US3770396A - Composite metal article - Google Patents

Composite metal article Download PDF

Info

Publication number
US3770396A
US3770396A US00200505A US3770396DA US3770396A US 3770396 A US3770396 A US 3770396A US 00200505 A US00200505 A US 00200505A US 3770396D A US3770396D A US 3770396DA US 3770396 A US3770396 A US 3770396A
Authority
US
United States
Prior art keywords
metal
copper
present
clad
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00200505A
Inventor
M Pryor
J Crane
J Winter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olin Corp
Original Assignee
Olin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olin Corp filed Critical Olin Corp
Application granted granted Critical
Publication of US3770396A publication Critical patent/US3770396A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0056Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00 using cored wires
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0026Pyrometallurgy
    • C22B15/006Pyrometallurgy working up of molten copper, e.g. refining
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/10General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals with refining or fluxing agents; Use of materials therefor, e.g. slagging or scorifying agents
    • C22B9/103Methods of introduction of solid or liquid refining or fluxing agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/923Physical dimension
    • Y10S428/924Composite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/923Physical dimension
    • Y10S428/924Composite
    • Y10S428/925Relative dimension specified
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12222Shaped configuration for melting [e.g., package, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component

Definitions

  • the method is characterized by providing 75/135;148/31.57, 31.5; 29/199, 194, 58, 76, the solid metal in rod or wire form clad with a material 129, 135, 193 compatible with the molten metal and feeding the clad material into the molten metal.
  • the diselosure teaches References Cited novel composites to achieve this end.
  • the method is particularly useful in deoxidizing molten metal.
  • the present invention relates to a novel means for adding solid metal to molten metal, preferably continuously, particularly the art of deoxidizing molten metal.
  • Metals of the lanthanide series are added to molten metal for a variety of reasons. These additions are commonly added to the melt in bulk form prior to the initiation of casting. They are known to improve the properties of lead bronzes and tin-lead bronzes. They are known to prevent burn-out in aluminum-magnesium alloys. They are also known to be highly useful in'deoxidizing copper and copper base alloys.
  • ETP electrolytic tough pitch copper
  • Metals of the lanthanide series are effective in reducing copper oxide and, therefore, providing an improved deoxidized copper which overcomes the foregoing disadvantages attributed toth e performance of ETP copper.
  • boron and zirconium to copper causes problems in maintaining control for these additions, especially at the low level at which they are normally added.
  • the problem with adding such elements relates both to avoiding oxidation and reaction with certain melt covers because of an undesirable reaction product and also because of distribution and control of level of addition.
  • Similar problems exist in air melted or reactive environments, including reactions with atmospheres, containers (crucible materials), or melt covers, such as fluxes.
  • Problems also exist with respect to additions of many other elements used in small amounts for grain size control in non-ferrous alloys, such as aluminum and nickel, and for stabilizing purposes as in stainless steels. For example, titanium boride'as a grain refiner in aluminum and columbium and titanium additions to stainless steel and boron in nickel.
  • the present invention provides a method for adding a solid metal to a molten metal mass, especially without deleterious reactions with air.
  • the process comprises:
  • the present invention is particularly useful in deoxidizing metal and especially deoxidizing copper base alloys with a metal of the lanthanide series in view of the difficulties known heretofore in this art.
  • the present invention also provides a novel composite rod or wire which comprises a metal of the lanthanide series clad with a dissimilar metal, preferably clad with copper or a copper base alloy.
  • the present invention is admirably suited for use in any method wherein it is necessary or desirable to add a solid metal to a molten metal mass, especially where it is necessary to exercise particular precautions to avoid deleterious reactions with air.
  • certain covers or fluxes be used to protect the molten base metal alloy or to provide some desired reacsaid molten mass,
  • the present invention circumvents many of these undesirable conditions. It allows, in particular, the addition to be made in a controlled fashion at the point of the melting or casting operation that is most desirable from the standpoint of the addition. Further, the present invention also prevents the interaction problems cited above.
