US3769212A - Grease thickened with polyurea metal salts - Google Patents

Grease thickened with polyurea metal salts Download PDF

Info

Publication number
US3769212A
US3769212A US00259053A US3769212DA US3769212A US 3769212 A US3769212 A US 3769212A US 00259053 A US00259053 A US 00259053A US 3769212D A US3769212D A US 3769212DA US 3769212 A US3769212 A US 3769212A
Authority
US
United States
Prior art keywords
polyurea
grease
reaction
acid
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00259053A
Inventor
G Stanton
J Dreher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chevron USA Inc
Original Assignee
Chevron Research and Technology Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chevron Research and Technology Co filed Critical Chevron Research and Technology Co
Application granted granted Critical
Publication of US3769212A publication Critical patent/US3769212A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M119/00Lubricating compositions characterised by the thickener being a macromolecular compound
    • C10M119/24Lubricating compositions characterised by the thickener being a macromolecular compound containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M115/00Lubricating compositions characterised by the thickener being a non-macromolecular organic compound other than a carboxylic acid or salt thereof
    • C10M115/08Lubricating compositions characterised by the thickener being a non-macromolecular organic compound other than a carboxylic acid or salt thereof containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/08Inorganic acids or salts thereof
    • C10M2201/082Inorganic acids or salts thereof containing nitrogen
    • C10M2201/083Inorganic acids or salts thereof containing nitrogen nitrites
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/06Well-defined aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/024Propene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/026Butene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/027Neutral salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/281Esters of (cyclo)aliphatic monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/282Esters of (cyclo)aliphatic oolycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/286Esters of polymerised unsaturated acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/34Esters having a hydrocarbon substituent of thirty or more carbon atoms, e.g. substituted succinic acid derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/105Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing three carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2215/042Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Alkoxylated derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • C10M2215/065Phenyl-Naphthyl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/066Arylene diamines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • C10M2215/082Amides containing hydroxyl groups; Alkoxylated derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/10Amides of carbonic or haloformic acids
    • C10M2215/102Ureas; Semicarbazides; Allophanates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/221Six-membered rings containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • C10M2215/226Morpholines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/26Amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/30Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/042Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds between the nitrogen-containing monomer and an aldehyde or ketone
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/043Mannich bases
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/02Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
    • C10M2219/022Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of hydrocarbons, e.g. olefines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/044Sulfonic acids, Derivatives thereof, e.g. neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • C10M2219/102Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon only in the ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • C10M2219/104Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon with nitrogen or oxygen in the ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • C10M2219/104Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon with nitrogen or oxygen in the ring
    • C10M2219/106Thiadiazoles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • C10M2219/104Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon with nitrogen or oxygen in the ring
    • C10M2219/108Phenothiazine
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2221/00Organic macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2221/02Macromolecular compounds obtained by reactions of monomers involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/02Esters of silicic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/041Siloxanes with specific structure containing aliphatic substituents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/043Siloxanes with specific structure containing carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/044Siloxanes with specific structure containing silicon-to-hydrogen bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/02Groups 1 or 11
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/02Bearings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/10Semi-solids; greasy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2070/00Specific manufacturing methods for lubricant compositions

