US3769098A - Process of manufacturing fine powders of metal halide - Google Patents

Process of manufacturing fine powders of metal halide Download PDF

Info

Publication number
US3769098A
US3769098A US00144809A US3769098DA US3769098A US 3769098 A US3769098 A US 3769098A US 00144809 A US00144809 A US 00144809A US 3769098D A US3769098D A US 3769098DA US 3769098 A US3769098 A US 3769098A
Authority
US
United States
Prior art keywords
chromium
treatment
metal products
metal
metal halide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00144809A
Inventor
N Kanetake
I Maruyama
K Morita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kito KK
Original Assignee
Kito KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kito KK filed Critical Kito KK
Application granted granted Critical
Publication of US3769098A publication Critical patent/US3769098A/en
Assigned to KABUSHIKI KAISHA KITO 1084, NAKANOSHIMA, TAMA-KU, KAWASAKI-SHI KANAGAWA-KEN reassignment KABUSHIKI KAISHA KITO 1084, NAKANOSHIMA, TAMA-KU, KAWASAKI-SHI KANAGAWA-KEN CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). 11/21/70 Assignors: KABUSHIKI KISHA KITO SEISAKUSHO
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C12/00Solid state diffusion of at least one non-metal element other than silicon and at least one metal element or silicon into metallic material surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00

