[52] US. Cl .Q. 259/147, 222/424, 259/95, 259/157 [51] Int. Cl B28c 5/06, B28c 5/42, B28c 5/46, BOlf 5/14 [58] Field of Search 259/4, 18, 36, 95, 259/98, 145, 146, 147, 148,151, 153, 155-158, 159 A, DIG. 17; 134/102, 169 C; 222/190, 318, 333, 424; 126/3435; 141/1, 2, 92
[5 6] References Cited UNITED STATES PATENTS 501,215 7/1893 Schubert 259/151 3,572,652 3/1971 Hale 259/151 Primary Examiner-Harvey C. Hornsby Assistant Examiner-Stuart S. Levy Attorney-Daniel P. Worth [5 7] ABSTRACT Hot and cold liquid molten congealable hydrocarbons are mixed and otherwise prepared for pumping by a conduit and pump system for pumping such liquids (e.g., hot asphalt). The system is cleaned by reversing the direction of the asphalt pump to thereby pass air reversely through the pump and the lines handling the asphalt, returning the asphalt to the place from whence it has been withdrawn. Air is pumped through the system prior to asphalt pumping to mix the hot and cold asphalt.
3 Claims, 3 Drawing Figures METHOD AND MEANS TO OPERATE PUMPING SYSTEM BACKGROUND AND SUMMARY OF INVENTION This invention relates to improvements in the method and means for handling liquid molten congealable hydrocarbons. One aspect relates to mixing. In one aspect it relates to cleaning pumping systems that handle hot liquids that congeal or solidify at ambient temperatures. A specific aspect of the invention relates to improvements in storing, pumping and cleaning a hot liquid asphalt pumping system by passing air reversely through it using the asphalt pump as an air compressor to accomplish this, in connection with which the invention will be described.
Asphalt at ambient temperatures is a solid material. It can be worked at temperatures from about 350 F., or higher, depending on what kind of asphalt or tar is being handled. For example, roofing asphalt becomes liquid at about 350 F. Similarly they each solidify at temperatures at or below those temperatures. Thus, in applying such materials on construction sites and while using them it is necessary to liquefy them and maintain them liquid which is done by the application of heat. It is also necessary to take precaution against the asphalt hardening in pipelines and the like by reason of getting too cool. One way of doing this is to empty the pipelines (normally by draining them onto the ground) as soon as the particular job or item of work is finished, thereby giving the asphalt no opportunity for cooling to the point where it congeals.
In fact, the difficulties and inconveniences of liquefying asphalt and other like materials once they have hardened in a reservoir, pipeline, or the like is so great that it is customary to apply heat to them for extended periods of time while in storage merely to keep them liquid.
Asphalt is kept molten or liquid during storage by applying heat. This is commonly done with a fire tube (or equivalent heating means) that extends into the storage vessel that holds the asphalt. The storage vessels with which I am concerned are normally mobile being mounted on trucks or trailers and are generally quite large (e.g., from about 6 ft.- to about 9 ft. in their vertical dimension) hence a significant thermal gradient (e.g., at least 20 F. in a ft. diameter tank of the sort in the drawing or an amount sufficient to cause vigorous and readily visible thermosyphonic action upon applying heat through the fire tube) is established within the asphalt in the vessel. The portion of the asphalt below the fire tube thus is colder, even though molten, than that above the fire tube. The practice has been to draw asphalt from a level with or above the fire tube because the asphalt is hotter, less viscous, flows more readily, is less likely to congeal in cold lines or in temporary small job-site vessels, and because it is cleaner than if drawn from the cold body of asphalt below the fire tube. Experience has shown that debris of various particles settle into the aforesaid colder asphalt below the fire tube. These particles (debris) can be bits of minerals, coke, high melting particles, dirt, and a variety of unanalyzed bodies. Over a period of time the colder asphalt accumulates enough of this debris to make it troublesome to pump and otherwise undesirable to use and necessitates cleaning the storage vessel. Prior art cleaning intervals have been as often as every six months on truck mounted tanks.