Definitions

  • An improved grease composition comprising a major portion of a lubricating oil containing a polyurea metal salt wherein the polyurea portion of the molecule is prepared by reacting a diisocyanate, a diamine with a monoisocyanate or monoamine.
  • the metal salt is prepared by reacting the polyurea compound with an acid group, such as a carboxylic or a sulfonic acid group, and neutralizing the terminal acid group with a basic metal compound.
  • This invention relates to a novel grease composition. More particularly, this invention concerns grease composition containing a novel metal-containing polyurea thickêt agent.
  • Another type of grease composition which has excellent lubricating properties at the higher temperatures is comprised of a lubricating oil (natural or synthetic) containing a polyurea thickener.
  • a lubricating oil naturally or synthetic
  • This type of lubricant is disclosed in US. Pat. Nos. 3,242,210; 3,243,372; 3,281,361; 3,284,357; 3,346,497; and 3,401,027, all assigned to the Chevron Research Company.
  • the polyurea thickener imparts a significant high temperature stability to the grease and, in fact, effects a mild anti-thixotropic property, i.e., increase in viscosity with increasing shear, to the lubricant.
  • This property of the lubricant is advantageous to prevent the segregation or loss of grease from the moving parts of the machine. While the polyurea grease has solved most of the problems associated with the older lubricants, a need still exists for an improved thickener which, when incorporated into a grease composition, can be used for longer periods at elevated temperatures; and, yet, still be relatively inexpensive to make.
  • These polyurea salts can be prepared by two different reaction schemes. In the first, a diisocyanate, a diamine and a monoisocyanate or monoamine are reacted with an amino acid metal salt or an amino carboxyl group source followed by reaction with a basic metal compound capable of hydrolyzing the amino carboxyl group.
  • a diisocyanate and a diamine are reacted with a monoamine or monoisocyanate to form an intermediate polyurea which is then contacted with water in the presence of a caustic to form the corresponding polyurea amine and by-product carbon dioxide.
  • the amine is then reacted with an anhydride, lactone or sultone and thereafter hydrolyzed with a basic metal compound to form the polyurea metal salt.
  • this invention concerns a grease containing a thickening agent which is simply a carboxylate or sulfonate metal salt bonded to an organic polyurea radical having at least two ureido groups and preferably from 2 to 8 ureido groups.
  • a ureido group as referred to herein is defined as follows:
  • the preferred polyurea metal salts have structures debonded to carboxylate groups in two or more polyurea fined by the following general formulas: compounds, such as metals bonded to two molecules of O any one structure or molecules of different structures, etc. H Moreover, some of the metal atoms may be partially or [IFNHJITNH RX NH-(IJ NH RFNH CR J: M 5 fully ionized and exist as cations within the product mix- Q) ture.
  • the above formulas generally define the polyurea metal salts, they should not wherem' be interpreted as limiting the invention to the exact strucn s an integer from 0 to tures as shown.
  • n is an integer from 1 to 3;
  • x is an integer from 1 to 2 and equal to the primary Pfepalatlon of P y metal Salts valence of M divided by the number of carboxyl groups and sulfox groups in A;
  • R is the same or different hydrocarbyl having from 2 to carbon atoms and more preferably from 12 to 24 carbon atoms;
  • R is the same or different hydrocarbylene having from 2 to 30 carbon atoms and more preferably from 2 to 12 carbon atoms; 30
  • R is the same or different hydrocarbylene having from 2 to 30 carbons and more preferably from 6 to 24 car-
  • the polyurea salts having the structure presented in Formula 2 are prepared by reacting (n) moles of a diisocyanate with (n) moles of a diamine, one mole of a monoisocyanate and one mole of an aminocarboxylate salt or an aminocarboxyl group source followed by neutralization of the carboxyl group source with a metal hydroxide.
  • the polyurea salts having the structure set forth in Formula 3 are prepared by the same method as described above with the exception that the monoisocybns aniate is replacfid Withhone mole of a fmortiloamiie.
  • po yurea sa ts aving t e structure set ort in ormu a 3; rg gig from Groups I and H of the Pen 4 are prepared by reacting (n+1) moles of diisocyanate with (n) moles of a diamine and one mole of a mono- A is a divalent or tr1valent rad1cal selected from Table I.
  • the polyurea metal salts o are prepared by two generally different reaction schemes 0 corresponding to the preparation of polyurea salts having 1
  • R is the same or different trivalent Flrst reactlon scheme hydrocarbon radical having from 1 to 30 carbons and
  • salts defined by Formulas 2 Preferably from 1 to 12 carbon atoms and X is carbon and 3, the desired reactants (diisocyanate, diamine, caror 5:0. boxyl group source and monoisocyanate or monoamine) AS referred to herein, hydrocarbyl 1S a monovalent are admixed within a suitable reaction vessel in the proper Organic radical COmPOSed of hydrogen and Carbon and proportions and preferably within an inert liquid reaction y be aliphatic, aromatic, alicyclic combinations medium.
  • the reaction may proceed without the presence thereof, -g-, aralkyl, y y cycloalkyl, y y of a catalyst and is initiated by merely contacting the rey and y be saturated or ethylenically unsatllactants under conditions conducive for the reaction.
  • Conjugated cal reaction temperatures range from 200 to 300 F. and 11011C0l1j11gated)-
  • the reaction Willbe exothermic and the temalkyl, aryl, alkaryl, aralkyl, alkylcycloalkyl, cycloalkylperature will rise during the course of the reaction.
  • Exteraryl, etc. having its two free valences on different carbon nal heating or cooling, however, may be employed as reatoms. quired.
  • the reaction conditions are maintained for a The above formulas represent only a general descripperiod sufiicient to produce the carboxylated polyurea. tion of the polyurea metal salts of this invention.
  • reaction time is dependent upon the process condishould be recognized, for example, that in the preparations, reactants, presence of a catalyst, etc., but generally tion of the above polyurea salts some of the molecules varies between about 0.5 and4 hours. may have less than all of the carboxylic groups bonded
  • a metal atom M
  • Some of the metal atoms may be pound, i.e., formation of a polyurea compound having a terminal carboxylic acid, ester or amide thereof, the reaction vessel is charged with a basic metal compound, preferably within an aqueous solution.
  • the metal base reacts to form the terminal carboxyl groups to produce the polyurea metal salt and byproduct water, alcohol, or ammonia.
  • the reaction may also proceed without the presence of a catalyst and is initiated by merely contacting the carboxylated polyurea with the basic metal compound under conditions conducive for the reaction. Typical reaction temperatures range from 200 to 350 F. and preferably between about 250 and 320 F.
  • the reaction is preferably conducted at atmospheric pressure; however, it may be advantageous to conduct the reaction at subatmospheric pressures so that the by-product water, alcohol or ammonia may be continuously removed from the system as soon as it is formed. If the by-products are not stripped during the reaction, they may be removed from the system on completion of the reaction by heating the products to about 200 F. to 340 F. for approximately 30 to 120 minutes.
  • the reactions of the material described above are conducted preferably within or inert organic liquid medium, typically a hydrocarbon oil. Where a grease is desired, it is most convenient to perform the reaction in the oil to be thickened.
  • the entire volume of oil to be thickened may be present, or, alternatively a concentrate of thickened material containing up to 60 weight percent of the polyurea metal salt composition may be formed and this may subsequently be diluted to the desired concentration of the thickener.
  • the reaction of the basic metal compound and the carboxylated polyurea may be avoided by replacing the carboxyl group source reactant with an amino carboxylate metal salt in the initial reaction.
  • the polyurea metal salt is formed directly by reacting the polyurea precursors (diisocyanate, diamine, and monoisocyanate or monoamine) with an amino carboxylate metal salt.
  • the reaction conditions are the same as described above, i.e., temperatures of 150 to 300 F., etc.
  • the concentration of diisocyanate and diamine present within the reaction medium during the initial reaction will control the size of the polyurea component with a higher ocncentration producing the larger molecules.
  • the concentration of monoamine, monoisocyanate and carboxylic group source or amine carboxylate salt present will control the rate at which the polyurea polymer chain is terminated.
  • an excess of the latter reactants will terminate the polyurea chain early and result in low molecular weight products, whereas, an excess of the former reactants will result in long chain or high molecular weight products.
  • the amounts of the various reactants within the reaction medium are set forth in the following Table II and expressed in terms of mol percent based on the mols of reactants present.
  • amines are prepared by amidation of natural fats and oils with ammonia followed by oxidation of the amide to the amine.
  • exemplary amines prepared by the method include stearylamine, laurylamine, palmitylamine, oleylamine, petroselinylamine, linoleylamine, linolenylamine, eleostearylamine, etc.
  • the unsaturated amines are particularly preferred.
  • monoisocyanates are hexylisocyanate, decylisocyanate, dodecylisocyanate, tetradecylisocyanate, hexadecylisocyanate, phenylisocyanate, cyclohexylisocyanate, xylylisocyanate, cumenylisocyanate, abietylisocyanate, cyclooctylisocyanate, etc.
  • the diamines and diisocynates which form the internal hydrocarbon bridges between the ureido groups are, as indicated, of 2 to 30 carbon atoms, preferably from 2 to 26 carbon atoms, and more desirably from 2 to 18 carbon atoms.
  • Exemplary diamines include ethylenediamine, propylenediamine, butylenediamine, hexylenediamine, dedecylenediamine, octylenediamine, hexadecylenediamine, cyclohexylenediamine, cyclooctylenediamine, phenylenediamine, tolylenediamine, xylylenediamine, dianiline methane ditoluidinemethane, bis(aniline), bis(toluidine), etc.
  • diisocyanates include hexylenediisocyanate, decylenediisocyanate, octadecylenediisocyanate, phenylenediisocyanate, tolylenediisocyanate, bis(diphenylisocyanate), methylene bis(phenylisocyanate), etc.
  • aromatic diisocyanates such as tolylenediisocyanate are preferred.
  • the carboxyl group source as referred to herein must be capable of reacting with an isocyanate to form a ureido group and must have a terminal carboxyl group (acid, ester or amide) capable of being reacted with a basic metal compound to form the corresponding metal salt.
  • Carboxyl group sources which may be employed in the practice of this invention include amino acids, amino esters, amino amides and lactams.
  • the preferred carboxyl group source is selected from an amino acid, an amino ester, a lactam or mixtures thereof.
  • the most preferred carboxyl group source is a lactam.
  • the amino monocarboxylic acid or amino dicarboxylic acid and the C -C esters thereof will contain a primary (preferred) or secondary amino group.
  • the amino acids or esters must have at least one active hydrogen atom on the nitrogen, i.e., the tertiary amines cannot be used in the practice of this invention.
  • the amino acids will have from 2 to 31 carbon atoms (including the carboxylated carbon atoms), preferably from 6 to 20 carbon atoms and more preferably from 6 to 12 carbon atoms.
  • the esters of the above will contain from 1 to 3 carbon atoms and preferably 2 carbon atoms in the ester group.
  • the nitrogen atom of the primary amino group must be bonded to a carbon atom in the carboxylic acid or ester other than the carboxylate carbon atom.
  • the nitrogen atom in the secondary amino group will be bonded to two carbon atoms, neither of which should be a carboxylate carbon atom.
  • Typical amino monocarboxylic acids which may be used in this invention include 4-aminobenzoic acid, 4- amino-o-toluic acid, 4-amino-m-toluic acid, 4-amino-ptoluic acid, 4-amino-salicylic acid, anthranilic acid, 3- aminobenzoic acid, p-amino-a-toluic acid, 1-ethyl-3-aminobenzoic acid, 1-ethyl-4-aminobenzoic acid, glycine, ,8- alanine, piperidinic acid, S-aminovaleric acid, 6-aminocaproc acid, '8-aminocaprylic acid, IO-aminocapric acid, 12-aminolauric acid, 14-aminomyristic acid, 16-aminopalmitic acid, 18-aminostearic acid, 18-aminooleic acid, 18-aminolino1eic acid, 18-aminolinolenic acid
  • Typical aminodicarboxylic acids which are suitable for use in this invention include aspartic acid, 3-aminoglutaric acid, 3-aminoadipic acid, 4-aminosuberic acid, 5- aminosebacic acid, 2-aminoterephthalic acid, 4-aminophthalic acid, S-aminoisophthalic acid, etc.
  • Exemplary amino diesters include diethyl 3-aminoglutamate, diethyl B-aminoadipate, ethylmethyl S-aminosebacate, etc.
  • Exemplary aminocarboxylic mono and diesters include methyl p-aminobenzoate, ethyl p-aminobenzoate, propyl p-aminobenzoate, ethyl 4-amino-p-methylbenzoate, propyl-6-a'rninocaproate, ethyl-lS-aminostearate, ethyl piperdinate, dimethyl S-aminoisophthalate, dipropyl aspartate, dipropylglutamate, etc.
  • Esters of the mono carboxylic acids are preferred.
  • Amino amides which may be used as reactants will have from 2 to 30 carbon atoms and preferably 3 to 12 carbon atoms.
  • Typical amino amides which maye be employed herein are the aminoacyclic amides such as 6 aminocapryl amide, S-aminocapryl amide, 12-aminolauryl amide, p-aminophenylacetamide, etc.
  • the most preferred carboxyl group source is the cyclic amides and preferably the lactams having from 5 to 8 members in the heterocyclic structure with a nitrogen atom in the bridgehead position.
  • Typical lactams which may be used herein include 2-pyrrolidone, S-methyl-Z-pyrrolidone, 3,3-dimethyl-Z-pyrrolidone, 2-piperidone, 3-methyl-2-piperidone, alpha caprolactam, gamma caprolactam, beta-methylalphacaprolactam, etc. Caprolactam is the most preferred.
  • amino metal carboxylate which may be employed in the practice of this invention typically have the following general formula:
  • R is selected from hydrogen or a hydrocarbyl having from 1 to 20 carbons and preferably from 2 to 12 carbons;
  • R is a hydrocarbylene having from 1 to 20 carbons and preferably from 6 to 15 carbons;
  • M is a metal atom described supra.
  • x is an integer defined supra.
  • Exemplary metal carboxylates include sodium p-aminobenzoate, potassium p-aminobenzoate, lithium p-aminobenzoate, sodium aminoacetate, mono sodium glutamate, mono potassium glutamate, disodium glutamate, sodium p-amino-p-methylbenzoate, potassiumpiperdinate, mono sodium aspartate, mono sodium p-aminoisophthalate, magnesium amino acetate, etc.
  • the preferred amino metal carboxylates are the alkali metal salts of monocarboxylic acids and preferably aromatic monocarboxylic acids.
  • the amino metal carboxylates are generally highly insoluble within the typical lubricating oil reacting medium. In the event that solubility is problemsome, a mutual solvent having appreciable solubility for the polyurea precursors and for the amino metal carboxylate may be employed. Alternatively, the metal carboxylates may be produced in situ within the reaction medium by charging the metal carboxylate precursors into the reaction mixture along with the polyurea precursors.
  • the basic metal compounds which may be employed in the practice of this invention to form the polyurea metal salt are hydroxides, oxides and carbonates of the Groups I and II metals of the Periodic Table. These include hydroxides, oxides and carbonates of the alkaline (Group I) metals, such as, lithium, potassium, sodium, rubidium, and cesium; the alkaline earth metals (Group II) such as beryllium, magnesium, calcium, strontium and barium.
  • the compound selected must be partially soluble in water and is preferably water-soluble.
  • the preferred compounds are the alkali metal hydroxides, and most preferred are those of the low molecular weight alkali metals, such as lithium, sodium and potassium, and particularly sodium.
  • Typical compounds which may be employed herein include NaOH, KOI-I, LiOH, Ca(OH) CaO, Cal-ICO CaC0 Mg(OH)2, Ba(OH) etc.
  • Second reaction scheme In the second reaction scheme, i.e., the preparation of the polyurea metal salts having the structure defined in Formulas 4 and 5, a series of separate reaction steps are employed.
  • an intermediate polyurea compound having a terminal isocyanate group is prepared in substantially the same manner as described supra with the deletion of the carboxyl group source.
  • This intermediate is then subjected to reaction with a dilute aqueous base to form an amine, which is thereafter reacted with an anhydride, lactone or sultone to form a carboxylated polyurea compound.
  • This carboxylated polyurea is then hydrolyzed with a basic metal compound, described supra, to form the polyurea metal salt product.
  • the desired reactants diisocyanate, diamine, and monoamine or monoisocyanate
  • the diisocyanate is preferably present in an excess.
  • the equivalent ratio of diisocyanate to diamine to monoamine or monoisocyanate generally varies from 2 to 12:1 to 10:1 and preferably from 2 to 8:2 to 8:1.
  • the reaction may proceed without the presence of a catalyst and is initiated by merely contacting the reactants under conditions conducive for the reaction. Typical reaction temperatures range from to 300 F. and preferably from 150 to 260 F.
  • reaction will be exothermic and the temperature will rise during the course of the reaction. Regardless of the exothermicity of the reaction, external heating or cooling may be used as required.
  • the reaction as before, is preferably carried on within an inert solvent and typically the lubricating oil to be thickened. It is also necessary to agitate the mixture during the reaction to provide intimate contacting of the reactant.
  • the reaction time is not critical but will generally range from 30 to minutes; however, longer times (more than 3 hours) may be employed.
  • a dilute aqueous solution of an alkali metal hydroxide is charged to the reaction vessel and intimately contacted with the polyurea compound.
  • the temperature of the reaction vessel is preferably maintained from 200 to 360 F. and more preferably to 250 to 320 F. during the reaction.