Definitions

  • An improved process for protecting metals against corrosion and wear comprises depositing a coating of metal halide or sulfide as a fine powder in a dry system to the metal surface to be protected in a dry system substantially free from moisture and carbon Also, provision is made for making finely divided, dry metal halides and sulfides, such as chromium chloride and chromium sulfide which are suitable for use as lubricants and wear-proof and corrosion-proof agents for metals.
  • FIG. 1 A first figure.
  • Chromium chloride, chromium bromide, aluminium chloride, aluminium bromide, etc. are used for surface treatment such as in chromium cementation; aluminium cementation; chromium evaporation and aluminium evaporation of steel products. These metal halides are also used as the materials for the manufacture of pure metallic powders of these metals.
  • chromium chloride can be manufactured by the reaction of hydrogen chloride gas with chromium as described below:
  • chromium chloride when produced, assumes the shape of a needle or mass, and in order to make such chromium chloride into fine powders, these materials must be mechanically pulverized because chromium chloride has the properties of deliquescence.
  • pulverization is industrially difficult in operation and the obtaining of yields of chromium chloride powder in abundance is impossible.
  • This invention aims at providing a process of manufacturing the fine powders of anhydrous metal halide industrially and easily.
  • the invention also relates to a process of manufacturing fine powders of metal halide, which comprises evaporating a metal halide by heating to its fusing point or higher an occluded body of the metal halide in a receptacle in a heating chamber, and then drying an inert gas at a low temperature; the inert gas is supplied in the heating chamber and the metal halide is evaporated and quenched, whereby the halide is made into fine powders and the fine powders of that metal halide are emitted from the heating chamber in a dry state.
  • this invention also relates to a process of manufacturing a fine powder-like lubricant consisting of chromium sulfide.
  • the invention further relates to a process of manufacturing a fine powder-like lubricant, which comprises evaporating chromium halide by heating to its fusing point or higher an occluded body of chromium halide in a receptacle in the heating chamber, and then supplying a dried mixed gas consisting of inert gas and hydrogen sulfide gas at low temperature to the heating chamber; by the reaction of evaporated chromium halide with hydrogen sulfide gas, chromium sulfide is produced and chromium sulfide is quenched, whereby the chromium sulfide is made into fine powders, and then the fine powders of chromium sulfide are emitted to the heating chamber in a dry state.
  • this invention relates to a process of wear-proof and corrosion-proof treatment by which both improved wear-proof and corrosion-proof metal products, such assteel products, or non-ferrous metals can be obtained.
  • This invention aims at providing a process of wearproofing and corrosion-proofing treatment by which both wear-proof and corrosion-proof metals can be improved.
  • the invention relates to a process of wearproof and corrosion-proof treatment of metal products, which comprises forming a chromium zone beforehand on the surface of metal products, such as iron and steel, or non-ferrous metals; andreacting the chromium with nitrogen, whereby chromium nitride is produced on the surface of the metal products.
  • FIG. 1 is a perspective view showing a hollow cylindrical metal halide occluded body
  • FIG. 2 is a longitudinal sectional side view showing manufacture of metal halide according to this invention
  • FIG. 3 is a view showing a longitudinal temperature distribution of a retort
  • FIG. 4 is a view showing a temperature distribution of a section of the retort
  • FIG. 5 is a longitudinal sectional side view showing the reaction of sulphur with metal products cemented with chromium or plated with chromium, performed in salt;
  • FIG. 6 is an enlarged schematic view showing a section through the surface of the metal products obtained according to the invention after a wear-proof and a corrosion-proof treatment was performed;
  • FIG. 7 is a diagram graphically showing a result of a wear-proof and corrosion-proof test.
  • FIG. 8 is a longitudinal sectional side view showing apparatus in which treatment by the reaction of chromium with sulphur is performed in the mixed gas atmosphere.
  • metal halide for instance, chromium halide
  • inert gas such as argon or nitrogen gas is supplied from a feed pipe 4 with a valve 3 connected to one end of the retort 2 and the air in the retort is replaced by the inert gas.
  • heating was carried out from the outer periphery of the retort 2 by means of an electric furnace 5 and thus a stream of said metal halide is generated in the retort.
  • a dried inert gas at low temperature is blown into the retort from the feed pipe 4 at one end of the retort 2. Evaporated metal halide in said retort is quenched with the inert gas (in order to perform a further quenching, the
  • retort 2 is sometimes cooled by means of a cooling means 5) whereby the evaporated metal halide is made into fine powders and the stream of fine powders of this metal halide in inert gas is withdrawn into a storage tank 8 which is maintained in dried condition from the other end of the retort 2 through a feed pipe 7 with a valve 6 by means of which said inert gas stream is admitted.
  • FlG. 3 shows a longitudinal temperature distribution curve for the retort 2, in which: 0 indicates a temperature lower than the fusing point of metal halide, 0 indicates a temperature at the heating zone of the retort and this temperature is higher than the fusing point of metal halide, 6 indicates a temperature lower than 9 and this temperature is lower than the fusing point of metal halide; in particular, there is no need of heating or heat retaining, but rather a remarkably lower temperature (about 600-900 C) than 6 is suitable for making evaporated metal halide into fine powders.
  • the heating chamber (for instance, the retort) may be longitudinally or obliquely directed, instead of laterally, as shown in the drawing; or its section may be circular, oval, square or other shapes.
  • a gas furnace or a heavy oil furnace may be used as the heating furnace.
  • any outer-heat system or inner-heat system or both innerand outerheat system may be adopted as heating chamber.
  • the retort 2 in the apparatus shown in FIGS. 2 and 3 having a cylindrical retort is made of stainless SUS 27 of 5cm in diameter and 2m in length.
  • a chromium chloride halide occluded body consisting of chromium chloride (CrCl about 20 60%, iron (Fe) 0.5% or less, aluminium oxide (A1 0,) or silicon oxide (SiO,) about 5-30 percent and remaining amount of chromium.