The present invention resolves many of these problems because it provides means to agitate and mix the colder asphalt with the hotter material above it. This is done by providing a conduit that extends well below the fire tube to almost the bottom of the storage vessel and providing a reversible pump that is selectively operated to force air through this conduit in a quantity sufficient to agitate the colder material and/or to lower its density by bubble entrainment therein. This action mixes the colder and hotter portions of asphalt and disperses the debris (solid particles, etc.) throughout. Upon completion of the mixing the pump is reversed (preferably by driving it in its normal pumping direction, i.e., forward) thus drawing the freshly mixed asphalt from the bottom of the storage tank and dispensing it for use on such tanks as roofing, highway or road surfacing and repair, and the like. Advantages realized include use of the full volume of the storage vessel, withdrawal of the debris in dispersed form, reduction or elimination of downtime for cleaning the tank, and of course elimination of need for cleaning the tank.
The present invention is also concerned with cleaning out liquid asphalt from a pumping system, including the pump and the pipelines connected between it and the storage tank, so that asphalt will not have a chance to congeal or harden therein. Simply stated, this involves reversing the direction of the asphalt pump in such a way as to pump air as aforesaid through the pump, through the flow paths connected between the pump and the asphalt tank, and into the asphalt tank. This has the advantage of saving some asphalt by returning it reversely through the pipeline or other conduit in which it has been traveling and eliminates the well-known prior art practice of opening a valve and letting the asphalt run out on the ground where it is wasted.
Other objects, advantages and features of the invention will be appreciated from a reading of the following specification and claims in conjunction with the drawing wherein:
FIG. 1 schematically represents an asphalt storage, pumping, mixing and cleaning system, according to the present invention suitable for roofing asphalt it being understood that such system may be mobile, i.e., mounted on a truck or trailer;
FIG. 2 schematically illustrates a preferred form of gear pump; and
FIG. 3 schematically illustrates one assembled system for piping, pumping, control, and power supply.
A body of molten asphalt l is stored in an insulated storage tank comprising the inner holding tank 2, an outer jacket in the form of a lightweight tank 3 and a layer of suitable insulation 4 between the two tanks. The construction details of the tanks are well-known and inasmuch as they comprise no part of the present invention, are not further described. The tank may be mounted on a suitable vehicle 5 such as a trailer, a truck, or it may be mounted on a frame and be stationary at a work site.
The asphalt l is kept hot from the heat it receives from fire tube 7 which preferably is of the return tube type. Fuel gases from propane tank 8 and valve 9 are burned by the burning apparatus 10 and delivered into the lower end of the fire tube 7 which is U-shaped, and are thereafter vented to the atmosphere in a suitable fashion.
I Propane tank 8 is connected by manifolding 11 to the burner valve and burner 9, 10. The propane tank 8 also preferably serves as a fuel source for the prime mover engine 41.
At the time the system is to be cleaned, some asphalt has been dispensed, hence asphalt seldom fills the tank 2 completely, there is ordinarily an air space 12 above the asphalt. Since the air in space 12 is in direct contact with the asphalt, it is approximately the same temperature as the asphalt.
During normal pumping or dispensing, asphalt is withdrawn from adjacent the bottom of the storage tank 2 by means of a flow path that includes vertically extending dip tube 14 which preferably goes to about one to two inches from the bottom of tank 2. The conduit 14 is part of the suction system for an asphalt pump 15. The rest of the flow path or tank to pump connection system comprises a horizontal line 16, a further vertical line 17 and tees l8, l9 and 20 interconnecting the same. Tees are preferred in lieu of elbows so that gases can be vented and lines can be opened up and inspected or cleaned out. Thus the flow path from adjacent the bottom of tank 2 to the inlet or suction side of pump 15 comprises vertically upward through dip tube 14, the tee 18, horizontal line 16, the tee 19, then downwardly through pipeline 17 and tee directly into the pump. The tee 19 could as easily be an elbow except that it is desired as good design practice to have a pipe plug 23, which is removable, available as a means for inspecting the vertical line 17 and cleaning same should it become coked up, plugged or the like.