  • the presence of the dilute caustic effects a decarbonation of the polyurea compound to form a polyurea amine from the terminal isocyanate group and carbon dioxide.
  • the reaction is conducted until the diisocyanate is completely consumed.
  • the reaction vessel is charged with an anhydride, lactone or sultone having from 3 to 24 carbons and preferably from 4 to 12 carbons.
  • the anhydride, lactone or sultone reacts with one of the hydrogen atoms on the amine group forming a secondary amine having a free carboxylic or sulfonic acid group.
  • the reaction may proceed without the presence of a catalyst and is initiated by merely contacting the anhydride, lactone or sultone with the polyurea amine under conditions conducive for the reaction. Typical reaction temperatures vary from 100 to 300 F. and more preferably from to 200 F.
  • the reaction is conducted at substantially atmospheric pressure; however, elevated pressures may be employed.
  • the carboxylated or sulfoxylated polyurea compound is contacted with a basic metal compound and converted to the polyurea metal salt.
  • the amount of lactone, anhydride or sultone employed in the above reaction should be the stoichiometric amount, i.e. one mol of reactant per mol of polyurea amine present.
  • the amount of basic metal compound employed varies depending upon how many carboxyl or sulfoxy groups are present on the polyurea compound and on the valence of the basic metal compound. Generally, however, the amount of metal base is present in an amount from 1 to 10 percent excess over that stoichiometrically required to produce the polyurea metal salt.
  • Exemplary anhydrides which may be employed in the practice of this invention include malonic anhydride, succinic anhydride, glutaric anhydride, adipic anhydride, pimelic anhydride, maleic anhydride, phthalic anhydride, chlorendic anhydride, 3,3',4,4-benzophenanetetracarboxylic anhydride, etc.
  • Exemplary lactones include gammabutyrolactone, gamma valerolactone, p propiolactone, delta-valerolactone, etc.
  • Exemplary sultones which may be employed include propane sultone, butane sultone, napthsultone, etc.
  • the polyurea metal salt compositions are useful as grease thickeners, to produce greases with good lubricating properties. They are also useful as gellants for a variety of fluids, particularly hydrocarbons, of low viscosity to form fire starters, paints, and the like.
  • compositions described herein are used in oils of lubricating viscosity in amount suflicient to thicken the oil to the consistency of grease, that is, in amounts ranging from 3 to 30* weight percent, preferably from 10 to 15 weight percent based on the weight of the final grease composition.
  • the greases exhibiting the superior properties of this invention can be prepared by the in situ production of the polyurea metal salt within a lubricating oil.
  • the lubricating oil is charged to a grease kettle along with the polyurea precursors, i.e., the reactants which combine to form the polyurea salt.
  • the kettle contents are agitated and the process conditions and steps conducted in a manner discussed supra for the preparation of the polyurea metal salt.
  • the polyurea metal salts produced within the lubrieating oil are generally mixtures of compounds having structures defined in Formulas 2-5 wherein n and n varies from to 3 and exist within the grease composition at the same time.
  • the grease composition may concurrently contain metal salts of diurea, triurea, tetraurea, pentaurea, hexaurea, octaurea, etc.
  • particularly good results have been realized when the polyurea compound is comprised of a combination of diurea salts and tetraurea salts so that the polyurea salts contain a weighted average of 3 ureido groups.
  • cross-linking between polymer chains through a divalent or trivalent metal atom may also be present in minor amounts within the reaction mixture.
  • the grease composition can be further processed by subjecting it to shear hardening.
  • Shear hardening is performed by milling the grease in an extrusion or ball type mill under elevated pressures. The milling improves the dispersion of the polyurea and metal carboxylate throughout the base oil resulting in a grease of greatly improved consistency.
  • US. application Ser. No. 111,517 discloses a preferred method of shear hardening a grease which can be successfully employed for the composition of this invention.
  • the lubricating oil which may be employed in the practice of this invention include a wide variety of natural and synthetic oils such as naphthenic-base, paraffin-base, and mixed-base lubricating oils. These oils generally have a viscosity of 35 to 55,000 SUS at 100 F. and preferably from 20 to 500 SUS at a temperature of 210 F. 75
  • hydrocarbon oils include oils derived from coal products and synthetic oils, e.g., alkylene polymers (such as, polymers of propylene, butylene, etc., and mixtures thereof), alkylene oxide-type polymers (e.g., alkylene oxide polymers prepared by polymerizing alkylene oxide, e.g., propylene oxide polymers, etc., in the presence of water or alcohols, e.g., ethyl alcohol), carboxylic acid esters (e.g., those which were prepared by esterifying such carboxylic acids as adipic acid, azelaic acid, seboric acid, sebatic acid, alkenal succinic acid, fumaric acid, maleic acid, etc., with the alcohols such as butyl alcohol, hexyl alcohol, 2-ethylhexyl alcohol, pentaerythritol, etc.), liquid esters of phosphorus, alkyl benzenes, polyphenols (e.g., bi
  • additives may be successfully employed within the grease composition of this invention without affecting its high stability and performance over a wide temperature scale.
  • One type of additive is an antioxidant or oxidation inhibitor. This type of additive is employed to prevent varnish and sludge formation on metal parts and to inhibit corrosion of alloyed bearings.
  • Typical antioxidants are organic compounds containing sulfur, phosphorus or nitrogen, such as organic amines, sulfides, hydroxy sulfides, phenols, etc., alone or in combination with metals. like zinc, tin or barium.
  • Particularly useful grease antioxidants include phenyl-alpha-naphthyl amine,
  • Another additive which may be incorporated into the grease composition of this invention is an anti-corrodant.
  • the anti-corrodant is employed to inhibit oxidation so that the formation of acidic bodies is suppressed and to form films over the metal surfaces which decrease the effect of corrosive materials on exposed metallic parts.
  • Typical anti-corrodants are organic compounds containing active sulfur, phosphorus or nitrogen, such as organic sulfides, phosphides, metal salts of thiophosphoric acid, and sulfurized waxes.
  • Particularly effective corrosion inhibitors are ammonium dinonylnaphthalene sulfonate and sodium nitrite.
  • a metal deactivator Another type of additive which may be employed herein is a metal deactivator. This type of additive is employed to prevent or counteract catalytic effects of metal on oxidation generally by forming catalytically inactive complexes with soluble or insoluble metal ions.
  • Typical meta] deactivators include complex organic nitrogen and sulfur-containing compounds such as certain complex amines and sulfides.
  • An exemplary metal deactivator is mercaptobenzothiazole.
  • grease addi tives may be employed in the practice of this invention and include stabilizers, tackiness agents, dropping point improvers, lubricating agents, color correctors, odor control agents, etc.
  • EXAMPLE 1 In this example, a diureido and a tetraureido sodium salt thickening agent and a grease containing the same are prepared.
  • a 45 liter stainless steel mixer equipped with a stirrer is charged with 10,000 grams of 480 neutral oil, 1780 grams of tallow amine and 740 grams of caprolactam. The mixture is stirred at 210 F. to disperse the amine and caprolactam within the neutral oil. Thereafter, it is cooled to 150 F. and 188 grams of pthylene diamine are added to the mixture.
  • the mixture is then charged with a blend of 1712 grams of tolylene diisocyanate in 8000 grams of 480 neutral oil.
  • the diisocyanate-oil blend is added slowly to the previously prepared mixture over a period of 45 minutes.
  • the reaction mixture is diluted with an additional 10,000 grams of neutral oil to reduce the degree of thickening.
  • the mixture is stirred and recycled in the mixer for a period of two hours.
  • a sample of the grease is calculated to contain 11 weight percent of thickening agent consisting of 54 weight part of diureido sodium salt 0 0 l l ll TO-NH- NH NHl- NH(CH:)5 -ONa and 46 weight parts of tetraureido sodium salt *T0 is tall oil fatty amine radical.
  • EXAMPLE 2 This example is presented to demonstrate the effectiveness of a representative grease of this invention containing the polyurea metal salt in long term performance as compared to a typical lithium stearate grease and a typical polyurea grease.
  • the polyurea metal salt grease to be tested is prepared by the method of Example 1.
  • the lithium grease is a commercially available grease and is composed essentially of the following:
  • Lithium grease composition Component Amount (wt. percent) Lithium hydroxy stearate Lubricating oil 83 Commercial E. P. agent 7.5 Commercial rust inhibitor 0.4
  • the lithium grease has an ASTM work penetration after 60 strokes (P of 320.
  • Polyurea grease com-position Component Amount (wt. percent) Polyurea 1 9 Lubricating oil 89.5 Commercial antioxidant 0.5 Commercial rust inhibitor 1.0
  • the polyurea compound is:
  • T0 is tall oil fatty amine radical
  • the polyurea grease has an ASTM work penetration after strokes (P )of 280.
  • the three greases are subjected to a high-speed hearing life test to determine the maximum bearing life of each of the greases.
  • the test procedure is set forth in Federal Test Method 331.1 (Navy High Speed Bearing Test) and conducted at a temperature of 325 F. and at 10,000 r.p.m.
  • the results from this test are set forth in the following Table III.
  • Test grease Bearing life (hrs.) Polyurea 1700 Lithium 300 Polyurea metal salt 2600
  • the bearing life test revealed the antiwear and lubricating characteristics of the grease and demonstrates the overall performance which can be expected from the particular grease composition. It can be seen from the above table that the polyurea metal salt greases illustrate a 845 percent increase in bearing life over the lithium grease and a percent increase in bearing life over the polyurea grease.
  • EXAMPLE 3 This example is presented to demonstrate the preparation of polyurea metal salts having structures presented in Formula 3.
  • a 22 liter stainless steel mixer is charged with a 600 neutral petroleum oil and varying amounts of tall oil fatty amine and a carboxyl group source.
  • the mixture is stirred at 210 F. to disperse the amine and carboxyl group source within the oil.
  • varying amounts of a diamine are added to the mixture.
  • a mixture of a diisocyanate in a 480 neutral oil is slowly added to the above reaction mixture over a 30- polyurea metal salts of this invention and of the greases using them as thickeners.
  • EXAMPLE 5 This example is presented to illustrate the preparation of polyurea metal salts having the structure presented in Formula 4 of the specification and the eifectiveness of these compositions as thickening agents for grease compositions.
  • a 22 liter stainless steel mixer is charged with 7212 grams of a 600 neutral oil, 1088 TABLE IV.-POLYUREA METAL SALT GREASES Reactants 1 Grease characteristics Diamine Diisocyanate Monoamine Carboxyl source Metal hydroxide No.01 Thick- Bearing ureido ener ASTM 1i Grease Type Mol Type M01 Type Mol Type Mol Type Mol groups (wt.percent) (P (hrsz) 4.7 TDI 9.4 TOFA 4.7 BZO 4.7 NaOH 4.1 4 4 TDI 8 TA 4 CPLT 4 NaOH 3.8 4 0.05 TDI 0.1 TOFA 0.05 CPLT 0.05 NaOH 0.05 4 2.57 TDI 7.75 TOFA 5.16 BZC 5.16 NaOH 5.16 3 2.7 PAPI 5.4 TOFA
  • compositions amply illustrate the broad range of diarnines, diisocyanates, monoamines and carboxyl group sources which can be successfully employed to prepare the polyurea salts. Also illustrated is the wide range of concentrations for the various reactants as well as for the total thickener content which may be employed.
  • EXAMPLE 4 This example is presented to demonstrate the practice of this invention wherein a variety of metal moieties can be used in the preparation of the polyurea salt.
  • a process identical to that described in Example 1 is used with the exception that LiOH, Ba(OH) or Ca(OH) is substituted for NaOH in the neutralization Sodium hydroxide;
  • ODA 0ctadecylamine;
  • XDA Xylene diamine.
  • a 50 percent TABLE V-GREASE CHARACTERISTICS aqueous solution of sodium hydroxide is charged to the Dropping mixer and intimately contacted with the carboxylated polygg 32 g: Beafing g i l fi urea.
  • the temperature of the system is maintained at Type (percent) (N0,) P fir ar D-2265 190 dgrfing this period 1anilsthle contilelnts vigorously agitate ter approximatey our, t e temperature 1 4 v iaitf 18 ery Sort of the system is increased to 310 F. to strip the grease gg 18 4 301 4991492 composition of water.
  • Liih i itm 1s 4 290 1,161, 608 484 An additional 1889 grams of 600 neutral oil is charged g u 3 291 2,436, 2,874 469, 483 7 to the mixer and the contents milled at 4500 p.s .1.
  • Grease salt. characteristics are then measured and reported in the 01- 1 Test conducted at 350 F. at 10,000 r.p.m. 2 Bearing life test conducted at 325 F. at 10,000 r.p.m.
  • the above table illustrates the preparation of various metals salts and the effectiveness of greases containing lowing table.
  • compositions illustrated in the above Table VI are calculated to have the following structures:
  • TO represents a tall oil fatty amine radical.
  • This example thus illustrates the preparation of various representative polyurea metal salts having the structure set forth in Formula 4 and the effectiveness of these compositions in thickening a lubricating oil to the con-
  • a 600 ml. glass beaker is charged with approxiimately grams of a 600 neutral oil, 0.05 mol of tall oil fatty amine and 0.025 mol of ethylene diamine.
  • the contents of the beaker are stirred and heated to a temperature of about F. to uniformly disperse the reactants within the oil reaction medium.
  • approximately 65 grams of 600 neutral oil After the contents of the beaker have been dehydrated, 0.05 mol of propane sultone are charged to the beaker.
  • the contents are mixed for a period of 1 hour at 190 F. to efiect a sulfoxylation of the polyurea amine compound.
  • a 50 percent aqueous solution of sodium hydroxide (0.05 mol) is charged to the beaker and intimately contacted with the sulfoxylated polyurea.
  • the temperature is maintained at 190 F. for a period of approximately minutes.
  • the water is stripped from the system by heating to a temperature of about 310 F.
  • the polyurea metal salt is calculated to have the following structure and is present within the oil in an amount of 11 weight percent based on the weight of total grease composition.
  • T0 is a tall oil radical
  • EXAMPLE 7 This example is presented to demonstrate the preparation of a representative polyurea metal salt having the structure presented in Formula 2.
  • a 600 ml. flask is charged with grams of 600 neutral oil and 5.65 grams of caprolactam. The contents are heated to F. and 3 grams of ethylene diamine 18 for 90 minutes. An additional 0.9 grams of EDA are added to insure that all of the diisocyanate has reacted.
  • the contents of the flask are transferred to a 600 ml. glass beaker and 4 grams of sodium hydroxide in 4 grams of water are charged to the beaker.
  • the oil in the beaker is calculated to contain 21 weight percent of polyurea sodium salt.
  • the ASTM work penetration (P is measured to be 294.
  • the structure of the polyurea compound is calculated to be as follows:
  • EXAMPLE 8 This example is presented to demonstrate the preparation of a representative polyurea metal salt having the structure presented in Formula 5.
  • the grease exhibits an ASTM worked penetration after 60 strokes of 261.
  • the polyurea metal salt is calculated to have the following structure:
  • a grease composition comprising a major portion of a lubricating oil and an amount sufiicient to thicken said oil to the consistency of grease of a polyurea metal salt having a structure presented in one of the following formulas:
  • n is an integer from 0 to 3; 4
  • n is an integer from 1 to 3;
  • X is carbon or SO and R is the same or different trivalent hydrocarbon radical having from 1 to 30 carbons.
  • composition defined in claim 1 wherein said metal is selected from Group I of the Periodic Table.
  • composition defined in claim 3 wherein said metal is sodium.
  • a grease comprising a major portion of a lubricating oil and from 3 to 30 weight percent of a polyurea compound having the structure:
  • n is an integer from 0 to 3;
  • R is the same or different hydrocarbyl having from 2 to 30 carbons
  • R is the same or different hydrocarbylene having from 2 to 30 carbons
  • R is the same or different hydrocarbylene having from 2 to 30 carbons
  • M is an alkali metal.
  • a grease composition comprising a major portion of a lubricating oil and from 3 to 30 weight percent of a polyurea compound having the structure:
  • n is an integer from 1 to 3;
  • R is the same or different hydrocarbyl having from 2 to 30 carbons
  • R is the same or different hydrocarbylene having from 2 to 30 carbons
  • R is the same or different hydrocarbylene having from 2 to 30 carbons; and M is an alkali metal; and A is a divalent radical selected from wherein X is carbon or SO.
  • composition defined in claim 7 wherein said alkali metal is sodium.
  • a grease composition prepared by reacting within a major portion of a lubricating oil a C -C diamine, a C C diisocyanate and a C -C mono amine or C -C mono-isocyanate with (1) a C -C amino acid metal carboxylate or (2) a carboxyl group source selected from the group consisting of amino acids having from 2 to 30 carbons to form a carboxylated polyurea, followed by hydrolysis of the carboxylated polyurea with a basic metal compound selected from hydroxides, oxides and carbonates of Groups I and II metals.
  • composition defined in claim 9 wherein said carboxyl group source is an amino monocarboxylic acid.
  • composition defined in claim 9 wherein said diamine is ethylene diamine, said diisocyanate is tolylene diisocyanate, said mono isocyanate and said metal carboxylate are not present and said basic metal compound is sodium, potassium or lithium hydroxide.
  • C-NH-R -NH- should read -C-NH-R -NH Signed and sealed this 17th day of September 1974.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