  • argon is supplied to the retort from the feed pipe 5 thereby expelling the air in the retort and then the retort is heated by means of the electric furnace 5.
  • the heating condition 0, shown in FIG. 3 is determined at 20-l00 C, 0, at 1,000" C, (higher than 815 C); the fusing point of chromium chloride, 0 at 200-400 C (in order to perform further cooling, a cooling means 5 is employed and 6 is sometimes determined at 30l00 C.) 20 l/min. of argon gas is supplied from the feed pipe 4 and a temperature distribution of the section of the retort inside is made as shown in FIG. 4. The chromium chloride which is evaporated in the retort is quenched with argon gas to make into fine powtiers, and thus the fine powders of anhydrous chromium chloride of 0.5-1 in diameter and of 99.9 percent in high purity was obtained.
  • This invention is carried out as described above, namely, the occluded metal halide body isplaced in the heating chamber and is heated to its fusing point or higher; the metal halide is evaporated, dispersed and then a dried inert gas at low temperature is introduced into the heating chamber.
  • the metal halide which is evaporated and dispersed is quenched and solidified; therefore, the fine powders of metal halide thus obtained can be easily and continuously produced in abudance by skillfully utilizing the evaporating and dispersing action, as well as the cooling and solidifying action. Further, the cooling takes place with the inert gas, so that oxidation can be prevented and fine powders of anhydrous metal halide of high purity can be manufactured.
  • a dried mixed gas at low temperature consisting of percent inert gas (for example, argon or nitrogen gas) and 20 percent hydrogen sulfide gas, is used; the mixed gas is introduced in the heating chamber from the feed pipe 4 at one end of the retort 2 and chromium sulfide is produced by the reaction of chromium halide which is evaporated in the retort with oxygen sulfide gas and chromium sulfide is quenched; (in order to perform a further quenching, the retort 2 is sometimes cooled by means of the cooling means 5); in this manner, chromium sulfide is made into fine powders.
  • percent inert gas for example, argon or nitrogen gas
  • hydrogen sulfide gas for example, argon or nitrogen gas
  • the fine powders of this chromium sulfide are stored in the storage tank 8 which is maintained in a drying condition.
  • the chromium sulfide is introduced from the other end of the retort 2 through the feed pipe 7 with the valve 6 by means of said gas blown in.
  • chromium sulfide suitable as a lubricant can easily and continuously be produced in abundance by skillfully utilizing the reaction of the chromium halide evaporated and dispersed with the hydrogen sulfide gas-evaporated and dispersed and the quenching and solidifying action by means of feed gas.
  • a carbon steel gear having a chemical composition of C: 0.42%, Mn: 0.68%, Si: 0.21%, P: 0.015% and S: 0.026%.
  • This gear is placed with a chromium chloride generating substance in an atmospheric furnace in which the atmosphere can be controlled from the outside. After the air in the furnace is eliminated, a temperature in the furnace is maintained at l,00O C for 5 hours. Chromium is thus cemented on the surface of the gear and thereafter the gear is at once put in oil and quenched so that hardening of the gear takes place.
  • the quenched gears 14 are immersed for 1 hour heated at 200 C in a mixed salt 13 of sodium sulfate and potash alum (15%).
  • the gears are then air-cooled.
  • a matrix 15 of tempered martensite, a chromium cementation zone 16 (15 in average thickness), a chromium zone 17 (20p. in average thickness) and a chromium sulfide zone 18 (2p. in average thickness) are produced in turn.
  • the structure of the matrix is illustrated in section by FIG. 6.
  • a wearproof and corrosion-proof treated gear of HRC49 in surface hardness was thus obtained.
  • Chromium cementation gears 14 which are made of carbon steel obtained with the same composition as that of Example 1 are placed in case 12 of electric furnace 11 as shown in FIG. 8. A mixed gas of 70% argon and 30% H 8 is supplied from gas feed port 21 in lid on which fan 19 is mounted. The air in case 12 is vented from a port hole 22. Thereafter, the gears were taken out after heating at 600 C for 1 hour.
  • a chromium sulfide zone is formed on the surface of the chromium zone on the gear and the same wear-resistance and corrosionresistance as in the case of Example 1 was obtained.
  • the chromium sulfide has a lubricating property, namely, a wear-resistance is produced on the surface of the chromium zone having corrosion resistance by merely performing a treatment such as the reaction of the chromium zone in sulfide after the chromium zone was formed on the surface of metal products merely by chromium cementation or chromium plating. In this manner, both wear-resistance and corrosion resistance of the gears can be improved.
  • a process for treatment of metal products to protect the same against wear and corrosion which comprises (l) heating said metal products in presence of a chromium halide in absence of oxygen, whereby chromium is diffused into said metal products forming a chromium zone on the surface thereof (2) reacting the chromium in the zone where the chromium is diffused into the metal products with a sulfur compound to form chromium sulfide on the surface of said metal products, and (3) recovering the metal products protected against wear and corrosion.
  • a process for treatment of metal products according to claim 1, wherein said metal products comprise ferrous metal.
  • a process for treatment of metal products according to claim 2, wherein said ferrous metals comprise steel gears.
  • a process for treatment of metal products wherein said steel gears are treated with a fine powder deposit of chromium halide in a dry atmosphere and thereafter said chromium coating on the gear is converted to chromium sulfide by reaction with a sulfur compound to yield a steel gear with improved resistance to corrosion and wear.
  • a process for treatment of metal products wherein said chromium halide is chromium chloride and said sulfur containing composition is the mixed salt sodium sulfate and potash alum.
  • a process for treatment of metal products according to claim 1, wherein said metal products are made of non-ferrous metal.
  • a process for treatment of metal products wherein said chromium zone is formed in a furnace at about l,000 C for about 5 hours.
  • a process for treatment of metal products wherein the metal products, after treatment with chromium halide in the furnace, are immersed in a bath of mixed salt of potash alum and sodium sulfate at 200 C for 1 hour and thereafter removed from said bath, cooled and recovered.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