A valve 22 functions as a vacuum breaker valve to avoid syphoning out the tank. Valve 22 is opened after pumping, mixing, and pipe cleaning are completed. Valve 22 is closed during pumping, mixing and cleaning operations. In case of pump failure or breakdown, the flow path from tube 16 through 17 and 20 can be drained by opening valves 22 and 24. Valve 22 is optional inmy system.
The drain valve 24 is part of the well-known prior art apparatus and in the past has been used to drain the pipelines 16, 17 and the pump 15 so that asphalt would not have a chance to harden therein. While my invention prefers a system constructed with the valve 24 as a guard against emergencies, the benefits derived from using my present invention include not having to drain asphalt through the valve 24 and waste it by letting it run out on the ground.
In ordinary operation asphalt is withdrawn from adjacent the bottom of the tank 2 by means of the heretofore described pump suction line and delivered by the pump 15 through its discharge line 30. l have illustrated a system suitable for supplying roofing asphalt which ordinarily means that the tank 2 and its associated apthrough which it falls back into the body of liquid asphalt 1.
Conduit 35 is a pipe which terminates adjacent the top of storage tank 2. The bottom part of vertical pipe 35 does not depend down into the body of asphalt but instead is in communication with the air space 12.
.The pump 15 'is preferably a reversible gear pump. It
is driven through a reversible gear drive transmission 40 (RGT) which in turn receives power from a suitable motor 41 by means of a clutch 42. The gear transmission has multiple forward speeds and one reverse speed. The motor 41 is preferablya-four-cycle gasoline engine adapted to run on propane from tank 8 although it may be any suitable internal combustion, electrical, or other sort of drive means. Fuel is preferably supplied to motor 41 from propane tank 8 via fuel line 11. Similarly, the clutch 42 is a suitably selected part of power transmission equipment and may include, in combination with the engine and the reversible gear transmission (RGT) a torque converter, automatic transmission of the sort so commonly found in automobiles, or the like.
The important thing is that the power drive means 40, 41, 42 can be reversed in such a manner as to reverse the direction that gear pump 15 turns. It is also essential that gear pump 15, or more broadly the pumping means, be reversible, able to pump gas in the reverse direction, and able to pump liquid in the forward direction. The drive means 40, 41, 42 are all commercially available as is the gear pump 15.
FIG. 2 schematically shows a preferred form of reversible gear pump 15 installed in the flow path to receive asphalt from a suction line that includes the vertical flow portion dip tube 14 and conduits l6, 17 plus the fittings 18, 19, 20 and to discharge through conduit 30. FIG. 2 also shows how the piping can be simplified I from the schematic of FIG. 1 if the pump has a diswhich rotor is driven by motor 41, a stator or vane 55,
paratus is located on a truck or trailer on the ground 1 and the asphalt must be pumped up through line 30 one, two or more stories to a temporary storage vessel such as barrel 31 from whence it is applied to roofing felt and the like. Valve 32 is preferably a lever opening gate valve that is closed when pumping into the barrel 31. A rope or cable 32A may extend from the lever to either the roof or the ground to facilitate operating valve 32. Valve 32 is opened to stop asphalt going to the roof by pumping the asphalt through the return path comprising horizontal conduit or pipe 33, elbow 34'andvertical return pipe 35 into the air space 12 and an idler or pinion gear 56 that is driven by the rotor 54.