AN IMPROVED GREASE COMPOSITION IS DISCLOSED COMPRISING A MAJOR PORTION OF A LUBRICATING OIL C ONTAINING A POLYUREA METAL SALT WHEREIN THE POLYUREA PORTION OF THE MOLECULE IS PREPARED BY REACTING A DILSOYANATE, A DIAMINE WITH A MONOISOCYANATE OR MONOAMINE. THE METAL SALT IS PREPARED BY REACTING THE POLYUREA COMPOUND WITH AN ACID GROUP, SUCH AS A CARBOXYLIC OR A SULFONIC ACID GROUP, AND NEUTRALIZING THE TERMINAL ACID GROUP WITH A BASIC METAL COMPOUND.

Description

United States Patent Office 3,769,212 Patented Oct. 30, 1973 3,769,212 GREASE TI-IICKENED WITH POLYUREA METAL SALTS Garth M. Stanton, San Anselmo, and John L. Dreher, El
Cerrito, Calif., assignors to Chevron Research Company, San Francisco, Calif.
No Drawing. Continuation-impart of abandoned application Ser. No. 59,780, July 24, 1970. This application June 2, 1972, Ser. No. 259,053
Int. Cl. C10m 5/22, 5/20, 7/38 US. Cl. 252-33 11 Claims ABSTRACT OF THE DISCLOSURE An improved grease composition is disclosed comprising a major portion of a lubricating oil containing a polyurea metal salt wherein the polyurea portion of the molecule is prepared by reacting a diisocyanate, a diamine with a monoisocyanate or monoamine. The metal salt is prepared by reacting the polyurea compound with an acid group, such as a carboxylic or a sulfonic acid group, and neutralizing the terminal acid group with a basic metal compound.
CROSS-REFERENCE TO RELATED APPLICATIONS This application is a continuation-in-part of US. application Ser. No. 59,780, filed July 24, 1970 and now abandoned.
BACKGROUND OF THE INVENTION This invention relates to a novel grease composition. More particularly, this invention concerns grease composition containing a novel metal-containing polyurea thickerung agent.
Modern technology is currently supplying the general public and the process industries with machinery which is designed to operate under a wider range of temperatures and under greater loads than previously available. In addition, most of the newer machines are designed to operate at extremely high speeds. Many of these machines require certain specific lubricating properties which are not available in the conventional lubricants. Thus, modernization of high speed and high temperature equipment has strained the petroleum industry for the development of a second generation of lubricants capable of satisfying the requirements of the new machines. Recently, for example, there has been an increased demand for grease lubricants capable of performing well at temperatures above 300 F. in high speed bearings and gears for periods in excess of 500 hours. In addition, with the further development of the high speed sealed bearings, the grease must be able to endure for the life of the bearing.
There have been numerous grease compositions developed which satisfy most of the new more stringent requirements. Many of these compositions, however, are entirely too expensive for commercialization or only meet some of the lubricating requirements and fail in others. One type of lubricant currently available is the ubiquitous lithium greases. These greases are simply a mixture of a hydrocarbon base oil and a lithium hydroxy stearate thickener with minor amounts of other additives. Although these greases exhibit good lubricating properties and perform well at moderate temperatures, its application in high temperature and high speed machinery has not been entirely successful. The lithium greases tend to deteriorate in these machines at high temperatures, particularly at temperatures above 300 F. The deterioration leads to a rapid loss of lubrication and ultimately failure of the equipment.
Another type of grease composition which has excellent lubricating properties at the higher temperatures is comprised of a lubricating oil (natural or synthetic) containing a polyurea thickener. This type of lubricant is disclosed in US. Pat. Nos. 3,242,210; 3,243,372; 3,281,361; 3,284,357; 3,346,497; and 3,401,027, all assigned to the Chevron Research Company. The polyurea thickener imparts a significant high temperature stability to the grease and, in fact, effects a mild anti-thixotropic property, i.e., increase in viscosity with increasing shear, to the lubricant. This property of the lubricant is advantageous to prevent the segregation or loss of grease from the moving parts of the machine. While the polyurea grease has solved most of the problems associated with the older lubricants, a need still exists for an improved thickener which, when incorporated into a grease composition, can be used for longer periods at elevated temperatures; and, yet, still be relatively inexpensive to make.
It is, therefore, an object of this invention to provide a new grease composition.
It is another object of this invention to provide an improved grease composition having improved lubricating properties at high temperatures for prolonged periods.
It is another object of this invention to provide a method of making an improved grease composition.
SUMMARY OF THE INVENTION The foregoing objects and their attendant advantages can be realized with a grease composition containing a polyurea metal salt having a minimum of two ureido groups and having a molecular weight above about 250 AMUs (atomic mass units) and preferably between about 300 and 2000 AMUs. These polyurea salts can be prepared by two different reaction schemes. In the first, a diisocyanate, a diamine and a monoisocyanate or monoamine are reacted with an amino acid metal salt or an amino carboxyl group source followed by reaction with a basic metal compound capable of hydrolyzing the amino carboxyl group. In the second reaction scheme, a diisocyanate and a diamine are reacted with a monoamine or monoisocyanate to form an intermediate polyurea which is then contacted with water in the presence of a caustic to form the corresponding polyurea amine and by-product carbon dioxide. The amine is then reacted with an anhydride, lactone or sultone and thereafter hydrolyzed with a basic metal compound to form the polyurea metal salt.
We have found that greases containing a polyurea metal salt prepared by the above procedure have increased bearing life, and, in some instances, the bearing life is increased by 50 percent over that of the non-metal containing polyurea lubricants and 800 percent over the commercial lithium greases. The exact mechanism of the polyurea metal salt in effecting the improved lubricating properties to the grease is unknown. However, even though the mechanism is unknown, it is known and it has been demonstrated that by incorporating a polyurea metal salt thickener into a grease composition, the lubricating properties, particularly the bearing life, are substantially improved.
DETAILED DESCRIPTION OF THE INVENTION In its broadest form, this invention concerns a grease containing a thickening agent which is simply a carboxylate or sulfonate metal salt bonded to an organic polyurea radical having at least two ureido groups and preferably from 2 to 8 ureido groups. A ureido group as referred to herein is defined as follows:
3 4 The preferred polyurea metal salts have structures debonded to carboxylate groups in two or more polyurea fined by the following general formulas: compounds, such as metals bonded to two molecules of O any one structure or molecules of different structures, etc. H Moreover, some of the metal atoms may be partially or [IFNHJITNH RX NH-(IJ NH RFNH CR J: M 5 fully ionized and exist as cations within the product mix- Q) ture. Thus, it is apparent that while the above formulas generally define the polyurea metal salts, they should not wherem' be interpreted as limiting the invention to the exact strucn s an integer from 0 to tures as shown.
n is an integer from 1 to 3;
x is an integer from 1 to 2 and equal to the primary Pfepalatlon of P y metal Salts valence of M divided by the number of carboxyl groups and sulfox groups in A;
R is the same or different hydrocarbyl having from 2 to carbon atoms and more preferably from 12 to 24 carbon atoms;
R is the same or different hydrocarbylene having from 2 to 30 carbon atoms and more preferably from 2 to 12 carbon atoms; 30
R is the same or different hydrocarbylene having from 2 to 30 carbons and more preferably from 6 to 24 car- The polyurea salts having the structure presented in Formula 2 are prepared by reacting (n) moles of a diisocyanate with (n) moles of a diamine, one mole of a monoisocyanate and one mole of an aminocarboxylate salt or an aminocarboxyl group source followed by neutralization of the carboxyl group source with a metal hydroxide. The polyurea salts having the structure set forth in Formula 3 are prepared by the same method as described above with the exception that the monoisocybns aniate is replacfid Withhone mole of a fmortiloamiie. The
po yurea sa ts aving t e structure set ort in ormu a 3; rg gig from Groups I and H of the Pen 4 are prepared by reacting (n+1) moles of diisocyanate with (n) moles of a diamine and one mole of a mono- A is a divalent or tr1valent rad1cal selected from Table I. amine followed by reaction of the terminal isocyanate TABLE I group with an aqueous base to form a polyurea amine and by-product carbon dioxide, reaction of the amine group Divalent radical Tflvalentmdical with an anhydride, lactone or sultone having from 2 to 0=CO 0 24 carbon atoms and neutralization of the resulting polyurea carboxylic or sulfonic acid with a basic metal compound. Polyurea salts have the structure set forth in E f Formula 5 are prepared in the same manner as imme- R1oo- R1-oodiatel above except that the monoamine is replaced with Y one mole of a monoisocyanate and (n+1) moles of a diamine are employed.
R fi As can be seen from the above, the polyurea metal salts o are prepared by two generally different reaction schemes 0 corresponding to the preparation of polyurea salts having 1| the structures defined by Formulas 2 and 3 and polyurea salts having the structures defined by Formulas 4 and 5.
In the above table, R is the same or different trivalent Flrst reactlon scheme hydrocarbon radical having from 1 to 30 carbons and In the former preparation, salts defined by Formulas 2 Preferably from 1 to 12 carbon atoms and X is carbon and 3, the desired reactants (diisocyanate, diamine, caror 5:0. boxyl group source and monoisocyanate or monoamine) AS referred to herein, hydrocarbyl 1S a monovalent are admixed within a suitable reaction vessel in the proper Organic radical COmPOSed of hydrogen and Carbon and proportions and preferably within an inert liquid reaction y be aliphatic, aromatic, alicyclic combinations medium. The reaction may proceed without the presence thereof, -g-, aralkyl, y y cycloalkyl, y y of a catalyst and is initiated by merely contacting the rey and y be saturated or ethylenically unsatllactants under conditions conducive for the reaction. Typil'ated more double bonded carbons, Conjugated cal reaction temperatures range from 200 to 300 F. and 11011C0l1j11gated)- The hydfofiafbylelle, a5 defined hefepreferably between about 150 and 260 F. Elevated press a divalent y rb n r di al Whi h may be alisures as well as reduced pressures may be employed. In phatic, alicyclic, aromatic or combinations thereof, e.g., many cases, the reaction Willbe exothermic and the temalkyl, aryl, alkaryl, aralkyl, alkylcycloalkyl, cycloalkylperature will rise during the course of the reaction. Exteraryl, etc., having its two free valences on different carbon nal heating or cooling, however, may be employed as reatoms. quired. The reaction conditions are maintained for a The above formulas represent only a general descripperiod sufiicient to produce the carboxylated polyurea. tion of the polyurea metal salts of this invention. It The reaction time is dependent upon the process condishould be recognized, for example, that in the preparations, reactants, presence of a catalyst, etc., but generally tion of the above polyurea salts some of the molecules varies between about 0.5 and4 hours. may have less than all of the carboxylic groups bonded After formation of the carboxylated polyurea comto a metal atom (M), Some of the metal atoms may be pound, i.e., formation of a polyurea compound having a terminal carboxylic acid, ester or amide thereof, the reaction vessel is charged with a basic metal compound, preferably within an aqueous solution. The metal base reacts to form the terminal carboxyl groups to produce the polyurea metal salt and byproduct water, alcohol, or ammonia. The reaction may also proceed without the presence of a catalyst and is initiated by merely contacting the carboxylated polyurea with the basic metal compound under conditions conducive for the reaction. Typical reaction temperatures range from 200 to 350 F. and preferably between about 250 and 320 F. The reaction is preferably conducted at atmospheric pressure; however, it may be advantageous to conduct the reaction at subatmospheric pressures so that the by-product water, alcohol or ammonia may be continuously removed from the system as soon as it is formed. If the by-products are not stripped during the reaction, they may be removed from the system on completion of the reaction by heating the products to about 200 F. to 340 F. for approximately 30 to 120 minutes.
