US2903384A - Method of preparing stainless-steel wire for drawing and forming - Google Patents

Method of preparing stainless-steel wire for drawing and forming Download PDF

Info

Publication number
US2903384A
US2903384A US572944A US57294456A US2903384A US 2903384 A US2903384 A US 2903384A US 572944 A US572944 A US 572944A US 57294456 A US57294456 A US 57294456A US 2903384 A US2903384 A US 2903384A
Authority
US
United States
Prior art keywords
wire
forming
steel wire
coating
lime
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US572944A
Inventor
Joseph C Grass
Anton C Zupansic
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
United States Steel Corp
Original Assignee
United States Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United States Steel Corp filed Critical United States Steel Corp
Priority to US572944A priority Critical patent/US2903384A/en
Application granted granted Critical
Publication of US2903384A publication Critical patent/US2903384A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M7/00Solid or semi-solid compositions essentially based on lubricating components other than mineral lubricating oils or fatty oils and their use as lubricants; Use as lubricants of single solid or semi-solid substances
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/062Oxides; Hydroxides; Carbonates or bicarbonates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/063Peroxides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/08Inorganic acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/08Inorganic acids or salts thereof
    • C10M2201/081Inorganic acids or salts thereof containing halogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/08Inorganic acids or salts thereof
    • C10M2201/082Inorganic acids or salts thereof containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/08Inorganic acids or salts thereof
    • C10M2201/084Inorganic acids or salts thereof containing sulfur, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/02Groups 1 or 11
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/24Metal working without essential removal of material, e.g. forming, gorging, drawing, pressing, stamping, rolling or extruding; Punching metal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/241Manufacturing joint-less pipes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/242Hot working
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/243Cold working
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/244Metal working of specific metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/244Metal working of specific metals
    • C10N2040/245Soft metals, e.g. aluminum
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/244Metal working of specific metals
    • C10N2040/246Iron or steel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/244Metal working of specific metals
    • C10N2040/247Stainless steel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/08Solids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/10Semi-solids; greasy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2070/00Specific manufacturing methods for lubricant compositions

Definitions

  • Our invention is based on the discovery that conventional processing of stainless-steel wire leaves the surface thereof so that it will not acquire and retain a coating which will satisfactorily lubricate drawing and forming dies.
  • Our invention therefore, includes a novel activating treatment followed by the formation on the Wire of a coating of novel composition which fulfills all requirements of a lubricant satisfactory for drawing and forming the wire. More particularly, our invention involves a treatment supplemental to the conventional processing which converts the surface of the wire from passivated to activated condition and produces a coating directly thereon by chemical reaction.
  • the conventional practice in making stainless-steel wire is to immerse bundles of hot-rolled or annealed rod or wire in molten sodium hydride to reduce the scale coating. The bundles are then quenched in water and rinsed under water sprays. The bundles are next immersed in a sulphuric-acid bath which causes removal of the reduced scale. The bundles are again rinsed and then immersed in a bath of dilute nitric and hydrofluoric acids to remove the smut produced by the sulphuric-acid bath. As a result of this treatment, the surface of the wire is left bright but passivated.
  • the bundles are then rinsed and immersed in a hot dilute sulphuric-acid bath for a few minutes to break down or activate the passivated surface after which they are removed, dried, coated with a water suspension of lime and again dried in a flash baker.
  • the rod or wire is then drawn to finished size and formed.
  • the method outlined above leaves the wire or rod deeply macro-etched prior to final drawing. This condition is not favorable to easy drawing or the formation of a smooth surface on the finished product.
  • Our invention is a modification of the conventional process which produces a uniform fine-grained micro-etch on the wire surface and a coating which is particularly favorable to drawing and forming. More specifically, we add to the hot sulphuric-acid bath an accelerator containing sulphur which is released in colloidal form in an acid bath and tends to deposit on the wire and cling thereto upon removal from the acid. Then after lime-coating the bundles and drying them in a flash baker, we subject them to prolonged baking for several hours at a temperature of "ice from 800 to 1000 F.
  • the product contains from to 40% sodium thiosulphate and is added to the dilute sulphuric-acid bath in the ratio of one gallon of Promat to 80 gallons of the bath, giving a thiosulphate concentration of between .35 and 5% and preferably about 0.4%.
  • the bundles are immersed in the modified pickling bath for from .20 minutes to 1 hour.
  • the thiosulphate acts as an ac celerator in the acid bath by releasing free colloidal sulphur, The sulphur iactsas adepolarizer b'y combining with thehydrogen film accumulating on the surfaces of the immersed metal.
  • the Promat In addition to accelerating the pickling action, the Promat produces a uniform finegrained micro-etch on the surface of the metal. This type of etched surface makes it possible to apply a more uniform and adherent lime coating preparatory to final drawing and results in a smoother finish on the drawn product.
  • the modified pickling bath must also contain sufiicient metal sulphate to give it a density corresponding to a Baum reading between 15 and 25. Thus, if starting with fresh acid, it may be necessary to add iron until the Baum reading increases to at least 15.
  • the bundles when removed from the hot acid solution containing Promat are preferably allowed to dry in the air without rinsing. They may, however, after being removed from the hot acid solution containing Promat be given a water rinse prior to further treatment or they may be further treated without the benefit of either the rinsing or drying treatments.
  • the adhering acid solution forms ferrous sulphate (FeSO -7H O) and probably also sulphates of chromium and nickel in smaller amounts. In any event, elemental sulphur is present on the dried surface of the wire or rod. When dried, the bundles are given a light-to-medium lime coating by immersion in a water suspension of lime.
  • the calcium sulphate will be dehydrated by the baking treatment and becomes anhydrous calcium sulphate (CaSO while some of the lime (Ca(OH) which does not combine with the ferrous sulphate will become calcium carbonate (CaCO because of the presence of carbon dioxide (CO in the furnace atmosphere.
  • the lime (Ca(OH) which does not combine with the ferrous salts or the carbon dioxide of the furnace atmosphere will of course remain on the baked wire as Ca(OH) The final coating as developed by the.
  • a method of preparing stainless-steel wire for drawing and forming which consists in immersing the Wire for from 20 to minutes in a-dilute sulphuric-acid bath at a temperature between and F. containing an activating addition of between 3i and 5% sodium thiosulphate, then immersing: the wire in a water su'sp'ension of lime and baking for several hours at a temperatu re between 800 and 10 009 E, in an oxidizing, atmosphere, thereby forming on the wire a tough, ad fitent flexible coating composed at least in part offlime; metallic sulphide and hydrous ferric oxide. 7