An improved process for protecting metals against corrosion and wear comprises depositing a coating of metal halide or sulfide as a fine powder in a dry system to the metal surface to be protected in a dry system substantially free from moisture and carbon. Also, provision is made for making finely divided, dry metal halides and sulfides, such as chromium chloride and chromium sulfide which are suitable for use as lubricants and wear-proof and corrosion-proof agents for metals.

Description

ilnited States Patent 1191 Kanetake et a1.
1 1 Oct. 30, 1973 PROCESS OF MANUFACTURING FINE POWDERS OF METAL HALIDE [75] Inventors: Norio Kanetake, Tokyo; lkuo Maruyama, Kawasaki; Katsuyuki Morita, Fujisawa, all of Japan [73] Ass'ignee: Kabushiki Kaisha Kito,
Kanagawa-ken, Japan 22 Filed: May 19, 1971 21 Appl. No.: l44, 8 09 [30] Foreign Application Priority Data May 21,1970 Japan..... 45/43127 Oct. 10, 1970 Japan. 45/93630 O [52] U.S. Cl. 148/6.24, 1l7/107.2 R, 117/71 M, 117/107.2 P, 148/6.3, 148/611, 423/561, 29/195 [51] Int. Cl. C231 7/24 [58-] Field o1Search.... 148/624, 6.3; 204/37 R; 117/107.2 P, 107.2 R, 71 M;
[56] References Cited UNITED STATES PATENTS 2399 919 4/1946 Grinter 148/624 x 2,671,739 3/1954 Lander 117/106 R 2,903,384 9/1959 Grass et a1. 148/624 2,263,905 11/1941 Snow 148/624 2,639,245 5/1953 Baxter 148/624 2,588,234 3/1952 Henricks 148/624 X 3,127,346 3/1964 Oliver et al. 148/624 X Primary Examiner-Ralph S. Kendall Attorney-John J. McGlew and Alfred E. Page [57] ABSTRACT An improved process for protecting metals against corrosion and wear comprises depositing a coating of metal halide or sulfide as a fine powder in a dry system to the metal surface to be protected in a dry system substantially free from moisture and carbon Also, provision is made for making finely divided, dry metal halides and sulfides, such as chromium chloride and chromium sulfide which are suitable for use as lubricants and wear-proof and corrosion-proof agents for metals.
8 Claims, 8 Drawing Figures PATENTEDucI 30 m3 sum 1 U; 3
FIG.
PATENTED 0m 3 0 1975 SHEET 2 BF 3 FIG.3
MEASURING POSITION OF TEMPERATURE n w wm TKMR m c WEWMW W3 PATENTEDBBI 30 m5 3. 769098 SHEET 3 CF 3 NUMBER OF ROTATION INVENTORS PROCESS OF MANUFACTURING FINE POWDERS OF METAL HALIDE This invention relates to an improvement in the process of manufacturing fine powders of metal halide.
Chromium chloride, chromium bromide, aluminium chloride, aluminium bromide, etc. are used for surface treatment such as in chromium cementation; aluminium cementation; chromium evaporation and aluminium evaporation of steel products. These metal halides are also used as the materials for the manufacture of pure metallic powders of these metals.
For the manufacture of these metal halides, a wet system has generally been adopted so far. However, in the case of the wet system, since a hydrate is liable to be produced, it is difficult to obtain an anhydrous metal halide. Also, since a metal halide containing moisture produces oxide upon the surface treatment of steel products, such a metal halide containing moisture cannot be employed for surface treatment of steel.
On the other hand, in the case of a dry system, for instance, chromium chloride can be manufactured by the reaction of hydrogen chloride gas with chromium as described below:
Cr 2HCl crcl H,
However, chromium chloride, when produced, assumes the shape of a needle or mass, and in order to make such chromium chloride into fine powders, these materials must be mechanically pulverized because chromium chloride has the properties of deliquescence. However, such pulverization is industrially difficult in operation and the obtaining of yields of chromium chloride powder in abundance is impossible.
This invention aims at providing a process of manufacturing the fine powders of anhydrous metal halide industrially and easily. The invention also relates to a process of manufacturing fine powders of metal halide, which comprises evaporating a metal halide by heating to its fusing point or higher an occluded body of the metal halide in a receptacle in a heating chamber, and then drying an inert gas at a low temperature; the inert gas is supplied in the heating chamber and the metal halide is evaporated and quenched, whereby the halide is made into fine powders and the fine powders of that metal halide are emitted from the heating chamber in a dry state.
Further, this invention also relates to a process of manufacturing a fine powder-like lubricant consisting of chromium sulfide. The invention further relates to a process of manufacturing a fine powder-like lubricant, which comprises evaporating chromium halide by heating to its fusing point or higher an occluded body of chromium halide in a receptacle in the heating chamber, and then supplying a dried mixed gas consisting of inert gas and hydrogen sulfide gas at low temperature to the heating chamber; by the reaction of evaporated chromium halide with hydrogen sulfide gas, chromium sulfide is produced and chromium sulfide is quenched, whereby the chromium sulfide is made into fine powders, and then the fine powders of chromium sulfide are emitted to the heating chamber in a dry state.
Furthermore, this invention relates to a process of wear-proof and corrosion-proof treatment by which both improved wear-proof and corrosion-proof metal products, such assteel products, or non-ferrous metals can be obtained.
The process of improving wear-proof metal products, such as, for instance, gears made of carbon steel, so far has been a known chemical process. For example carburizing, hardening or nitriding, sulphurizing is known and a physical process such as induction hardening is also known. On the other hand, other means for obtaining wear-proof liquid-like lubricant or powder-like lubricant are also known.
However, in the case of the improvement in wearproofing mentioned above, there was a defect that the simultaneous improvement of wear-proofing and corrosion-proofing is impossible.
This invention aims at providing a process of wearproofing and corrosion-proofing treatment by which both wear-proof and corrosion-proof metals can be improved. The invention relates to a process of wearproof and corrosion-proof treatment of metal products, which comprises forming a chromium zone beforehand on the surface of metal products, such as iron and steel, or non-ferrous metals; andreacting the chromium with nitrogen, whereby chromium nitride is produced on the surface of the metal products. I
This invention will be better understood with reference to the examples shown in the drawing.