The reactions of the material described above are conducted preferably within or inert organic liquid medium, typically a hydrocarbon oil. Where a grease is desired, it is most convenient to perform the reaction in the oil to be thickened. The entire volume of oil to be thickened may be present, or, alternatively a concentrate of thickened material containing up to 60 weight percent of the polyurea metal salt composition may be formed and this may subsequently be diluted to the desired concentration of the thickener.
The reaction of the basic metal compound and the carboxylated polyurea, may be avoided by replacing the carboxyl group source reactant with an amino carboxylate metal salt in the initial reaction. In this embodiment, the polyurea metal salt is formed directly by reacting the polyurea precursors (diisocyanate, diamine, and monoisocyanate or monoamine) with an amino carboxylate metal salt. The reaction conditions are the same as described above, i.e., temperatures of 150 to 300 F., etc.
The concentration of diisocyanate and diamine present within the reaction medium during the initial reaction will control the size of the polyurea component with a higher ocncentration producing the larger molecules. The concentration of monoamine, monoisocyanate and carboxylic group source or amine carboxylate salt present, on the other hand, will control the rate at which the polyurea polymer chain is terminated. Thus, an excess of the latter reactants will terminate the polyurea chain early and result in low molecular weight products, whereas, an excess of the former reactants will result in long chain or high molecular weight products. The amounts of the various reactants within the reaction medium are set forth in the following Table II and expressed in terms of mol percent based on the mols of reactants present.
TABLE IL-CONCENIRATION OF INGREDIENTS Broad Preferred range range (mol (mol Ingredient percent) percent) Diisocyanate 25-40 15-20 Diamine 5-30 9-20 Monoisocyanate 1 9-20 14-20 Monoamlne 1 -25 15-20 Amino carboxylate salt 1 10-25 15-20 Carboxylic group source 10-25 15-20 Basic metal compound 1 10-25 15-20 1 When employed.
amine, eicosylaine, dodecenylamine, hexadecenylamine, octadecenylamine, octadecadienylamine, abietylamine,
aniline, toluidine, naphthylamine, cumylamine, bornylamine, fenchylamine, tertiary butyl aniline, benzylamine, beta-phenethylamine, etc. Particularly preferred amines are prepared by amidation of natural fats and oils with ammonia followed by oxidation of the amide to the amine. Exemplary amines prepared by the method include stearylamine, laurylamine, palmitylamine, oleylamine, petroselinylamine, linoleylamine, linolenylamine, eleostearylamine, etc. The unsaturated amines are particularly preferred.
Illustrative of monoisocyanates are hexylisocyanate, decylisocyanate, dodecylisocyanate, tetradecylisocyanate, hexadecylisocyanate, phenylisocyanate, cyclohexylisocyanate, xylylisocyanate, cumenylisocyanate, abietylisocyanate, cyclooctylisocyanate, etc.
The diamines and diisocynates which form the internal hydrocarbon bridges between the ureido groups are, as indicated, of 2 to 30 carbon atoms, preferably from 2 to 26 carbon atoms, and more desirably from 2 to 18 carbon atoms. Exemplary diamines include ethylenediamine, propylenediamine, butylenediamine, hexylenediamine, dedecylenediamine, octylenediamine, hexadecylenediamine, cyclohexylenediamine, cyclooctylenediamine, phenylenediamine, tolylenediamine, xylylenediamine, dianiline methane ditoluidinemethane, bis(aniline), bis(toluidine), etc.
Representative examples of diisocyanates include hexylenediisocyanate, decylenediisocyanate, octadecylenediisocyanate, phenylenediisocyanate, tolylenediisocyanate, bis(diphenylisocyanate), methylene bis(phenylisocyanate), etc. The aromatic diisocyanates, such as tolylenediisocyanate are preferred.
The carboxyl group source as referred to herein must be capable of reacting with an isocyanate to form a ureido group and must have a terminal carboxyl group (acid, ester or amide) capable of being reacted with a basic metal compound to form the corresponding metal salt. Carboxyl group sources which may be employed in the practice of this invention include amino acids, amino esters, amino amides and lactams. The preferred carboxyl group source is selected from an amino acid, an amino ester, a lactam or mixtures thereof. The most preferred carboxyl group source is a lactam.
The amino monocarboxylic acid or amino dicarboxylic acid and the C -C esters thereof will contain a primary (preferred) or secondary amino group. The amino acids or esters, must have at least one active hydrogen atom on the nitrogen, i.e., the tertiary amines cannot be used in the practice of this invention. The amino acids will have from 2 to 31 carbon atoms (including the carboxylated carbon atoms), preferably from 6 to 20 carbon atoms and more preferably from 6 to 12 carbon atoms. The esters of the above will contain from 1 to 3 carbon atoms and preferably 2 carbon atoms in the ester group. The nitrogen atom of the primary amino group must be bonded to a carbon atom in the carboxylic acid or ester other than the carboxylate carbon atom. Similarly, the nitrogen atom in the secondary amino group will be bonded to two carbon atoms, neither of which should be a carboxylate carbon atom.
Typical amino monocarboxylic acids which may be used in this invention include 4-aminobenzoic acid, 4- amino-o-toluic acid, 4-amino-m-toluic acid, 4-amino-ptoluic acid, 4-amino-salicylic acid, anthranilic acid, 3- aminobenzoic acid, p-amino-a-toluic acid, 1-ethyl-3-aminobenzoic acid, 1-ethyl-4-aminobenzoic acid, glycine, ,8- alanine, piperidinic acid, S-aminovaleric acid, 6-aminocaproc acid, '8-aminocaprylic acid, IO-aminocapric acid, 12-aminolauric acid, 14-aminomyristic acid, 16-aminopalmitic acid, 18-aminostearic acid, 18-aminooleic acid, 18-aminolino1eic acid, 18-aminolinolenic acid, 4-aminocyclohexane carboxylic acid, (p-aminophenyDacetic acid, fi-aminolauric acid, 4-aminocaprylic acid, 12-aminopalmitic acid, 6-(N-methylamino)caprylic acid, S-(N-ethylamino)caprylic acid, 13-(N-methylamino)myristic acid, etc.
Typical aminodicarboxylic acids which are suitable for use in this invention include aspartic acid, 3-aminoglutaric acid, 3-aminoadipic acid, 4-aminosuberic acid, 5- aminosebacic acid, 2-aminoterephthalic acid, 4-aminophthalic acid, S-aminoisophthalic acid, etc. Exemplary amino diesters include diethyl 3-aminoglutamate, diethyl B-aminoadipate, ethylmethyl S-aminosebacate, etc.
Exemplary aminocarboxylic mono and diesters include methyl p-aminobenzoate, ethyl p-aminobenzoate, propyl p-aminobenzoate, ethyl 4-amino-p-methylbenzoate, propyl-6-a'rninocaproate, ethyl-lS-aminostearate, ethyl piperdinate, dimethyl S-aminoisophthalate, dipropyl aspartate, dipropylglutamate, etc. Esters of the mono carboxylic acids are preferred.
Amino amides which may be used as reactants will have from 2 to 30 carbon atoms and preferably 3 to 12 carbon atoms. Typical amino amides which maye be employed herein are the aminoacyclic amides such as 6 aminocapryl amide, S-aminocapryl amide, 12-aminolauryl amide, p-aminophenylacetamide, etc. The most preferred carboxyl group source is the cyclic amides and preferably the lactams having from 5 to 8 members in the heterocyclic structure with a nitrogen atom in the bridgehead position. Typical lactams which may be used herein include 2-pyrrolidone, S-methyl-Z-pyrrolidone, 3,3-dimethyl-Z-pyrrolidone, 2-piperidone, 3-methyl-2-piperidone, alpha caprolactam, gamma caprolactam, beta-methylalphacaprolactam, etc. Caprolactam is the most preferred.
The amino metal carboxylate which may be employed in the practice of this invention typically have the following general formula:
R, is selected from hydrogen or a hydrocarbyl having from 1 to 20 carbons and preferably from 2 to 12 carbons;
R is a hydrocarbylene having from 1 to 20 carbons and preferably from 6 to 15 carbons;
M is a metal atom described supra; and
x is an integer defined supra.
wherein Exemplary metal carboxylates include sodium p-aminobenzoate, potassium p-aminobenzoate, lithium p-aminobenzoate, sodium aminoacetate, mono sodium glutamate, mono potassium glutamate, disodium glutamate, sodium p-amino-p-methylbenzoate, potassiumpiperdinate, mono sodium aspartate, mono sodium p-aminoisophthalate, magnesium amino acetate, etc. The preferred amino metal carboxylates are the alkali metal salts of monocarboxylic acids and preferably aromatic monocarboxylic acids.
The amino metal carboxylates are generally highly insoluble within the typical lubricating oil reacting medium. In the event that solubility is problemsome, a mutual solvent having appreciable solubility for the polyurea precursors and for the amino metal carboxylate may be employed. Alternatively, the metal carboxylates may be produced in situ within the reaction medium by charging the metal carboxylate precursors into the reaction mixture along with the polyurea precursors.
The basic metal compounds which may be employed in the practice of this invention to form the polyurea metal salt are hydroxides, oxides and carbonates of the Groups I and II metals of the Periodic Table. These include hydroxides, oxides and carbonates of the alkaline (Group I) metals, such as, lithium, potassium, sodium, rubidium, and cesium; the alkaline earth metals (Group II) such as beryllium, magnesium, calcium, strontium and barium. The compound selected must be partially soluble in water and is preferably water-soluble. The preferred compounds are the alkali metal hydroxides, and most preferred are those of the low molecular weight alkali metals, such as lithium, sodium and potassium, and particularly sodium. Typical compounds which may be employed herein include NaOH, KOI-I, LiOH, Ca(OH) CaO, Cal-ICO CaC0 Mg(OH)2, Ba(OH) etc.
Second reaction scheme In the second reaction scheme, i.e., the preparation of the polyurea metal salts having the structure defined in Formulas 4 and 5, a series of separate reaction steps are employed. In the process, an intermediate polyurea compound having a terminal isocyanate group is prepared in substantially the same manner as described supra with the deletion of the carboxyl group source. This intermediate is then subjected to reaction with a dilute aqueous base to form an amine, which is thereafter reacted with an anhydride, lactone or sultone to form a carboxylated polyurea compound. This carboxylated polyurea is then hydrolyzed with a basic metal compound, described supra, to form the polyurea metal salt product. More specifically, in this preparation the desired reactants (diisocyanate, diamine, and monoamine or monoisocyanate) are mixed within a suitable reaction vessel in the proper proportions. Since it is necessary for the urea compound to have a terminal isocyanate group, the diisocyanate is preferably present in an excess. The equivalent ratio of diisocyanate to diamine to monoamine or monoisocyanate generally varies from 2 to 12:1 to 10:1 and preferably from 2 to 8:2 to 8:1. The reaction may proceed without the presence of a catalyst and is initiated by merely contacting the reactants under conditions conducive for the reaction. Typical reaction temperatures range from to 300 F. and preferably from 150 to 260 F. In most cases, the reaction will be exothermic and the temperature will rise during the course of the reaction. Regardless of the exothermicity of the reaction, external heating or cooling may be used as required. The reaction, as before, is preferably carried on within an inert solvent and typically the lubricating oil to be thickened. It is also necessary to agitate the mixture during the reaction to provide intimate contacting of the reactant. The reaction time is not critical but will generally range from 30 to minutes; however, longer times (more than 3 hours) may be employed.
Upon completion of the polyurea reaction, a dilute aqueous solution of an alkali metal hydroxide is charged to the reaction vessel and intimately contacted with the polyurea compound. The temperature of the reaction vessel is preferably maintained from 200 to 360 F. and more preferably to 250 to 320 F. during the reaction. The presence of the dilute caustic effects a decarbonation of the polyurea compound to form a polyurea amine from the terminal isocyanate group and carbon dioxide. The reaction is conducted until the diisocyanate is completely consumed.
At the completion of the reaction and the formation of the polyurea amine, the reaction vessel is charged with an anhydride, lactone or sultone having from 3 to 24 carbons and preferably from 4 to 12 carbons. The anhydride, lactone or sultone reacts with one of the hydrogen atoms on the amine group forming a secondary amine having a free carboxylic or sulfonic acid group. The reaction may proceed without the presence of a catalyst and is initiated by merely contacting the anhydride, lactone or sultone with the polyurea amine under conditions conducive for the reaction. Typical reaction temperatures vary from 100 to 300 F. and more preferably from to 200 F. The reaction is conducted at substantially atmospheric pressure; however, elevated pressures may be employed. At the completion of the reaction, generally between about 30 and 120 minutes, the carboxylated or sulfoxylated polyurea compound is contacted with a basic metal compound and converted to the polyurea metal salt.