My invention comprises the method of mixing asphalt in the tank and of cleaning the hot molten liquid asphalt out of the pumping circuit which primarily comprises the delivery or pump suction lines 14, 16 and 17. This is done by opening valve 32 and by manipulating the clutch 42 and reversible drive 40 putting the pump in reverse so that fluid passing therethrough goes in a direction opposite to that indicated by the arrows in the drawing. The valve 32 may be either open ervoir 2. By moving air through such lines for a sufficient length of time, almost all of the asphalt can be removed from the lines thus assuring that it will not be able to congeal therein and plug them up thus creating a problem when the system has started up again. Such asphalt as may coat the pipelines or the pump very slightly will be removed in very short order when the system is started up to pump hot asphalt again because the hot asphalt then will melt readily any such thin coating and carry it on through the system. Any backsyphon action is prevented by the air trap formed when horizontal pipe 16 is blown clear of asphalt.
The same things are done to prepare to pump asphalt, e.g., when coating a roof, valve 32 is optionally (preferably) opened and valves 22 and 24 are closed, the engine 41 is started and the gear transmission 40 is shifted to the reverse (i.e., the air pumpin'g) speed, the clutch 42 is engaged, and the pump is therefore caused to act as an air compressor to draw air in through conduits 30 and 33 and their inter-connecting fittings l8, 19, and direct it through the conduits 17, 16, 14 and their connecting fittings (e.g., tees 18, 19, 20) to where it emerges from the lower end 60 of conduit 14 into the colder portion 61 of the asphalt 1 (below the fire tube 7). The burner 10 is meanwhile op erating to send hot gases through the fire tube 7 and continues to do so. The pump 15 is driven for a time sufficient to agitate and mix the colder asphalt and hot asphalt. In a tank 2 of 64 inch diameterX 72 inches long (nominally 1000 gallons) this operating time is about 10 minutes minimum when running at 550 rpm a pump capable of delivering 35 gpm at 400 rpm. My preferred speeds at 550 rpm with the Viking gear pump of FIG. 2 are about 550 rpm for air pumping and 2200 rpm for asphalt pumping.
Preferably the steps in the preceding paragraph are carried out immediately before asphalt is to be pumped and dispensed. When the asphalt mixing step has thus been completed valve 32 is closed ( valves 22, 24 remain closed during all normal operations), the clutch is disengaged, the gear transmission is shifted to the appropriate forward speed and the clutch is re-engaged whereupon asphalt is drawn into the lower end 60 of conduit 14, thence vertically upward and on to the intake of pump 15, and then discharged from the pump through conduit 30, to a place of use shown in FIG. 1.
As already noted the above steps are conducted in reverse sequence (i.e., asphalt is first pumped then air is compressed) to remove asphalt from the conduits 30, 17, l6, 14. Air is pumped as the final step, as aforesaid, to do this. The engine is then shut off. The burner 10 or other heating means is operated continuously through this procedure and thereafter if any asphalt remains in the tank.
While my invention has been described in connection with the handling of hot asphalt especially in roofing asphalt systems, it is to be understood that it is equally applicable to other systems for handling liquid congealable materials such as liquid molten congealable hydrocarbons including those selected from the group consisting of road asphalt, tar, paraffin, pitch, and so forth.
It has been known to use a reversible pump to clean concrete or cement out of concrete lines. See US. Pat. No. 3,572,652. v
I claim as my invention:
1. A process of storing and pumping liquid congealable hydrocarbon comprising the steps of providing a storage vessel, a reversible pumping means, and a flow path between the bottom of the vessel and the pumping means,
applying heat to the body of hydrocarbon in said vessel in a quantity at least sufficient to maintain said hydrocarbon liquid,
first operating the pumping means in the reverse pump direction to draw air through the pumping means and deliver it into the body of liquid hydrocarbon adjacent the bottom of the vessel for a time sufficient to mix said liquid hydrocarbon, and
thereafter operating the pumping means in the opposite direction to draw liquid hydrocarbon from adjacent the body of the vessel and into the pumping means.
2. The process of claim 1 wherein said step of first operating said pumping means further comprises drawing at least part of the air from the air space above said body of liquid hydrocarbon within said vessel.
3. The process of claim 1 further comprising the step of again operating said pumping means in said reverse pump direction after the last said step of operating whereby the hydrocarbon in sequence is mixed, pumped and dispensed, and the flow path for same is cleaned.