FIG. 1 is a perspective view showing a hollow cylindrical metal halide occluded body; 7
FIG. 2 is a longitudinal sectional side view showing manufacture of metal halide according to this invention;
FIG. 3 is a view showing a longitudinal temperature distribution of a retort;
FIG. 4 is a view showing a temperature distribution of a section of the retort;
FIG. 5 is a longitudinal sectional side view showing the reaction of sulphur with metal products cemented with chromium or plated with chromium, performed in salt;
FIG. 6 is an enlarged schematic view showing a section through the surface of the metal products obtained according to the invention after a wear-proof and a corrosion-proof treatment was performed;
FIG. 7 is a diagram graphically showing a result of a wear-proof and corrosion-proof test; and
FIG. 8 is a longitudinal sectional side view showing apparatus in which treatment by the reaction of chromium with sulphur is performed in the mixed gas atmosphere.
First, as shown in FIG. 1, a metal halide occluded body 1 formed in the shape of a hollow cylinder'is manufactured from a porous body out of the same kind of metal (chromium in case of chromium halide); in this process, metal halide (for instance, chromium halide) is occluded in such a way that it does not contain carbon and oxidizing agent, such as moisture, and hydroxyl; the resulting metal halide occluded body is placed in a retort 2 (shown in FIG. 2).
Next, as seen in FIG. 2, inert gas such as argon or nitrogen gas is supplied from a feed pipe 4 with a valve 3 connected to one end of the retort 2 and the air in the retort is replaced by the inert gas. Then, heating was carried out from the outer periphery of the retort 2 by means of an electric furnace 5 and thus a stream of said metal halide is generated in the retort. Then, a dried inert gas at low temperature is blown into the retort from the feed pipe 4 at one end of the retort 2. Evaporated metal halide in said retort is quenched with the inert gas (in order to perform a further quenching, the
retort 2 is sometimes cooled by means of a cooling means 5) whereby the evaporated metal halide is made into fine powders and the stream of fine powders of this metal halide in inert gas is withdrawn into a storage tank 8 which is maintained in dried condition from the other end of the retort 2 through a feed pipe 7 with a valve 6 by means of which said inert gas stream is admitted.
At the upper part of the storage tank 8, there is a filter 9 for venting the inert gas and preventing the escape of fine powders of the metal halide; at the lower part of the storage tank 8, there is an exhaust port 10 having a valve 10.
FlG. 3 shows a longitudinal temperature distribution curve for the retort 2, in which: 0 indicates a temperature lower than the fusing point of metal halide, 0 indicates a temperature at the heating zone of the retort and this temperature is higher than the fusing point of metal halide, 6 indicates a temperature lower than 9 and this temperature is lower than the fusing point of metal halide; in particular, there is no need of heating or heat retaining, but rather a remarkably lower temperature (about 600-900 C) than 6 is suitable for making evaporated metal halide into fine powders.
As to the temperature distribution in the retort, shown in section in FIG. 3, it is necessary to maintain the temperature where inert gas flows lower than the 7 temperature at the point where the metal halide oc cluded body is heated and it is also necessary to make the former temperature lower than the fusing point of metal halide in order to solidify the evaporated metal halide.
Further, in carrying out this invention, the heating chamber, (for instance, the retort) may be longitudinally or obliquely directed, instead of laterally, as shown in the drawing; or its section may be circular, oval, square or other shapes.
Instead of the electric furnace, a gas furnace or a heavy oil furnace may be used as the heating furnace. Further, any outer-heat system or inner-heat system or both innerand outerheat system may be adopted as heating chamber.
The invention is illustrated further below with refer ence to the embodiments of this invention described herein:
The retort 2 in the apparatus shown in FIGS. 2 and 3 having a cylindrical retort is made of stainless SUS 27 of 5cm in diameter and 2m in length. Into this retort is introduced 100 kg of a chromium chloride halide occluded body consisting of chromium chloride (CrCl about 20 60%, iron (Fe) 0.5% or less, aluminium oxide (A1 0,) or silicon oxide (SiO,) about 5-30 percent and remaining amount of chromium. Then, argon is supplied to the retort from the feed pipe 5 thereby expelling the air in the retort and then the retort is heated by means of the electric furnace 5. As the heating condition 0, shown in FIG. 3 is determined at 20-l00 C, 0, at 1,000" C, (higher than 815 C); the fusing point of chromium chloride, 0 at 200-400 C (in order to perform further cooling, a cooling means 5 is employed and 6 is sometimes determined at 30l00 C.) 20 l/min. of argon gas is supplied from the feed pipe 4 and a temperature distribution of the section of the retort inside is made as shown in FIG. 4. The chromium chloride which is evaporated in the retort is quenched with argon gas to make into fine powtiers, and thus the fine powders of anhydrous chromium chloride of 0.5-1 in diameter and of 99.9 percent in high purity was obtained.
This invention is carried out as described above, namely, the occluded metal halide body isplaced in the heating chamber and is heated to its fusing point or higher; the metal halide is evaporated, dispersed and then a dried inert gas at low temperature is introduced into the heating chamber. The metal halide which is evaporated and dispersed is quenched and solidified; therefore, the fine powders of metal halide thus obtained can be easily and continuously produced in abudance by skillfully utilizing the evaporating and dispersing action, as well as the cooling and solidifying action. Further, the cooling takes place with the inert gas, so that oxidation can be prevented and fine powders of anhydrous metal halide of high purity can be manufactured.