The amount of lactone, anhydride or sultone employed in the above reaction should be the stoichiometric amount, i.e. one mol of reactant per mol of polyurea amine present. In the neutralization step, the amount of basic metal compound employed varies depending upon how many carboxyl or sulfoxy groups are present on the polyurea compound and on the valence of the basic metal compound. Generally, however, the amount of metal base is present in an amount from 1 to 10 percent excess over that stoichiometrically required to produce the polyurea metal salt.
Exemplary anhydrides which may be employed in the practice of this invention include malonic anhydride, succinic anhydride, glutaric anhydride, adipic anhydride, pimelic anhydride, maleic anhydride, phthalic anhydride, chlorendic anhydride, 3,3',4,4-benzophenanetetracarboxylic anhydride, etc. Exemplary lactones include gammabutyrolactone, gamma valerolactone, p propiolactone, delta-valerolactone, etc. Exemplary sultones which may be employed include propane sultone, butane sultone, napthsultone, etc.
The polyurea metal salt compositions are useful as grease thickeners, to produce greases with good lubricating properties. They are also useful as gellants for a variety of fluids, particularly hydrocarbons, of low viscosity to form fire starters, paints, and the like.
When used as grease thickeners, the compositions described herein are used in oils of lubricating viscosity in amount suflicient to thicken the oil to the consistency of grease, that is, in amounts ranging from 3 to 30* weight percent, preferably from 10 to 15 weight percent based on the weight of the final grease composition.
Preparation of grease composition The greases exhibiting the superior properties of this invention can be prepared by the in situ production of the polyurea metal salt within a lubricating oil. In this embodiment, the lubricating oil is charged to a grease kettle along with the polyurea precursors, i.e., the reactants which combine to form the polyurea salt. The kettle contents are agitated and the process conditions and steps conducted in a manner discussed supra for the preparation of the polyurea metal salt.
The polyurea metal salts produced within the lubrieating oil are generally mixtures of compounds having structures defined in Formulas 2-5 wherein n and n varies from to 3 and exist within the grease composition at the same time. For example, the grease composition may concurrently contain metal salts of diurea, triurea, tetraurea, pentaurea, hexaurea, octaurea, etc. In fact, particularly good results have been realized when the polyurea compound is comprised of a combination of diurea salts and tetraurea salts so that the polyurea salts contain a weighted average of 3 ureido groups. Moreover, while it is not shown by the formulas, cross-linking between polymer chains through a divalent or trivalent metal atom may also be present in minor amounts within the reaction mixture.
The grease composition can be further processed by subjecting it to shear hardening. Shear hardening is performed by milling the grease in an extrusion or ball type mill under elevated pressures. The milling improves the dispersion of the polyurea and metal carboxylate throughout the base oil resulting in a grease of greatly improved consistency. US. application Ser. No. 111,517 discloses a preferred method of shear hardening a grease which can be successfully employed for the composition of this invention.
The lubricating oil which may be employed in the practice of this invention include a wide variety of natural and synthetic oils such as naphthenic-base, paraffin-base, and mixed-base lubricating oils. These oils generally have a viscosity of 35 to 55,000 SUS at 100 F. and preferably from 20 to 500 SUS at a temperature of 210 F. 75
Other hydrocarbon oils include oils derived from coal products and synthetic oils, e.g., alkylene polymers (such as, polymers of propylene, butylene, etc., and mixtures thereof), alkylene oxide-type polymers (e.g., alkylene oxide polymers prepared by polymerizing alkylene oxide, e.g., propylene oxide polymers, etc., in the presence of water or alcohols, e.g., ethyl alcohol), carboxylic acid esters (e.g., those which were prepared by esterifying such carboxylic acids as adipic acid, azelaic acid, seboric acid, sebatic acid, alkenal succinic acid, fumaric acid, maleic acid, etc., with the alcohols such as butyl alcohol, hexyl alcohol, 2-ethylhexyl alcohol, pentaerythritol, etc.), liquid esters of phosphorus, alkyl benzenes, polyphenols (e.g., biphenols and terphenols), alkyl biphenol ethers, polymers of silicon, e.g., tetraethyl silicate, tetraisopropyl silicate, hexyl(4-methyl-2-pentoxy)disilicane, poly(methyl) siloxane, and poly(methylphenol)siloxane, etc. The base oils may be used individually or in combinations, whenever miscible or whenever made so by use of mutual solvents.
In addition to the polyurea metal salt, other additives may be successfully employed within the grease composition of this invention without affecting its high stability and performance over a wide temperature scale. One type of additive is an antioxidant or oxidation inhibitor. This type of additive is employed to prevent varnish and sludge formation on metal parts and to inhibit corrosion of alloyed bearings. Typical antioxidants are organic compounds containing sulfur, phosphorus or nitrogen, such as organic amines, sulfides, hydroxy sulfides, phenols, etc., alone or in combination with metals. like zinc, tin or barium. Particularly useful grease antioxidants include phenyl-alpha-naphthyl amine,
bis (alkylphenyl) amine, n,n-diphenyl-p-phenylenediamine, 2,2,4-trimethyldihydroquinoline oligomer, bis(4-isopropylaminophenyl)ether, n-acyl-p-aminophenol,
n-acylphenothiazines,
n-hydrocarbylamides or ethylenediamine tetraacctic acid, alkylphenol-formaldehyde-amine poly condensates, etc.
Another additive which may be incorporated into the grease composition of this invention is an anti-corrodant. The anti-corrodant is employed to inhibit oxidation so that the formation of acidic bodies is suppressed and to form films over the metal surfaces which decrease the effect of corrosive materials on exposed metallic parts. Typical anti-corrodants are organic compounds containing active sulfur, phosphorus or nitrogen, such as organic sulfides, phosphides, metal salts of thiophosphoric acid, and sulfurized waxes. Particularly effective corrosion inhibitors are ammonium dinonylnaphthalene sulfonate and sodium nitrite.
Another type of additive which may be employed herein is a metal deactivator. This type of additive is employed to prevent or counteract catalytic effects of metal on oxidation generally by forming catalytically inactive complexes with soluble or insoluble metal ions. Typical meta] deactivators include complex organic nitrogen and sulfur-containing compounds such as certain complex amines and sulfides. An exemplary metal deactivator is mercaptobenzothiazole.
In addition to the above, several other grease addi tives may be employed in the practice of this invention and include stabilizers, tackiness agents, dropping point improvers, lubricating agents, color correctors, odor control agents, etc.
The following examples are presented to illustrate the practice of specific embodiments of this invention and should not be interpreted as limitations upon the scope of the invention.
EXAMPLE 1 In this example, a diureido and a tetraureido sodium salt thickening agent and a grease containing the same are prepared. A 45 liter stainless steel mixer equipped with a stirrer is charged with 10,000 grams of 480 neutral oil, 1780 grams of tallow amine and 740 grams of caprolactam. The mixture is stirred at 210 F. to disperse the amine and caprolactam within the neutral oil. Thereafter, it is cooled to 150 F. and 188 grams of pthylene diamine are added to the mixture.
The mixture is then charged with a blend of 1712 grams of tolylene diisocyanate in 8000 grams of 480 neutral oil. The diisocyanate-oil blend is added slowly to the previously prepared mixture over a period of 45 minutes. On contacting of the toluene diisocyanate with the fatty amine and caprolactam an exothermic reaction occurs causing a rise in the system temperature. During the course of the reaction, the reaction mixture is diluted with an additional 10,000 grams of neutral oil to reduce the degree of thickening. The mixture is stirred and recycled in the mixer for a period of two hours.
To the mixture is then added 528 grams of a 50 Weight percent aqueous sodium hydroxide solution. The mixture is heated to 320 F. for 1 hour with stirring to remove water. The mixture is cooled to 170 F. and milled in a 3 Manton-Gavlin mill. It is diluted with oil to produce a final thickener content of 11 weight percent. The grease is tested under ASTM Test Method D-2l7 and after 60 strokes has a work penetration (P of 291.
A sample of the grease is calculated to contain 11 weight percent of thickening agent consisting of 54 weight part of diureido sodium salt 0 0 l l ll TO-NH- NH NHl- NH(CH:)5 -ONa and 46 weight parts of tetraureido sodium salt *T0 is tall oil fatty amine radical.
EXAMPLE 2 This example is presented to demonstrate the effectiveness of a representative grease of this invention containing the polyurea metal salt in long term performance as compared to a typical lithium stearate grease and a typical polyurea grease. The polyurea metal salt grease to be tested is prepared by the method of Example 1. The lithium grease is a commercially available grease and is composed essentially of the following:
Lithium grease composition Component: Amount (wt. percent) Lithium hydroxy stearate Lubricating oil 83 Commercial E. P. agent 7.5 Commercial rust inhibitor 0.4
The lithium grease has an ASTM work penetration after 60 strokes (P of 320.
Cir
The second comparison is with a representative polyurea grease composed essentially of the following:
Polyurea grease com-position Component: Amount (wt. percent) Polyurea 1 9 Lubricating oil 89.5 Commercial antioxidant 0.5 Commercial rust inhibitor 1.0
1 The polyurea compound is:
wherein T0 is tall oil fatty amine radical.
The polyurea grease has an ASTM work penetration after strokes (P )of 280.
The three greases are subjected to a high-speed hearing life test to determine the maximum bearing life of each of the greases. The test procedure is set forth in Federal Test Method 331.1 (Navy High Speed Bearing Test) and conducted at a temperature of 325 F. and at 10,000 r.p.m. The results from this test are set forth in the following Table III.
TABLE III High speed hearing test 325 F.
Test grease: Bearing life (hrs.) Polyurea 1700 Lithium 300 Polyurea metal salt 2600 The bearing life test revealed the antiwear and lubricating characteristics of the grease and demonstrates the overall performance which can be expected from the particular grease composition. It can be seen from the above table that the polyurea metal salt greases illustrate a 845 percent increase in bearing life over the lithium grease and a percent increase in bearing life over the polyurea grease.
EXAMPLE 3 This example is presented to demonstrate the preparation of polyurea metal salts having structures presented in Formula 3. In the preparation a 22 liter stainless steel mixer is charged with a 600 neutral petroleum oil and varying amounts of tall oil fatty amine and a carboxyl group source. The mixture is stirred at 210 F. to disperse the amine and carboxyl group source within the oil. Following the dispersion of the amine and carboxyl group source, varying amounts of a diamine are added to the mixture.
A mixture of a diisocyanate in a 480 neutral oil is slowly added to the above reaction mixture over a 30- polyurea metal salts of this invention and of the greases using them as thickeners.
14 these metal salts in lubricating bearings at elevated temperatures. Also illustrated is the improvement resulting from the employment of the alkali metal salts.
EXAMPLE 5 This example is presented to illustrate the preparation of polyurea metal salts having the structure presented in Formula 4 of the specification and the eifectiveness of these compositions as thickening agents for grease compositions. In the preparation, a 22 liter stainless steel mixer is charged with 7212 grams of a 600 neutral oil, 1088 TABLE IV.-POLYUREA METAL SALT GREASES Reactants 1 Grease characteristics Diamine Diisocyanate Monoamine Carboxyl source Metal hydroxide No.01 Thick- Bearing ureido ener ASTM 1i Grease Type Mol Type M01 Type Mol Type Mol Type Mol groups (wt.percent) (P (hrsz) 4.7 TDI 9.4 TOFA 4.7 BZO 4.7 NaOH 4.1 4 4 TDI 8 TA 4 CPLT 4 NaOH 3.8 4 0.05 TDI 0.1 TOFA 0.05 CPLT 0.05 NaOH 0.05 4 2.57 TDI 7.75 TOFA 5.16 BZC 5.16 NaOH 5.16 3 2.7 PAPI 5.4 TOFA 2.7 BZC 2.7 NaON 2.7 4 3.5 BPM 7.0 TOFA 3.5 BZC 3.6 NaOH 3.5 4 0.06 TDI 0.12 TOFA 0.06 BZO 0.06 NaOH 0.06 4 4 TDI 8 TOFA 4 BZC 4 NaON 4 4 4 TDI 8 TOFA 4 BZC 4 NaOH 4 4 4 TDI 8 TOFA 4 B 4 NaOH 4 4 4 TDI 8 TOFA 4 BZC 4 NaOH 4 4 0.07 TDI 0.14 TOFA 0.07 BZO 0.07 NaOH 0.07 4 4 TDI 8 TOFA 4 CPLT 4 LiOH 4 4 0.8 TDI 2.5 TA 1.6 CPLT 1.6 NaOH 6.55 6 2.0 TDI 6.2 TA 4.1 CPLT 4.1 NaOH 4.1 4.7 TDI 9.4 ODA 4.7 BZC 4.7 NaOH 4.7 4 NONE BPM 4.8 ODA 4.8 BZC 4.8 NaOH 4.8 2 DA 0.92 BPM 2.85 TOFA 1.9 CPLT 1.9 NaOH 1.9 3 1.4 TDI 4.34 TOFA 2.9 CPLT 2.9 NaOH 2.9 3 0.62 TDI 1.87 TOFA 1.25 DAIP 1.25 NaOH 2.5 3 0.025 TDI 0.776 TOFA 0.05 DPA 0.05 NaOH 0.1 3 0.025 TDI 0.075 TOFA 0.06 AAA 0.05 NaOH 0.05 3 1.0 TDI 3.1 TOFA 2.06 PYD 2.06 NaOH 2.06 3