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • ing And Chemical Polishing (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

United States Patent METHOD or PREPARING STAINLESS-STEEL WIRE FOR DRAWING AND FORMING Joseph C. Grass'and Anton C. Zupansic, Wankegan, Ill.,
- assignorsto United States Steel Corporation, a corporation of New Jersey No Drawing. Application March 5, 1956 Serial No. 572,944
.1 Claim. 01. ms-6.24
the wire heretofore to lubricate the reducing or forming dies has failed to give satisfactory results. Galling of the dies occurs frequently; formed-products such as helical springs cannot be kept within established tolerances for length and diameter; the dies show excessive wear andthe'product exhibits objectionable roughness. We have invented amethod of treating process wire so as to form thereon a coating effective to overcome these difiiculties.
Our invention is based on the discovery that conventional processing of stainless-steel wire leaves the surface thereof so that it will not acquire and retain a coating which will satisfactorily lubricate drawing and forming dies. Our invention, therefore, includes a novel activating treatment followed by the formation on the Wire of a coating of novel composition which fulfills all requirements of a lubricant satisfactory for drawing and forming the wire. More particularly, our invention involves a treatment supplemental to the conventional processing which converts the surface of the wire from passivated to activated condition and produces a coating directly thereon by chemical reaction.
The conventional practice in making stainless-steel wire is to immerse bundles of hot-rolled or annealed rod or wire in molten sodium hydride to reduce the scale coating. The bundles are then quenched in water and rinsed under water sprays. The bundles are next immersed in a sulphuric-acid bath which causes removal of the reduced scale. The bundles are again rinsed and then immersed in a bath of dilute nitric and hydrofluoric acids to remove the smut produced by the sulphuric-acid bath. As a result of this treatment, the surface of the wire is left bright but passivated. The bundles are then rinsed and immersed in a hot dilute sulphuric-acid bath for a few minutes to break down or activate the passivated surface after which they are removed, dried, coated with a water suspension of lime and again dried in a flash baker. The rod or wire is then drawn to finished size and formed.
The method outlined above leaves the wire or rod deeply macro-etched prior to final drawing. This condition is not favorable to easy drawing or the formation of a smooth surface on the finished product. Our invention is a modification of the conventional process which produces a uniform fine-grained micro-etch on the wire surface and a coating which is particularly favorable to drawing and forming. More specifically, we add to the hot sulphuric-acid bath an accelerator containing sulphur which is released in colloidal form in an acid bath and tends to deposit on the wire and cling thereto upon removal from the acid. Then after lime-coating the bundles and drying them in a flash baker, we subject them to prolonged baking for several hours at a temperature of "ice from 800 to 1000 F. in an oxidizing atmosphere during which time the, sulphur combines with the base metal of the wire to form metallic sulphides. After this prolonged baking the bundles are again lime-coated and dried in a flash baker .whereupon they are ready forfinal drawing and forming. i
For a complete understanding of our invention, .it shouldbe noted that we follow the known practice up to the immersion of the bundles in a hot sulphuric-acid bath. This bath contains from 14 to 20% acid by weight and is maintained at a temperature between 130 and 185 F. We modify this bath by adding thereto an accelerator containing a compound which, when in'contact with acid, releases sulphur, such as sodium thiosulphate. One example thereof is the product known as Promat N0. 7073, made by Poor & Company, which is understood to be disclosed in Chester et al. Patent No. 2,692,187. The product contains from to 40% sodium thiosulphate and is added to the dilute sulphuric-acid bath in the ratio of one gallon of Promat to 80 gallons of the bath, giving a thiosulphate concentration of between .35 and 5% and preferably about 0.4%. The bundles are immersed in the modified pickling bath for from .20 minutes to 1 hour. The thiosulphate acts as an ac celerator in the acid bath by releasing free colloidal sulphur, The sulphur iactsas adepolarizer b'y combining with thehydrogen film accumulating on the surfaces of the immersed metal. In addition to accelerating the pickling action, the Promat produces a uniform finegrained micro-etch on the surface of the metal. This type of etched surface makes it possible to apply a more uniform and adherent lime coating preparatory to final drawing and results in a smoother finish on the drawn product. The modified pickling bath must also contain sufiicient metal sulphate to give it a density corresponding to a Baum reading between 15 and 25. Thus, if starting with fresh acid, it may be necessary to add iron until the Baum reading increases to at least 15.