Further, instead of the inert gas used in the abovementioned illustrative embodiment, a dried mixed gas at low temperature consisting of percent inert gas (for example, argon or nitrogen gas) and 20 percent hydrogen sulfide gas, is used; the mixed gas is introduced in the heating chamber from the feed pipe 4 at one end of the retort 2 and chromium sulfide is produced by the reaction of chromium halide which is evaporated in the retort with oxygen sulfide gas and chromium sulfide is quenched; (in order to perform a further quenching, the retort 2 is sometimes cooled by means of the cooling means 5); in this manner, chromium sulfide is made into fine powders. Further, it is remarked that the fine powders of this chromium sulfide are stored in the storage tank 8 which is maintained in a drying condition. The chromium sulfide is introduced from the other end of the retort 2 through the feed pipe 7 with the valve 6 by means of said gas blown in. In this case, therefore, chromium sulfide suitable as a lubricant can easily and continuously be produced in abundance by skillfully utilizing the reaction of the chromium halide evaporated and dispersed with the hydrogen sulfide gas-evaporated and dispersed and the quenching and solidifying action by means of feed gas.
Explanation of the invention is made below with reference to FIGS. Sto 8 in other illustrative embodiments and examples.
EXAMPLE 1 A carbon steel gear is provided having a chemical composition of C: 0.42%, Mn: 0.68%, Si: 0.21%, P: 0.015% and S: 0.026%. This gear is placed with a chromium chloride generating substance in an atmospheric furnace in which the atmosphere can be controlled from the outside. After the air in the furnace is eliminated, a temperature in the furnace is maintained at l,00O C for 5 hours. Chromium is thus cemented on the surface of the gear and thereafter the gear is at once put in oil and quenched so that hardening of the gear takes place.
Next, as shown in FIG. 5, in the case 12 provided in the electric furnace 11, the quenched gears 14 are immersed for 1 hour heated at 200 C in a mixed salt 13 of sodium sulfate and potash alum (15%). The gears are then air-cooled. As shown in FIG. 6, a matrix 15 of tempered martensite, a chromium cementation zone 16 (15 in average thickness), a chromium zone 17 (20p. in average thickness) and a chromium sulfide zone 18 (2p. in average thickness) are produced in turn. The structure of the matrix is illustrated in section by FIG. 6. A wearproof and corrosion-proof treated gear of HRC49 in surface hardness was thus obtained.
In'similar fashion, another gas consisting of carbon steel of the same composition as described above is heated at l,000 C, and after oil hardening, quenching is performed at 200 C and thus a heat-treated gear of HRC49 in hardness was also obtained.
The two kinds of gears obtained, as described above, are engaged with gears of the same kind respectively without feed oil and are rotated. Then, a wear loss (decreased amount of tooth thickness) of tooth in pitch circle was measured. The test results showed that merely heat-treated gears are inferior in wear resistance, as indicated by line A of FIG. 7, and such a gear has no corrosion resistance. However, a wearand corrosion-resistant treated gear according to this invention is remarkably excellent in wear resistance, as indicated by line B of FIG. 7 and also has corrosion resistance.
EXAMPLE 2 Chromium cementation gears 14 which are made of carbon steel obtained with the same composition as that of Example 1 are placed in case 12 of electric furnace 11 as shown in FIG. 8. A mixed gas of 70% argon and 30% H 8 is supplied from gas feed port 21 in lid on which fan 19 is mounted. The air in case 12 is vented from a port hole 22. Thereafter, the gears were taken out after heating at 600 C for 1 hour.
In this example, too, a chromium sulfide zone is formed on the surface of the chromium zone on the gear and the same wear-resistance and corrosionresistance as in the case of Example 1 was obtained.
EXAMPLE 3 After a shaft made of brass is plated (5p. in thickness) with chromium, this shaft is reacted with sulfur in mixed salt as shown in FIG. 1 and thus chromium sulfide (1p. in thickness) was produced on the surface.
When this shaft was inserted in the hole of a bearing and was slided reciprocatingly, wear loss was lowered to 1/5 as compared with a shaft made of brass which was not so treated.
Since this invention is constituted as described hereinabove, it has been found that the chromium sulfide has a lubricating property, namely, a wear-resistance is produced on the surface of the chromium zone having corrosion resistance by merely performing a treatment such as the reaction of the chromium zone in sulfide after the chromium zone was formed on the surface of metal products merely by chromium cementation or chromium plating. In this manner, both wear-resistance and corrosion resistance of the gears can be improved.
We claim:
1. A process for treatment of metal products to protect the same against wear and corrosion which comprises (l) heating said metal products in presence of a chromium halide in absence of oxygen, whereby chromium is diffused into said metal products forming a chromium zone on the surface thereof (2) reacting the chromium in the zone where the chromium is diffused into the metal products with a sulfur compound to form chromium sulfide on the surface of said metal products, and (3) recovering the metal products protected against wear and corrosion.
2. A process for treatment of metal products, according to claim 1, wherein said metal products comprise ferrous metal.
3. A process for treatment of metal products, according to claim 2, wherein said ferrous metals comprise steel gears.
4. A process for treatment of metal products, according to claim 3, wherein said steel gears are treated with a fine powder deposit of chromium halide in a dry atmosphere and thereafter said chromium coating on the gear is converted to chromium sulfide by reaction with a sulfur compound to yield a steel gear with improved resistance to corrosion and wear.
5. A process for treatment of metal products, according to claim 4, wherein said chromium halide is chromium chloride and said sulfur containing composition is the mixed salt sodium sulfate and potash alum.
6. A process for treatment of metal products, according to claim 1, wherein said metal products are made of non-ferrous metal.
7. A process for treatment of metal products, according to claim 1, wherein said chromium zone is formed in a furnace at about l,000 C for about 5 hours.
8. A process for treatment of metal products, according to claim 7, wherein the metal products, after treatment with chromium halide in the furnace, are immersed in a bath of mixed salt of potash alum and sodium sulfate at 200 C for 1 hour and thereafter removed from said bath, cooled and recovered.

