US3766254A - Linear alkylphenol disulfonate phosphate free detergent actives - Google Patents

Linear alkylphenol disulfonate phosphate free detergent actives Download PDF

Info

Publication number
US3766254A
US3766254A US00034886A US3766254DA US3766254A US 3766254 A US3766254 A US 3766254A US 00034886 A US00034886 A US 00034886A US 3766254D A US3766254D A US 3766254DA US 3766254 A US3766254 A US 3766254A
Authority
US
United States
Prior art keywords
alkylphenol
disulfonate
detergent
heavy duty
phosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00034886A
Other languages
English (en)
Inventor
S Sharman
M Danzik
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chevron USA Inc
Original Assignee
Chevron Research and Technology Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chevron Research and Technology Co filed Critical Chevron Research and Technology Co
Application granted granted Critical
Publication of US3766254A publication Critical patent/US3766254A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/22Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof

Definitions

  • This invention is concerned with certain alkylphenol disulfonates which are effective as heavy duty detergent actives.
  • liquid heavy duty detergent compositions achieves man desirable results. They are easy to package and measure, and their use opens the possibility of automatic dispensing in washing machines.
  • it has been impracticable to formulate heavy duty detergents in liquid form because of the insufficient solubility of the inorganic ingredients (phosphate builders, etc.) required for heavy duty applications and the high cost of organic substitutes for such inorganic ingredients. It is therefore highly desirable to provide detergent active materials having good water solubility and which, because of their excellent detergency without builders, can be formulated into effective, reasonably priced heavy duty liquid detergent formulations.
  • U.S. Pat. No. 2,249,757 discloses as surface active agents a broad class of sulfonated, branched and linear, alkylphenols.
  • the proposed sulfonated alkylphenols include both mono and disulfonates.
  • the alkylphenols are prepared by reacting phenol and olefins of 14 to 15 carbon atoms obtained by caustic soda treatment of monochlorinated petroleum distillate. The olefin and phenol are reacted in the presence of Zinc chloride.
  • alkylphenols have a high content of para alkylphenol isomers, usually about 35 to 40%.
  • the alkylphenol is then sulfonated with sulfuric acid, oleum, or chlorosulfonic acid.
  • the disclosures of this patent precede both the nonbiodegradability problem and the more recent phosphate Water pollution problem.
  • R is linear alkyl of 16 to 22 carbon atoms
  • X is H or a water-soluble salt-forming cation
  • n is 1.5 to 2
  • not more than 25 mol percent of the sulfonated alkylphenols have R attached on the aromatic nucleus in a position para to -OX.
  • the effective materials are primarily either ortho or meta alkyl substituted.
  • the major portion of the alkyl groups will be substituted -ortho to the phenolic hydroxyl group on the ring.
  • the meta alkyl materials are effective as phosphate-free detergents; however, the
  • the compounds of this invention do not require the presence of a builder to achieve good detergency, and while they are effective over a broad pH range, reach their maximum effectiveness at a pH near neutral in detergent solutions. Thus washing at a pH of 6.5 to 8.0, preferably 6.5 to 7.5, will give maximum soil removal while securing the previously mentioned advantages which inhere in the use of neutral washing solutions. Further, the compounds may be easily compounded into. effective liquid heavy duty formulations because of the substantial solubility of the compounds in water and because. of the lack of need for adjunctive inorganic additives such as builders.
  • sulfonating agent be employed to incorporate an average of at least 1.5, preferably 1.6 atoms of sulfur (in the form of tion with oleum is preferred.
  • alkali metal cations are preferred, and sodium ions are particularly preferred.
  • alkyl groups representedby R are, as previously noted, linear, although the presence of a random methyl radical upon the linear chain, for example, may not adversely affectthe performance of the compound.
  • Alkyl radicals representative of R include hexadecyl, heptadecyl, octadecyl, nonadecyl, eicosyl, and heneicosyl groups are preferred.
  • the compounds of the invention are preferably prepared by sulfonation of a suitable alkylphenol.
  • alkylphenols which are suitable as precursors for the compounds of this invention are prepared by methods which provide low para-content isomer products. Such methods include thermal alkylation of phenol with an alpha olefin, thermal alkylation of phenol with an internal monoolefin, and those catalytic methods which result in production of a high ortho-content alkylphenol.
  • alkylation catalysts which have been employed to produce high ortho-content alkylphenols include various metal phenoxides, particularly those of aluminum and magnesium; hydrogen fluoride-treated aluminum silicate; alkyl sulfonic acids; dimethyl sulfate; benzene sulfonic acid; naphthalene sulfonic acid; transitional alumina; and gallium and indium oxides.