The bundles when removed from the hot acid solution containing Promat are preferably allowed to dry in the air without rinsing. They may, however, after being removed from the hot acid solution containing Promat be given a water rinse prior to further treatment or they may be further treated without the benefit of either the rinsing or drying treatments. The adhering acid solution forms ferrous sulphate (FeSO -7H O) and probably also sulphates of chromium and nickel in smaller amounts. In any event, elemental sulphur is present on the dried surface of the wire or rod. When dried, the bundles are given a light-to-medium lime coating by immersion in a water suspension of lime. They are then dried in a flask baker and placed in a rotary-hearth furnace heated by an open flame from combustion of natural gas and baked for about four hours at a temperature from 800 to 1000 F. in an oxidizing atmosphere with an oxygen content of at least 1 or 2%. It is believed that the lime combines with the ferrous salt on the surface of the wire to form ferrous hydroxide (Fe(OH) and calcium sulphate (CaSO -2H O). The ferrous hydroxide is undoubtedly oxidized to hydrous ferric oxide (Fezog'llHgo) during the four-hour baking treatment at 900 F. The calcium sulphate will be dehydrated by the baking treatment and becomes anhydrous calcium sulphate (CaSO while some of the lime (Ca(OH) which does not combine with the ferrous sulphate will become calcium carbonate (CaCO because of the presence of carbon dioxide (CO in the furnace atmosphere. The lime (Ca(OH) which does not combine with the ferrous salts or the carbon dioxide of the furnace atmosphere will of course remain on the baked wire as Ca(OH) The final coating as developed by the. described practice conii ii f 'ii hi s f nn hr miu li i kel; l l 'i s ferric oxide (Fe Q -nH O), lime (Gamin and'probably calcium carbonate (CaQO and calcium sulphate a qa aa Wire treated as described may be easily. drawn to size it and then formed into articles such as springs by coiling or curlingdies. It also works well under cold-heading 59 I n case, h c a ser es are ra n forming lubricant which prevents excessive die wear and leaves a smooth surface on the finished article. Products such as springs, furthermore," may easily be made within permitted tolerances as to length and diameter with wire coated by our process, The'coating is dense, adherent and flexible so it does not crack, chip or flake off. 7
It is believed that the success of our invention is dependent upon a combination of factors including the uniform mirco-etched activated surfaceof the wire, the elemental sulphur and ferrous sulphate deposited thereon by the sulphuric acid and Promat solution, and the transformation of the elemental sulphur to metallic sulphides and the ferrous hydroxide to hydrous ferric oxide by the 800 to 1000 F. baking treatment in an oxidizing atmosphere. It is generally known that metallic sulphides are very satisfactory as lubricating films and a tight uniform non-abrasive oxide is also advantageous 4 v v for the cold drawing of carbon and stainless-steel wire. The coating which we obtain consists of a combination of the metallic sulphides ajid non-abrasive oxide films. The lime (Ca(OH) applied prior to the baking treatment combines with the ferrous sulphate to form the ferrous hydroxide whic'h,'as'. explained herein, is transformed during. the baking treatment to. the non-abrasive hydrous ferric oxide. i i i Although we have disclosed herein the preferred practice of our invention, we intend to cover. as "v'velk'any change or modification thereinwhich may be made without departing from the spirit and scope or the invention.
We claim:
A method of preparing stainless-steel wire for drawing and forming which consists in immersing the Wire for from 20 to minutes in a-dilute sulphuric-acid bath at a temperature between and F. containing an activating addition of between 3i and 5% sodium thiosulphate, then immersing: the wire in a water su'sp'ension of lime and baking for several hours at a temperatu re between 800 and 10 009 E, in an oxidizing, atmosphere, thereby forming on the wire a tough, ad fitent flexible coating composed at least in part offlime; metallic sulphide and hydrous ferric oxide. 7
References Cited in the file ofthis patent UNITED STATES
US572944A 1956-03-05 1956-03-05 Method of preparing stainless-steel wire for drawing and forming Expired - Lifetime US2903384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US572944A US2903384A (en) 1956-03-05 1956-03-05 Method of preparing stainless-steel wire for drawing and forming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US572944A US2903384A (en) 1956-03-05 1956-03-05 Method of preparing stainless-steel wire for drawing and forming