The reactants of Table IV are abbreviated as follows: AAA= p-Amino-acetanilide, BPM=Bis(p-phenylisocyanate)methane, BZC= Benzocaine (ethyl ester of p'aminobenzoic acid); PLT=e-Caprolactam; DPA=Dipropyl aspartate; DTH=1,6-diamino-2,2,4-trimethylhexane; DAIP=Dimethyl S-aminoisophthalate; EDA=Ethylene diamine; HDA=1,6-hexaned.la.mine; MPDA=Metaphenylene diamine; NaOH= The above table demonstrates the practice of the instant invention in the preparation of numerous representative polyurea metal salts and corresponding greases containing the salts. The 27 compositions amply illustrate the broad range of diarnines, diisocyanates, monoamines and carboxyl group sources which can be successfully employed to prepare the polyurea salts. Also illustrated is the wide range of concentrations for the various reactants as well as for the total thickener content which may be employed.
EXAMPLE 4 This example is presented to demonstrate the practice of this invention wherein a variety of metal moieties can be used in the preparation of the polyurea salt. In the preparation, a process identical to that described in Example 1 is used with the exception that LiOH, Ba(OH) or Ca(OH) is substituted for NaOH in the neutralization Sodium hydroxide; ODA=0ctadecylamine; PAPI=Polymethylene polyphenyl diisocyanate (M.W.=381-400); PPZ=Piperazine; PYD= Z-pyrrolidinon; TA=Tal1ow amine; TDI=Tolylene diisocyanate; TOFA=Tal1 oil fatty amine; XDA=Xylene diamine.
I The average number 01' polyurea groups in entire composition grams (4 mols) of a tall oil fatty amine and 120 grams (2 mols) of a diamine. The contents of the mixer are stirred and heated to a temperature of 150 F. to uniformly disperse the reactants within the oil reaction medium. Thereafter, the solution of 3376 grams of the above neutral oil containing 1044 grams (6 mols) of tolylene diisocyanate are charged to the mixer over a period of 45 minutes. Contents of the mixer are vigorously agitated at a temperature of 165-170" F. for a period of 1 hour to produce the polyurea compound within the lubricating oil. At the end of the reaction the mixture is heated to a temperature of 190 F. and 216 grams of 10 percent sodium hydroxide solution are charged to the mixer and intimately contacted with the polyurea compound. The contents of the mixer are maintained at these conditions for 45 minutes. Thereafter, the mixture is dehydrated at a temperature of 310 F.
After the contents of the mixer have been dehydrated,
of the polyurea caprolactam adduct. The properties of the various greases are given in the following Table V. A g g g g g i g i 3 sample of the lithium and sodium greases are tested under ne ge Th e er h m ma 6 y Federal Test Methods Standards 791a, Method 331, and x; f f f g 2 g: ggi z 52 3:: ggg g ggz Table v also 1 hour to effect the carboxylation of the polyurea amine compound. After approximately 1.5 hours, a 50 percent TABLE V-GREASE CHARACTERISTICS aqueous solution of sodium hydroxide is charged to the Dropping mixer and intimately contacted with the carboxylated polygg 32 g: Beafing g i l fi urea. The temperature of the system is maintained at Type (percent) (N0,) P fir ar D-2265 190 dgrfing this period 1anilsthle contilelnts vigorously agitate ter approximatey our, t e temperature 1 4 v iaitf 18 ery Sort of the system is increased to 310 F. to strip the grease gg 18 4 301 4991492 composition of water. Liih i itm 1s 4 290 1,161, 608 484 An additional 1889 grams of 600 neutral oil is charged g u 3 291 2,436, 2,874 469, 483 7 to the mixer and the contents milled at 4500 p.s .1. Grease salt. characteristics are then measured and reported in the 01- 1 Test conducted at 350 F. at 10,000 r.p.m. 2 Bearing life test conducted at 325 F. at 10,000 r.p.m.
The above table illustrates the preparation of various metals salts and the effectiveness of greases containing lowing table. The bearing life on the greases tested in conducted in accordance with Federal Test Methods Standard 791a, Method 331 at a temperature of 350 F. and at 10,000 r.p.m.
TABLE VI.POLYUREA METAL SALT GREASES Reaetants Grease characteristics Lactone or Thickanhydnde N0. of ener Bearing EDA 'IDI 'IOFA NaOH ureido (wt. AS'IM Grease (mol) (mol) Type (M01) (mol) (mol) group percent) (P (hrs) 1. 5 4. 5 SA 3. 3. 0 3. 0 3 13 294 2.0 6.0 BL 4.0 4.0 4.0 3 11.5 300 700 l. 75 5. 25 L 3. 3. 5 3. 5 3 290 O. 025 0. 075 PA 0. 05 0. 05 0. O5 3 14 296 0. 025 0. 075 A 0. 05 0. 05 0. 05 3 13 296 0. 025 0. 075 BTCA O. 05 0. 05 O. 05 6 294 No'rE.SA=Sueeinic anhydride; BI=ga1nma-Butyro1acet0ne; PL=beta.-Propiolaeetone; PA= Phthalic anhydride; MA=Ma1eic anhydride; BTCA=3,3,4,4,-benzophenene tetra carboxylie anhydride.
The compositions illustrated in the above Table VI are calculated to have the following structures:
sistency of grease. Also illustrated is the excellent bearing life of one of the representative greases.
Grease Polyurea metal salt structure l l Triurea NH-C-(CHz)2-CON3 2 ICH:
l Triurea NH(CH2)a-CONa i 'Iriurea NH(CH2)zCONa CH3 8 l ONa I Triurea-+ NH-CA 5 $11:
l| ll Triurea- I- NHCCH==CHCONa 6 (3H1 CH3 ll l? Triurea NH-C C- C-NH 'Irlurea NaO-(fi- (ITO-Na wherein triurea has the structure EXAMPLE 6 (3H3 This example is presented to demonstrate the prepara- O O 0 tion of a polyurea metal salt having the structure H u H presented in Formula 4 and prepared from neutralizing a polyureasulfoxylate with sodium hydroxide.
and TO represents a tall oil fatty amine radical.
This example thus illustrates the preparation of various representative polyurea metal salts having the structure set forth in Formula 4 and the effectiveness of these compositions in thickening a lubricating oil to the con- In the preparation, a 600 ml. glass beaker is charged with approxiimately grams of a 600 neutral oil, 0.05 mol of tall oil fatty amine and 0.025 mol of ethylene diamine. The contents of the beaker are stirred and heated to a temperature of about F. to uniformly disperse the reactants within the oil reaction medium. Thereafter, approximately 65 grams of 600 neutral oil After the contents of the beaker have been dehydrated, 0.05 mol of propane sultone are charged to the beaker. The contents are mixed for a period of 1 hour at 190 F. to efiect a sulfoxylation of the polyurea amine compound.
After approximately 1.5 hours, a 50 percent aqueous solution of sodium hydroxide (0.05 mol) is charged to the beaker and intimately contacted with the sulfoxylated polyurea. The temperature is maintained at 190 F. for a period of approximately minutes. At the end of the reaction, the water is stripped from the system by heating to a temperature of about 310 F.
An additional 128 grams of 600 neutral oil is charged 30 to the beaker and the contents milled at 4500 p.s.i. The ASTM work penetration after strokes is 294.
The polyurea metal salt is calculated to have the following structure and is present within the oil in an amount of 11 weight percent based on the weight of total grease composition.
wherein T0 is a tall oil radical.
EXAMPLE 7 This example is presented to demonstrate the preparation of a representative polyurea metal salt having the structure presented in Formula 2.
A 600 ml. flask is charged with grams of 600 neutral oil and 5.65 grams of caprolactam. The contents are heated to F. and 3 grams of ethylene diamine 18 for 90 minutes. An additional 0.9 grams of EDA are added to insure that all of the diisocyanate has reacted.
The contents of the flask are transferred to a 600 ml. glass beaker and 4 grams of sodium hydroxide in 4 grams of water are charged to the beaker. The oil in the beaker is calculated to contain 21 weight percent of polyurea sodium salt. The ASTM work penetration (P is measured to be 294. The structure of the polyurea compound is calculated to be as follows:
EXAMPLE 8 This example is presented to demonstrate the preparation of a representative polyurea metal salt having the structure presented in Formula 5.
The processing steps are the same as shown in Example 6 except that the following reactants and amounts are employed.
Amounts Components Mols Grams 1. Octadeeylisocyanate 0.05 14. 75 2. Ethylene diamine..- 0.05 3.0 3. 0. 05 8.7 4. 0.05 5.0 5. 600 neutral nil 128 6. NaOH(10%)- 5 7. NeOH (50%) 0.05 4.0
The grease exhibits an ASTM worked penetration after 60 strokes of 261. The polyurea metal salt is calculated to have the following structure:
It is apparent that many widely different embodiments of this invention may be made without departing from the 50 scope and spirit thereof; and, therefore, it is not intended to be limited except as indicated by the following appended claims.
We claim:
1. A grease composition comprising a major portion of a lubricating oil and an amount sufiicient to thicken said oil to the consistency of grease of a polyurea metal salt having a structure presented in one of the following formulas:
with 5 grams of oil are charged to the flask. Thereafter, 23 grams of 600 neutral oil and 8.7 grams of tolylene diisocyanate and 14.75 g. of octadecylisocyanate are admixed with the flask contents. During the reaction, the
wherein:
n is an integer from 0 to 3; 4
temperature of the flask rises to F. and is stirred 75 n is an integer from 1 to 3;
-NHR 2" l I? NHRtCO-; and
or a trivalent radical selected from the group consisting of:
wherein X is carbon or SO and R is the same or different trivalent hydrocarbon radical having from 1 to 30 carbons.
2. The composition defined in claim 1 wherein said metal is selected from Group I of the Periodic Table.
3. The composition defined in claim 2 wherein n is 1, n is 2, R is an aliphatic hydrocarbyl, R is an alkylene having from 2 to 8 carbons; R is an aromatic hydrocarbylene and A is a divalent radical.
4. The composition defined in claim 3 wherein said metal is sodium.
5. A grease comprising a major portion of a lubricating oil and from 3 to 30 weight percent of a polyurea compound having the structure:
wherein:
n is an integer from 0 to 3;
R is the same or different hydrocarbyl having from 2 to 30 carbons;
R is the same or different hydrocarbylene having from 2 to 30 carbons;
R is the same or different hydrocarbylene having from 2 to 30 carbons; and
M is an alkali metal.
6. The compound defined in claim 5 wherein said alkali metal is sodium.
7. A grease composition comprising a major portion of a lubricating oil and from 3 to 30 weight percent of a polyurea compound having the structure:
N NHRlNH NHmNHEo HR AM wherein:
n is an integer from 1 to 3;
R is the same or different hydrocarbyl having from 2 to 30 carbons;
R is the same or different hydrocarbylene having from 2 to 30 carbons;
R is the same or different hydrocarbylene having from 2 to 30 carbons; and M is an alkali metal; and A is a divalent radical selected from wherein X is carbon or SO.
8. The composition defined in claim 7 wherein said alkali metal is sodium.
9. A grease composition prepared by reacting within a major portion of a lubricating oil a C -C diamine, a C C diisocyanate and a C -C mono amine or C -C mono-isocyanate with (1) a C -C amino acid metal carboxylate or (2) a carboxyl group source selected from the group consisting of amino acids having from 2 to 30 carbons to form a carboxylated polyurea, followed by hydrolysis of the carboxylated polyurea with a basic metal compound selected from hydroxides, oxides and carbonates of Groups I and II metals.
10. The composition defined in claim 9 wherein said carboxyl group source is an amino monocarboxylic acid.
11. The composition defined in claim 9 wherein said diamine is ethylene diamine, said diisocyanate is tolylene diisocyanate, said mono isocyanate and said metal carboxylate are not present and said basic metal compound is sodium, potassium or lithium hydroxide.
References Cited UNITED STATES PATENTS 2,752,312 6/1956 Dixon 252-33.6 2,756,213 7/1956 Dixon 252-33.6 2,849,400 8/1958 Hotten 252-33.6 2,849,401 8/1958 Hotten 252-33.6 2,892,778 6/1959 Carter et al. 252-33.6 2,947,696 8/1960 Nelson 252-33.6 3,367,920 2/1968 Wasserman et al. 260-775 FOREIGN PATENTS 15,245 1965 Netherlands 252-33.6
DANIEL E. WYMAN, Primary Examiner I. VAUGHN, Assistant Examiner US. Cl. X.R.
Patent No. 3,769,212 Dated October 3 1973 Garth M. Stanton et a1. Inventor(s) It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Column 18, second formula of Claim 1 "R second occurrence vshould read Ri Column 19, lines 1, 2 and 3 should be rearranged to read x is an integer from 1 to 2 and equal to the primary valence of M divided by the number of carboxyl groups and s'ulfoxygroups in A; line 55, in the formula,
,9 Y a "-C NH-R -NH-" should read CNHR -NH- Signed and sealed this 17th day of September 1974.
(SEAL) Attest:
MCCOY M. GIBSON JR. C. MARSHALL DANN Attesting Officer Commissioner of Patents (w'sg) uscoMM-Dc 603754 69 a 11.5. GOVERNMENT PRlNTlNG OFFICE 1 I989 '355 33 UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3 769 212 Dated I October I 9 Garth M. Stanton et a1 Inventor(s) It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
'Column 18 second formula of Claim 1 "R second occurrence,
should read Ri Column 19', lines 1 2 and 3 should be rearranged to read 95 is an integer from 1 to 2 and equal to the primary valence of M divided by the number of carboxyl groups andsulfoxygroups in A; line 55, in the formula,
"C-NH-R -NH-" should read -C-NH-R -NH Signed and sealed this 17th day of September 1974.
(SEAL) Attest:
McCOY M. GIBSON JR. Attesting Officer 0; MARSHALL DANN Commissioner of Patents FOPM s 1050 (10-69) USCOMM-DC Q0376-P69 U.S. GOVERNMENT PRINTING OFFICE: I969 0-365-334,
US00259053A 1972-06-02 1972-06-02 Grease thickened with polyurea metal salts Expired - Lifetime US3769212A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US25905372A 1972-06-02 1972-06-02