Claims (7)

  1. 2. A process for treatment of metal products, according to claim 1, wherein said metal products comprise ferrous metal.
  2. 3. A process for treatment of metal products, according to claim 2, wherein said ferrous metals comprise steel gears.
  3. 4. A process for treatment of metal products, according to claim 3, wherein said steel gears are treated with a fine powder deposit of chromium halide in a dry atmosphere and thereafter said chromium coating on the gear is converted to chromium sulfide by reaction with a sulfur compound to yield a steel gear with improved resistance to corrosion and wear.
  4. 5. A process for treatment of metal products, according to claim 4, wherein said chromium halide is chromium chloride and said sulfur containing composition is the mixed salt sodium sulfate and potash alum.
  5. 6. A process for treatment of metal products, according to claim 1, wherein said metal products are made of non-ferrous metal.
  6. 7. A process for treatment of metal products, according to claim 1, wherein said chromium zone is formed in a furnace at about 1, 000* C for about 5 hours.
  7. 8. A process for treatment of metal products, according to claim 7, wherein the metal products, after treatment with chromium halide in the furnace, are immersed in a bath of mixed salt of potash alum and sodium sulfate at 200* C for 1 hour and thereafter removed from said bath, cooled and recovered.
US00144809A 1971-05-19 1971-05-19 Process of manufacturing fine powders of metal halide Expired - Lifetime US3769098A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14480971A 1971-05-19 1971-05-19

Publications (1)

Publication Number Publication Date
US3769098A true US3769098A (en) 1973-10-30

Family

ID=22510234

Family Applications (1)

Application Number Title Priority Date Filing Date
US00144809A Expired - Lifetime US3769098A (en) 1971-05-19 1971-05-19 Process of manufacturing fine powders of metal halide

Country Status (1)