  • the method of the present invention is particularly suitable in deoxidizing copper or copper base alloys with a metal of the lanthanide series. Accordingly, the present invention will be discussed with particular reference to this art. It should be understood, however, that the present invention is more broadly relevant, as stated hereinabove.
  • ETP copper may be readily deoxidized using a metal of the lanthanide seriesand that this can be achieved commercially using air melting.
  • any copper base alloy may be conveniently utilized as the molten mass of metal.
  • the present invention readily provides a simple and convenient method for deoxidizing these copper base alloys.
  • the clad rod or wire can be provided in various lengths and at various diameters.
  • the relationship of cladding to core dimensions can be chosen on the basis of the required addition. It is a principal intention of the present invention to provide a means for readily and conveniently incorporating alloying additions into the melt, generally in minor amounts up to percent. Therefore, the rod diameter must be proportionately related to casting rate.
  • ETP copper was deoxidized with misch metal clad copper rod according to the present invention. When casting at a rate of 800 lbs. per minute, 0.450
  • the clad rod will vary from 0.125 to 1.0 inch in diameter, with the cladding preferably comprising from 5 to 25 percent thereof.
  • the present invention enables the introduction of the deoxidizing metal without the necessity of taking these unusual precautions.
  • Misch metal is a mixture of rare earth metals containing a major amount of cerium, a minor amount of lanthanum and various other rare earth metals in smaller amounts.
  • the preferred material is misch metal or cerium.
  • the clad material may be readily prepared commercially.
  • misch metal may be inserted in commercial copper tubing and the assembly drawn through a drawing die which readily clads the misch metal to the copper tubing.
  • other methods may be utilized, if desired.
  • the present invention is highly advantageous in other systems, several of which have been referred to hereinabove.
  • steel clad misch metal for boiler plates may be fed into the pour stream.
  • Copper covered magnesium or magnesium alloys are highly useful for adding magnesium to copper alloys.
  • the cladding should be the base metal itself or a metal compatible therewith and the core either the elemental addition or a master alloy thereof.
  • Several other systems include adding magnesium, manganese, boron and/or titanium into copper, nickel or ferrous alloys.
  • lithium, gallium, sodium and/or calcium may be readily added to nickel and copper systems in accordance with the present invention as a means of broadening alloying availability.
  • EXAMPLE I An 8,000 pound charge of ET? copper-was induction melted using a charcoal-graphite cover in a commercial sized melting furnace. The residual oxide level was brought down to below 0.02 percent as determined by metallographic analysis. An 0.15 percent charge representing 12 pounds of misch metal was introduced and stirred both mechanically and electrically through the use of the inductive motor action to provide homogeneity. Of the 8,000 pound charge, 6,000 pounds were cast into a 5% inches thick X 28% inches wide rolling ingot. A glassy slag was found to be entrained in the solid material which, upon subsequent analysis, was revealed to be a complex formation consisting of graphite, misch metal, copper and other impurities. The material was not useable.
  • EXAMPLE II A clean furnace was charged with an 8,000 pound charge of ETP copper and deoxidized with a charcoalgraphite covervto the 0.02 percent oxygen level in a manner similar to Example I. Instead of charging the misch metal to the furnace and stirring to achieve homogeneity, )4 inch diameter misch metal rods which had been encased (clad) in a copper tube were continuously fed into the stream of molten copper as it entered the 5% inches X 28% inches mold. An amount equivalent to 0.10 percent which was equal to 8 pounds was carefully and uniformly introduced. The resulting ingot had discrete fine particles of misch metal oxide,
  • EXAMPLE lll An experiment was conducted to determine whether bare misch metal could be used instead of the copper clad product. A section of 541 inch extruded rod, 2-feet long was clamped in a vise and torch heated at the opposite end to bring the misch metal to its melting point of 1,600F. Long before approaching this elevated temperature, the misch metal ignited and was consumed in a violent combustion reaction.
  • This invention may be embodied in other forms or carried out in other ways without departing from the nide series clad with a metal selected from the group consisting of copper and copper base alloys, wherein said cladding substantially covers said lanthanide and wherein said article has a diameter of from 0.125 inch to 1.0 inch, with the cladding comprising 5 to 25 percent by weight thereof.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

The disclosure teaches a method for adding solid metal to molten metal, especially without deleterious reaction with air. The method is characterized by providing the solid metal in rod or wire form clad with a material compatible with the molten metal and feeding the clad material into the molten metal. The disclosure teaches novel composites to achieve this end. The method is particularly useful in deoxidizing molten metal.