Publications (1)

Publication Number Publication Date
US3769212A true US3769212A (en) 1973-10-30

Family

ID=22983304

Family Applications (1)

Application Number Title Priority Date Filing Date
US00259053A Expired - Lifetime US3769212A (en) 1972-06-02 1972-06-02 Grease thickened with polyurea metal salts

Country Status (1)

Country Link
US (1) US3769212A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4086171A (en) * 1977-05-23 1978-04-25 Shell Oil Company Lubricating composition having a selectively sulfonated and hydrogenated block copolymer viscosity-index improver
EP4389857A1 (en) * 2022-12-19 2024-06-26 Carl Bechem Gmbh Component for lubricants

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4086171A (en) * 1977-05-23 1978-04-25 Shell Oil Company Lubricating composition having a selectively sulfonated and hydrogenated block copolymer viscosity-index improver
EP4389857A1 (en) * 2022-12-19 2024-06-26 Carl Bechem Gmbh Component for lubricants
WO2024133274A1 (en) * 2022-12-19 2024-06-27 Carl Bechem Gmbh Component for lubricants

Similar Documents

Publication Publication Date Title
US5084193A (en) Polyurea and calcium soap lubricating grease thickener system
CA1297862C (en) Calcium soap thickened front-wheel drive grease
US4902435A (en) Grease with calcium soap and polyurea thickener
US4165329A (en) Grease thickening agent
US3909430A (en) Lubricating composition
US4100081A (en) Polyurea-based extreme pressure grease
US3920571A (en) Grease composition and method of preparing the same
US6214778B1 (en) Polyurea-thickened grease composition
US4100080A (en) Greases containing borate dispersions as extreme-pressure additives
US3846314A (en) Grease thickened with ureido compound and alkaline earth metal aliphatic carboxylate
US5223161A (en) Extreme pressure and wear resistant grease with synergistic sulfate and carboxylate additive system
US4514312A (en) Lubricant compositions comprising a phosphate additive system
US3660288A (en) Grease compositions containing magnesium salts of unsaturated fatty acids as rust inhibitors
US3846315A (en) Grease thickened with polyurea metal salts and alkaline earth metal aliphatic monocarboxylate
EP0761806B1 (en) Polyurea-thickened grease composition
US2629694A (en) Grease composition
US3769212A (en) Grease thickened with polyurea metal salts
US3214377A (en) Phenylamides of organoamine polyacetic acids as anti-oxidants in greases
US6541427B1 (en) Lubricant for maintenance-free cardan shafts
US3868329A (en) Grease composition
US4505832A (en) Anti-fretting additive for grease comprising the reaction product of an alkenyl succinic anhydride and an alkanolamine
GB774084A (en) Amate-dicarboxylate-thickened grease
US4253979A (en) Lubricating grease composition containing pyrrolidone derivative as grease thickener
GB774086A (en) Polyamide-polyamate-thickened greases
US3346497A (en) Greases containing amidourea thickeners