Publications (1)

Publication Number Publication Date
US2903384A true US2903384A (en) 1959-09-08

Family

ID=24290013

Family Applications (1)

Application Number Title Priority Date Filing Date
US572944A Expired - Lifetime US2903384A (en) 1956-03-05 1956-03-05 Method of preparing stainless-steel wire for drawing and forming

Country Status (1)

Country Link
US (1) US2903384A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3769098A (en) * 1971-05-19 1973-10-30 Kito Kk Process of manufacturing fine powders of metal halide
US4110512A (en) * 1971-12-27 1978-08-29 Chrysler Corporation Iron oxide material and members for dry lubricated systems including the method of preparation therefor
US4923625A (en) * 1989-09-28 1990-05-08 Desilube Technology, Inc. Lubricant compositions

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2636009A (en) * 1946-08-31 1953-04-21 Joseph T Irwin Conditioning of metal surfaces
US2717221A (en) * 1950-01-12 1955-09-06 Robert M Christner Metal working method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2636009A (en) * 1946-08-31 1953-04-21 Joseph T Irwin Conditioning of metal surfaces
US2717221A (en) * 1950-01-12 1955-09-06 Robert M Christner Metal working method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3769098A (en) * 1971-05-19 1973-10-30 Kito Kk Process of manufacturing fine powders of metal halide
US4110512A (en) * 1971-12-27 1978-08-29 Chrysler Corporation Iron oxide material and members for dry lubricated systems including the method of preparation therefor
US4923625A (en) * 1989-09-28 1990-05-08 Desilube Technology, Inc. Lubricant compositions

Similar Documents

Publication Publication Date Title
US2395694A (en) Processes for removing oxide from the surface of metals
US2528787A (en) Protection of metals from corrosion
US2199418A (en) Surface treatment of metals
US1899734A (en) Removal of oxids from ferrous metal
US2728696A (en) Production of oxide coatings on ferrous surfaces and mechanically working the same
US2813813A (en) Process for forming protective phosphate coatings on metallic surfaces
US2636009A (en) Conditioning of metal surfaces
US2903384A (en) Method of preparing stainless-steel wire for drawing and forming
US1761186A (en) Process of treating ferrous metal articles
US3489625A (en) Process for metal surface conditioning
US2302643A (en) Method and composition for treating metals
US1572848A (en) Removal of oxids from ferrous metal
US2535284A (en) Cold-drawing steel wire
US2963784A (en) Base stock for vitreous enamel coatings
US3907612A (en) Preanneal rinse process for inhibiting pin point rust
US2295204A (en) Resurfacing of metals
US1895568A (en) Rust proofing iron and steel articles
US2276101A (en) Art of treating and coating metals
EP0032583B1 (en) Process for continuously annealing of a cold rolled steel strip
US2630393A (en) Method of cleaning and descaling ferrous bodies
US3728155A (en) Copper alloy cleaning process
US2142869A (en) Treatment of nickel-chromium alloys
US1371445A (en) Lead-coating process
US2875111A (en) Method of forming phosphate coatings on drawn wire
US2527828A (en) Method of coating zinc base alloys