Description

United States Patent 11 1 Pryor et al. 1 Nov. 6, 1973 1 COMPOSITE METAL ARTICLE 2,528,406 10 1950 Wultc 75/152 3,313,620 4/1967 Corradini '75/129 [75] inventors: Mchael Pry, wmdbrldge; 2,085,802 7/1937 Hardy 75/58 3 9 Crane, Hamden; J p 2,595,292 5 1952 Reece 75/122 Winter, New Haven, all of Com 3,591,428 7 1971 Buschow et a1 148/3157 [73] Assignee: Olin Corporation, New Haven, OTHER PUBLICATIONS Conn- Clifford A. Hampel, Rare Metals Handbook, Reinhold [22] Filed: Nov. 19, 1971 Publishing Corp., New York, 1954, p. 342-344.
[211 App!" 200,505 Primary ExaminerL. Dewayne Rutledge Related Application Data Assistant Examiner-W. R. Satterfield [62] Division of Ser. No. 59,348; July 29, 1970, Pat. No. r Bachma et [57] ABSTRACT [52] U.S. Cl 29/199, 29/194, 75/93 The disclosure teaches a method for adding solid metal [51] llnt. Cl 1323p 3/00 to molten metal, especially without deleterious reac- [58] Field of Search 75/58, 76, 93, 129, tion with air. The method is characterized by providing 75/135;148/31.57, 31.5; 29/199, 194, 58, 76, the solid metal in rod or wire form clad with a material 129, 135, 193 compatible with the molten metal and feeding the clad material into the molten metal. The diselosure teaches References Cited novel composites to achieve this end. The method is particularly useful in deoxidizing molten metal.
' 3 Claims, N0 Drawings 1. COMPOSITE METAL ARTICLE This is adivision, of application Ser. No. 59,348, filed July 29, 1970, now US. Pat. No. 3,738,827.
' BACKGROUND OF THE INVENTION The present invention relates to a novel means for adding solid metal to molten metal, preferably continuously, particularly the art of deoxidizing molten metal.
Many metals present practical difficulties when they are added to a molten metal mass. It will be readily appreciated, however, that it is necessary to add these materials to the molten metal by the most convenient way possible.
Metals of the lanthanide series are added to molten metal for a variety of reasons. These additions are commonly added to the melt in bulk form prior to the initiation of casting. They are known to improve the properties of lead bronzes and tin-lead bronzes. They are known to prevent burn-out in aluminum-magnesium alloys. They are also known to be highly useful in'deoxidizing copper and copper base alloys.
For example, commercial unalloyed copper is usually marketed as electrolytic tough pitch copper (ETP) which generally has a retained oxygen level in the cast product of between 0.02 and 0.06 percent oxygen. The
.embrittlement, and in certain'severe forming operations, does not perform as well as oxygen-free, high conductivity copper. These disadvantages are attributable to the presence of cuprous oxide in ETP copper. Several elemental alloying additions are commonly added to control this problem, including the use of phosphorus deoxidized andboron deoxidized copper. Another way of controlling the problem is through the use of careful, controlled, artificial atmospheres and handling, as in the case of oxygen-free, high conductivity copper.
Metals of the lanthanide series are effective in reducing copper oxide and, therefore, providing an improved deoxidized copper which overcomes the foregoing disadvantages attributed toth e performance of ETP copper.
However, the addition of one or more solid metallic elements of the lanthanide series to a molten copper mass added to the melt prior to casting presents particular difficulties arising from the reactivity of these elements with air. The problem manifests itself in the formation of large clinker type oxides which can plug molten metal flow channels and appear as gross segregated impurities in the final ingot. This problem has been cir-' cumvented by melting in vacuum or inert gas atmospheres. However, melting in controlled atmospheres is apoorer solution for commercial preparation because severe problems when added directly to the melt and require special, often expensive, precautions in order to insure retention of the addition in useful form. The addition of boron and zirconium to copper, for example, causes problems in maintaining control for these additions, especially at the low level at which they are normally added. The problem with adding such elements relates both to avoiding oxidation and reaction with certain melt covers because of an undesirable reaction product and also because of distribution and control of level of addition. Similar problems exist in air melted or reactive environments, including reactions with atmospheres, containers (crucible materials), or melt covers, such as fluxes. Problems also exist with respect to additions of many other elements used in small amounts for grain size control in non-ferrous alloys, such as aluminum and nickel, and for stabilizing purposes as in stainless steels. For example, titanium boride'as a grain refiner in aluminum and columbium and titanium additions to stainless steel and boron in nickel.
Accordingly, it is a principal object of the present invention to provide a method for adding a solid metal to a molten metal mass.
It is a further object of the present invention to provide a method as aforesaid which is readily practiced on a commercial scale.
It is a still further objectof 'the present invention to provide such a method which avoids deleterious reactions, such as deleterious reactions with air.