Claims (3)

1. A process of storing and pumping liquid congealable hydrocarbon comprising the steps of providing a storage vessel, a reversible pumping means, and a flow path between the bottom of the vessel and the pumping means, applying heat to the body of hydrocarbon in said vessel in a quantity at least sufficient to maintain said hydrocarbon liquid, first operating the pumping means in the reverse pump direction to draw air through the pumping means and deliver it into the body of liquid hydrocarbon adjacent the bottom of the vessel for a time sufficient to mix said liquid hydrocarbon, and thereafter operating the pumping means in the opposite direction to draw liquid hydrocarbon from adjacent the body of the vessel and into the pumping means.
2. The process of claim 1 wherein said step of first operating said pumping means further comprises drawing at least part of the air from the air space above said body of liquid hydrocarbon within said vessel.
3. The process of claim 1 further comprising the step of again operating said pumping means in said reverse pump direction after the last said step of operating whereby the hydrocarbon in sequence is mixed, pumped and dispensed, and the flow path for same is cleaned.
US00192045A 1971-10-26 1971-10-26 Method and means to operate pumping system Expired - Lifetime US3773303A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US19204571A 1971-10-26 1971-10-26

Publications (1)

Publication Number Publication Date
US3773303A true US3773303A (en) 1973-11-20

Family

ID=22708013

Family Applications (1)

Application Number Title Priority Date Filing Date
US00192045A Expired - Lifetime US3773303A (en) 1971-10-26 1971-10-26 Method and means to operate pumping system

Country Status (1)

Country Link
US (1) US3773303A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5228594A (en) * 1990-11-30 1993-07-20 Aeroquip Corporation Metered liquid dispensing system
US5855120A (en) * 1995-12-21 1999-01-05 Lg Electronics Inc. Method and apparatus for driving pump motor for refrigerator dispenser
US6093247A (en) * 1997-10-23 2000-07-25 National Tool & Equipment, Inc. Distribution system for applying a viscous material to a roof
US6412974B1 (en) * 1999-06-30 2002-07-02 Chemical Lime Company Lime slurry mixing apparatus and method of use
ES2237229A1 (en) * 2002-06-28 2005-07-16 Juan Manuel Gonzalez Villalba Lightweight concrete mixer for installation in vehicle i.e. truck, has compact steel structure located on rear platform of truck, motor rotating rotating mixer, and pump, pipes and ducts performing final disposal of concrete
US20060254620A1 (en) * 2005-05-13 2006-11-16 Union Tank Car Company Process for cleaning asphalt tank cars
US20070189108A1 (en) * 2006-02-15 2007-08-16 Mcneilus Truck And Manufacturing, Inc. Auxiliary water tank and pump assembly for a vehicle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US501215A (en) * 1893-07-11 Apparatus for mixing asphalt cement
US591839A (en) * 1897-10-19 Plant for preparing paving materials
US873345A (en) * 1906-10-29 1907-12-10 William L Canniff Pneumatic grout mixing and discharging apparatus.
US2645524A (en) * 1950-09-01 1953-07-14 Kennett C Kelly Roofing asphalt spray system
US2698167A (en) * 1951-08-30 1954-12-28 Jean Evelyn Brown Pavement repairing machine
US3316851A (en) * 1965-10-21 1967-05-02 Huso Verft & Mek Arrangement in rotation pump or motor
US3572652A (en) * 1968-12-23 1971-03-30 Loren Hale Apparatus for mixing, dispensing and dispersing wet or dry plastic materials under pressure or non pressure