Country Link
US (1) US3769098A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4435227A (en) 1981-10-06 1984-03-06 Nicolas Guy R Method of treating steel surfaces to prevent wear, and coating obtained thereby
EP0384054A1 (en) * 1987-05-11 1990-08-29 Exxon Research And Engineering Company A corrosion-resistant article
US20080268927A1 (en) * 2007-04-26 2008-10-30 Farley Herbert M Apparatus and method for automatically setting operating parameters for a remotely adjustable spreader of an agricultural harvesting machine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2263905A (en) * 1939-05-02 1941-11-25 Standard Oil Co California Treatment of machine elements to facilitate breaking in
US2399019A (en) * 1942-02-25 1946-04-23 Goodrich Co B F Method of adhering rubber to metals
US2588234A (en) * 1950-10-31 1952-03-04 John A Henricks Method of drawing metal
US2639245A (en) * 1950-01-12 1953-05-19 Parker Rust Proof Co Sulfide coating
US2671739A (en) * 1949-06-22 1954-03-09 Bell Telephone Labor Inc Plating with sulfides, selenides, and tellurides of chromium, molybdenum, and tungsten
US2903384A (en) * 1956-03-05 1959-09-08 United States Steel Corp Method of preparing stainless-steel wire for drawing and forming
US3127346A (en) * 1961-03-23 1964-03-31 Dry lubricant composition and a

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2263905A (en) * 1939-05-02 1941-11-25 Standard Oil Co California Treatment of machine elements to facilitate breaking in
US2399019A (en) * 1942-02-25 1946-04-23 Goodrich Co B F Method of adhering rubber to metals
US2671739A (en) * 1949-06-22 1954-03-09 Bell Telephone Labor Inc Plating with sulfides, selenides, and tellurides of chromium, molybdenum, and tungsten
US2639245A (en) * 1950-01-12 1953-05-19 Parker Rust Proof Co Sulfide coating
US2588234A (en) * 1950-10-31 1952-03-04 John A Henricks Method of drawing metal
US2903384A (en) * 1956-03-05 1959-09-08 United States Steel Corp Method of preparing stainless-steel wire for drawing and forming
US3127346A (en) * 1961-03-23 1964-03-31 Dry lubricant composition and a

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4435227A (en) 1981-10-06 1984-03-06 Nicolas Guy R Method of treating steel surfaces to prevent wear, and coating obtained thereby
EP0384054A1 (en) * 1987-05-11 1990-08-29 Exxon Research And Engineering Company A corrosion-resistant article
US20080268927A1 (en) * 2007-04-26 2008-10-30 Farley Herbert M Apparatus and method for automatically setting operating parameters for a remotely adjustable spreader of an agricultural harvesting machine

Similar Documents

Publication Publication Date Title
Jack Binary and ternary interstitial alloys-II. The iron-carbon-nitrogen system
US3222228A (en) Method of boronizing steel
US3769098A (en) Process of manufacturing fine powders of metal halide
US2109485A (en) Impregnation of metals with silicon
US6328818B1 (en) Method for treating surface of ferrous material and salt bath furnace used therefor
US3719518A (en) Process of forming a carbide layer of vanadium, niobium or tantalum upon a steel surface
US4071382A (en) Method for case hardening powdered metal parts
US3937794A (en) Method of manufacturing fine powders of metal sulfide
US3811929A (en) Metallic cementation
US4163680A (en) Process for carbonitriding steel and cast iron articles
JP3450426B2 (en) Gas sulfide nitriding treatment method
US4007302A (en) Case-hardening method for carbon steel
US3892597A (en) Method of nitriding
US2886469A (en) Method of coating metallic bodies with aluminum utilizing vaporous sub-chlorides
CN111094828A (en) Method for producing black-cored malleable cast iron member formed by plating, and black-cored malleable cast iron member and pipe joint formed by plating
JP3939451B2 (en) Method for salt bath treatment of iron-based materials
GB1603832A (en) Method for the gaseous nitriding of ferrous metal components
KR900007716B1 (en) Gas sulfurizion and nitriding method
US4804445A (en) Method for the surface treatment of an iron or iron alloy article
JPS61291962A (en) Surface treatment of iron alloy material
US2541521A (en) Treatment of cast iron
GB2055404A (en) Gas nitriding steel
US2979810A (en) Rotating bands for projectiles and methods for making the same
KR940010773B1 (en) Method of diffusion coating using carbide
US1982718A (en) Anticarburizing compound

Legal Events

Date Code Title Description
AS Assignment

Owner name: KABUSHIKI KAISHA KITO 1084, NAKANOSHIMA, TAMA-KU,

Free format text: CHANGE OF NAME;ASSIGNOR:KABUSHIKI KISHA KITO SEISAKUSHO;REEL/FRAME:004267/0563