It is an additional object of the present invention to provide novel composites.
Further objects and advantages of the present invention will appear from the ensuing discussion.
SUMMARY OF THE INVENTION In accordance with the process of the present invention the foregoing objects and advantages are readily achieved. v
v The present invention provides a method for adding a solid metal to a molten metal mass, especially without deleterious reactions with air. The process comprises:
A. providing a molten mass of metal;
B. providing a solid metal, preferably in rod or wire form, clad with a material compatible with said molten mass; and
C. feeding said clad material into preferably continuously. I Naturally, when the solid metal is not in rod or wire form, said solid metal must be substantially covered by the cladding.
The present invention is particularly useful in deoxidizing metal and especially deoxidizing copper base alloys with a metal of the lanthanide series in view of the difficulties known heretofore in this art.
Accordingly, the present invention also provides a novel composite rod or wire which comprises a metal of the lanthanide series clad with a dissimilar metal, preferably clad with copper or a copper base alloy.
It should be recognized that the present invention is admirably suited for use in any method wherein it is necessary or desirable to add a solid metal to a molten metal mass, especially where it is necessary to exercise particular precautions to avoid deleterious reactions with air. For example, in many cases'it is mandatory that certain covers or fluxes be used to protect the molten base metal alloy or to provide some desired reacsaid molten mass,
tion with the molten bath. Often such materials are incompatible with certain additions. For example, the use of carbon covers although compatible with copper is incompatible with many desirable alloy additions, such as zirconium, titanium and chromium, which all combine with carbon to form undesirable carbides. Often, this provides difficulties in getting the addition into solution without removing the cover and, therefore, resulting in undesirable exposure of the melt to air. Cladding of the addition prevents this premature side reaction.
Other examples can readily be cited for other nonferrous metals as well as ferrous alloys. In these cases, general practice has been to add the difficult addition by means of a master alloy. Requirements for the master alloy frequently cause an expensive product which can usually be accommodated commercially only when the addition is quite small. Aside from these economic factors, many master alloys do not circumvent homogeneity and solutionizing problems.
The present invention circumvents many of these undesirable conditions. It allows, in particular, the addition to be made in a controlled fashion at the point of the melting or casting operation that is most desirable from the standpoint of the addition. Further, the present invention also prevents the interaction problems cited above.
DETAILED DESCRIPTION The method of the present invention is particularly suitable in deoxidizing copper or copper base alloys with a metal of the lanthanide series. Accordingly, the present invention will be discussed with particular reference to this art. It should be understood, however, that the present invention is more broadly relevant, as stated hereinabove.
By using the method of the present invention, it has been found that the problem of reactions of rare earth metals with air is circumvented without the expense'of melting in a vacuum induction furnace. In accordance with the present invention it has been found ETP copper may be readily deoxidized using a metal of the lanthanide seriesand that this can be achieved commercially using air melting.
In accordance with the method of the present invention any copper base alloy may be conveniently utilized as the molten mass of metal. As stated hereinabove, the present invention readily provides a simple and convenient method for deoxidizing these copper base alloys.
A key feature of the present invention is the provision of a composite rod or wire which comprises a metal of the lanthanide series clad with a dissimilar metal. The dissimilar metal should be compatible with the molten mass of metal to which the composite is added.
The clad rod or wire can be provided in various lengths and at various diameters.
The relationship of cladding to core dimensions can be chosen on the basis of the required addition. It is a principal intention of the present invention to provide a means for readily and conveniently incorporating alloying additions into the melt, generally in minor amounts up to percent. Therefore, the rod diameter must be proportionately related to casting rate. In an example, ETP copper was deoxidized with misch metal clad copper rod according to the present invention. When casting at a rate of 800 lbs. per minute, 0.450
inch rod (misch metal clad with 0.030 inch copper) was fed at a rate of 25 inches per minute. This was suffrcient to give at 0.10 percent alloying addition to the melt.
Thus, in the preferred embodiment, the clad rod will vary from 0.125 to 1.0 inch in diameter, with the cladding preferably comprising from 5 to 25 percent thereof.