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US501215A (en) * 1893-07-11 Apparatus for mixing asphalt cement
US591839A (en) * 1897-10-19 Plant for preparing paving materials
US873345A (en) * 1906-10-29 1907-12-10 William L Canniff Pneumatic grout mixing and discharging apparatus.
US2645524A (en) * 1950-09-01 1953-07-14 Kennett C Kelly Roofing asphalt spray system
US2698167A (en) * 1951-08-30 1954-12-28 Jean Evelyn Brown Pavement repairing machine
US3316851A (en) * 1965-10-21 1967-05-02 Huso Verft & Mek Arrangement in rotation pump or motor
US3572652A (en) * 1968-12-23 1971-03-30 Loren Hale Apparatus for mixing, dispensing and dispersing wet or dry plastic materials under pressure or non pressure

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5228594A (en) * 1990-11-30 1993-07-20 Aeroquip Corporation Metered liquid dispensing system
US5855120A (en) * 1995-12-21 1999-01-05 Lg Electronics Inc. Method and apparatus for driving pump motor for refrigerator dispenser
US6093247A (en) * 1997-10-23 2000-07-25 National Tool & Equipment, Inc. Distribution system for applying a viscous material to a roof
US6412974B1 (en) * 1999-06-30 2002-07-02 Chemical Lime Company Lime slurry mixing apparatus and method of use
ES2237229A1 (en) * 2002-06-28 2005-07-16 Juan Manuel Gonzalez Villalba Lightweight concrete mixer for installation in vehicle i.e. truck, has compact steel structure located on rear platform of truck, motor rotating rotating mixer, and pump, pipes and ducts performing final disposal of concrete
US20060254620A1 (en) * 2005-05-13 2006-11-16 Union Tank Car Company Process for cleaning asphalt tank cars
US20070189108A1 (en) * 2006-02-15 2007-08-16 Mcneilus Truck And Manufacturing, Inc. Auxiliary water tank and pump assembly for a vehicle
US7824096B2 (en) * 2006-02-15 2010-11-02 Mcneilus Truck And Manufacturing, Inc. Auxiliary water tank and pump assembly for a concrete mixing vehicle

Similar Documents

Publication Publication Date Title
US4311274A (en) Mobile apparatus for spraying protective coatings
US7645347B2 (en) Mobile chemical mixing and injection unit and method for using the same
US4196827A (en) Portable machine for transporting heated asphalt products for use in repairing asphalt pavement
US3773303A (en) Method and means to operate pumping system
US6663016B2 (en) Applicator assembly for application of adhesives, sealants and coatings
US6227453B1 (en) Atmospheric liquid heater
US4887908A (en) Mobile asphalt crack sealant apparatus
US2136738A (en) Railway tank car heating apparatus
US4964752A (en) Method and apparatus using bituminous sandstone for pavement repair
US2076780A (en) Apparatus for distributing liquids on roads
US1755376A (en) Road oiler
CN214695085U (en) Emulsified asphalt spraying device for asphalt pavement maintenance truck
US4859502A (en) Method and apparatus using bituminous sandstone for pavement repair
US1702702A (en) Apparatus for cleaning lubricant cases of engines
RU10418U1 (en) UNIT MIXING
CN113323693A (en) Novel automatic pouring system of lining trolley
US1687227A (en) Method for concrete mixtures
CN208604535U (en) For dispensing the cistern device on snow melting agent snow removing vehicle
US11346064B2 (en) Pothole patcher with emulsion oil rejuvenator system
CN212154727U (en) Chemical agent injection vehicle
US4660602A (en) Mobile sludge transfer and storage tank
US980983A (en) Snow melting machine.
RU60500U1 (en) PLANT FOR DRAINING HIGH-VISCOUS AND FROZEN PRODUCTS FROM RAILWAY TANKS
RU62157U1 (en) COMPLEX OF EQUIPMENT FOR CEMENTING WELLS
CN210891063U (en) Vehicle-mounted liquid material conveying system