If the metal of the lanthanide series is introduced unclad, unusual precautions are necessary. Accordingly, the present invention enables the introduction of the deoxidizing metal without the necessity of taking these unusual precautions.
It is preferred that the cladding be copper since it does not contain any impurities at levels that will effect the product deleteriously. Furthermore, since its melting temperature is significantly higher than that of the lanthanide, the lanthanide will be protected until it is submerged beneath the level of the molten stream of copper. This reduces the lanthanide losses but more importantly prevents the formation of gross lanthanide oxide-copper-carbon clinkerswhich form the slag subsequent to deoxidation of copper when the lanthanide is added to a melting furnace of copper.
Any metal of the lanthanide series may be utilized,
such as cerium or lanthanum or misch metall Misch metal is a mixture of rare earth metals containing a major amount of cerium, a minor amount of lanthanum and various other rare earth metals in smaller amounts. The preferred material is misch metal or cerium.
' Since these materials are pyrophoric when reasonably pure, the use of bare lanthanide metal rods is hazardousin the presence of heat, such as that from the molten copper stream. Cladding in the manner of the present invention prevents such a hazard because only the lanthanide metal at the tip of the clad rod is exposed and this would normally be submerged in the melt.
The clad material may be readily prepared commercially. For example, misch metal may be inserted in commercial copper tubing and the assembly drawn through a drawing die which readily clads the misch metal to the copper tubing. Naturally, other methods may be utilized, if desired.
The control of the misch metal addition to the melt is maintained by selection of rod or wire diameter and rate of feeding into the melt.
As stated hereinabove, the present invention is highly advantageous in other systems, several of which have been referred to hereinabove. Thus, for example, steel clad misch metal for boiler plates may be fed into the pour stream. Copper covered magnesium or magnesium alloys are highly useful for adding magnesium to copper alloys. Similarly, one may readily use copper clad zirconium, titanium, or copper clad copper base alloys containing zirconium, phosphorus and so forth.
In general, the cladding should be the base metal itself or a metal compatible therewith and the core either the elemental addition or a master alloy thereof. Several other systems include adding magnesium, manganese, boron and/or titanium into copper, nickel or ferrous alloys. Also, for example, lithium, gallium, sodium and/or calcium may be readily added to nickel and copper systems in accordance with the present invention as a means of broadening alloying availability.
The present invention will be more readilyunderstandable from a consideration of the following illustrative examples.
EXAMPLE I An 8,000 pound charge of ET? copper-was induction melted using a charcoal-graphite cover in a commercial sized melting furnace. The residual oxide level was brought down to below 0.02 percent as determined by metallographic analysis. An 0.15 percent charge representing 12 pounds of misch metal was introduced and stirred both mechanically and electrically through the use of the inductive motor action to provide homogeneity. Of the 8,000 pound charge, 6,000 pounds were cast into a 5% inches thick X 28% inches wide rolling ingot. A glassy slag was found to be entrained in the solid material which, upon subsequent analysis, was revealed to be a complex formation consisting of graphite, misch metal, copper and other impurities. The material was not useable.
EXAMPLE II A clean furnace was charged with an 8,000 pound charge of ETP copper and deoxidized with a charcoalgraphite covervto the 0.02 percent oxygen level in a manner similar to Example I. Instead of charging the misch metal to the furnace and stirring to achieve homogeneity, )4 inch diameter misch metal rods which had been encased (clad) in a copper tube were continuously fed into the stream of molten copper as it entered the 5% inches X 28% inches mold. An amount equivalent to 0.10 percent which was equal to 8 pounds was carefully and uniformly introduced. The resulting ingot had discrete fine particles of misch metal oxide,
but no gross glass-like slag inclusions were obvious as in'Example l. The material was useable.
. EXAMPLE lll An experiment was conducted to determine whether bare misch metal could be used instead of the copper clad product. A section of 541 inch extruded rod, 2-feet long was clamped in a vise and torch heated at the opposite end to bring the misch metal to its melting point of 1,600F. Long before approaching this elevated temperature, the misch metal ignited and was consumed in a violent combustion reaction.
This invention may be embodied in other forms or carried out in other ways without departing from the nide series clad with a metal selected from the group consisting of copper and copper base alloys, wherein said cladding substantially covers said lanthanide and wherein said article has a diameter of from 0.125 inch to 1.0 inch, with the cladding comprising 5 to 25 percent by weight thereof.
2. A composite according to claim 1 wherein the metal of the lanthanide series is misch metal.
3. A composite according to claim 1 wherein the metal of the lanthanide series is cerium.

Claims (2)

  1. 2. A composite according to claim 1 wherein the metal of the lanthanide series is misch metal.
  2. 3. A composite according to claim 1 wherein the metal of the lanthanide series is cerium.
US00200505A 1970-07-29 1971-11-19 Composite metal article Expired - Lifetime US3770396A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US5934870A 1970-07-29 1970-07-29
US20050571A 1971-11-19 1971-11-19

Publications (1)

Publication Number Publication Date
US3770396A true US3770396A (en) 1973-11-06

Family

ID=26738655

Family Applications (1)

Application Number Title Priority Date Filing Date
US00200505A Expired - Lifetime US3770396A (en) 1970-07-29 1971-11-19 Composite metal article

Country Status (1)

Country Link
US (1) US3770396A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4035892A (en) * 1972-06-30 1977-07-19 Tohei Ototani Composite calcium clad material for treating molten metals
US4097268A (en) * 1972-06-30 1978-06-27 Tohei Ototani Method of treating molten ferrous material with composite rods containing Ca
US11053569B2 (en) 2015-04-13 2021-07-06 Hitachi Metals, Ltd. Alloying-element additive and method of manufacturing copper alloy

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2062486A (en) * 1934-04-27 1936-12-01 Cooper Sparkelite Ltd Method of making pyrophoric flints
US2085802A (en) * 1935-08-22 1937-07-06 Charles Hardy Inc Treatment of metals
US2528406A (en) * 1946-06-22 1950-10-31 Wulff John Method of making pyrophoric elements
US2595292A (en) * 1949-10-05 1952-05-06 Herbert A Reece Method of adding alloys to metals
US3313620A (en) * 1963-02-18 1967-04-11 E I Te R S P A Elettochimica I Steel with lead and rare earth metals
US3591428A (en) * 1967-12-21 1971-07-06 Philips Corp Basic substance for the manufacture of a permanent magnet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2062486A (en) * 1934-04-27 1936-12-01 Cooper Sparkelite Ltd Method of making pyrophoric flints
US2085802A (en) * 1935-08-22 1937-07-06 Charles Hardy Inc Treatment of metals
US2528406A (en) * 1946-06-22 1950-10-31 Wulff John Method of making pyrophoric elements
US2595292A (en) * 1949-10-05 1952-05-06 Herbert A Reece Method of adding alloys to metals
US3313620A (en) * 1963-02-18 1967-04-11 E I Te R S P A Elettochimica I Steel with lead and rare earth metals
US3591428A (en) * 1967-12-21 1971-07-06 Philips Corp Basic substance for the manufacture of a permanent magnet

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Clifford A. Hampel, Rare Metals Handbook, Reinhold Publishing Corp., New York, 1954, p. 342 344. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4035892A (en) * 1972-06-30 1977-07-19 Tohei Ototani Composite calcium clad material for treating molten metals
US4097268A (en) * 1972-06-30 1978-06-27 Tohei Ototani Method of treating molten ferrous material with composite rods containing Ca
US11053569B2 (en) 2015-04-13 2021-07-06 Hitachi Metals, Ltd. Alloying-element additive and method of manufacturing copper alloy

Similar Documents

Publication Publication Date Title
US3738827A (en) Method for adding solid metal to molten metal
GB1585278A (en) Method for refining molten iron and steels
US4121924A (en) Alloy for rare earth treatment of molten metals and method
US3770396A (en) Composite metal article
US3829311A (en) Addition alloys
KR860700360A (en) Refining Process of Metals and Alloys
EP0090654B1 (en) Alloy and process for producing ductile and compacted graphite cast irons
SE442212B (en) TREATMENT AGENTS AND PROCEDURES FOR THE NUDULIZATION OF MELT IRON
US2683662A (en) Manufacture of iron and steel and products obtained
US3459540A (en) Production of clean fine grain steels
US3663212A (en) Nodular irons and method for controlling same
US5209901A (en) Agent for the treatment of cast iron melts
US3304174A (en) Low oxygen-silicon base addition alloys for iron and steel refining
US2036576A (en) Process for making alloys
US3879192A (en) Electroslag-remelting method
US3508914A (en) Methods of forming and purifying nickel-titanium containing alloys
US2461229A (en) Method of producing magnesium base alloys
US4052202A (en) Zirconium alloy additive and method for making zirconium additions to steels
US3997332A (en) Steelmaking by the electroslag process using prereduced iron or pellets
US2255895A (en) Workable nickel and nickel alloy
US3540882A (en) Metal refining agent consisting of al-mn-ca alloy
US2385685A (en) Magnesium base alloy
Bose et al. Preparation of rare earth-silicon-iron alloy by metallothermic reduction
SU1046316A1 (en) Modifier for cast iron
US3925059A (en) Foundry processes and metallurgical addition agents therefor