  • thealkylphenol mixture must not have a para alkylphenol content of more than 25 and preferably not more than 20 mol. percent. This may be achieved by the noted thermal or catalytic methods with the direct product of the process having no more than the prescribed content or it may be'achieved by conventional acid catalyzed alkylation followed by distillation or by separation of the components by various extractive techniques such as water solubilization, etc. This separation may be accomplished either with the alkylphenol mixtures or with the sulfonated products.
  • the alkyl groups represented by R are generally derived from either alcohols, olefins, or haloparafiins.
  • the position of the attachment of the aromatic nucleus on the alkyl chain may be at any point.
  • alpha olefins the predominant point of attachment of the alkylation product will be either at the 1 or 2 and principally at the 2 position of the chain.
  • an isomerized mixture of olefins or olefins derived from haloparaffins which have, in turn, been produced by halogenation of parafiins
  • the position of the double'bond will be generally completely random on the chain, and thus the corresponding alkyl chain-nucleus attachment will be random.
  • the product may be neutralized with a Water-soluble, salt-forming cationic neutralizing agent, usually a metal oxide or hydroxide, and preferably an alkaline earth metal or alkali metal hydroxide.
  • a Water-soluble, salt-forming cationic neutralizing agent usually a metal oxide or hydroxide, and preferably an alkaline earth metal or alkali metal hydroxide.
  • the alkali metal hydroxides are preferred, and most preferred is sodium hydroxide.
  • the neutralized product which will contain a substantial quantity of water, and from 1 to 4 parts of a normally inorganic sulfate from the neutralization of excess S0 (e.g. Na SO4), may be used, as is, in combination with conventional detergent additives to formulate liquid heavy duty detergents.
  • a normally inorganic sulfate from the neutralization of excess S0 e.g. Na SO4
  • water may be removed in any quantity to complete dryness by conventional concontration techniques such as evaporation, distillation,
  • the solid product isolated as described above may be desalted by the usual procedures as used in an alkylbenzene sulfonate art. In this method the solid material is mixed with about a 70/30 alcohol/water solution. The insoluble inorganic sulfate is removed by filtration, and the organic surfactant maybe used as; such .or isolated by evaporation of the solvent. The liquid concentrates and slurries may be treated in similar fashion with allowance made for the quantity of water already present.
  • Example 1 Preparation of ortho heptadecy-l phenol disulfonate acid was added to the alkylphenol over a period of 15 minutes. The sulfonater was then heated to 75 C. in an oil bath, and stirring was continued for a period of 25 minutes. The product was then neutralized to pH 7 with 2.5 N NaOH in an ice bath. Analysis by Hyamine titration and dilute acid hydrolysis indicated that the product was'approximately a 50/50 mixture of heptadecylphenol' disulfonate and sodium sulfate. The yield was 91% based upon alkylphenol.
  • Example 2 Preparation of heneicocylphenol disulfonate Following the general procedure of Example 1, 25.74 g. of 21.5% fuming sulfuric acid was reacted with 19.2 g. of heneicosylphenol (prepared by an acid-clay catalyzed alkylation of phenol with a mixture of heneicosenes and having a 62/38 ortho/para isomer distribution). The product was analyzed as in Example 1 and showed a 91% yield of heneicosylphenol disulfonate.
  • Example 2 Following the general procedure of Example 1 a variety of materials were prepared employing as precursors alkylphenols in which the alkyl groups were linear and had aromatic nucleus attachment at all positions on the alkyl group and with varying proportions of ortho and para alkyl isomers. Mixtures of these materials were also prepared.
  • a 360 g. portion of the distilled alkylphenol mixture was charged to an 800 ml. sulfonater equipped with a thermometer, dropping funnel, reflux condenser, and mechanical stirrer. While the material was being strongly agitated, 514 g. of 21.5 fuming sulfuric acid was added through the dropping funnel over a period of 36 minutes while the temperature was maintained at from 5 to C. The temperature was then raised to 75 C. for 30 minutes. The reaction was then quenched by dropping the product onto ice, cooling it to a temperature of 0-5 C. The product was then neutralized with 490 ml. of 50% NaOH. The final volume was adjusted to 2700 ml. Analysis by the previously described method showed a 95 yield of alkylphenol disulfonate.
  • Example 4 Drying of alkylphenol disulfonate A 500 ml. portion of the product of Example 3 was dried in a conventional small-scale drum drier in which the drums were operated under a pressure of 30 p.s.i. of steam. In this manner there was recovered about 150 g. of dry particulate solid which analyzed 52.5% of the mixture alkylphenol disulfonate, 44.0% sodium sulfate, with the balance being water.
  • the compounds of this invention are useful as heavy duty detergent actives.
  • heavy duty detergent formulations useful for removing soil from textiles have comprised an organic surfactant (detergent) and an inorganic phosphate builder; the phosphate being present by weight, in an amount of from one to four times that of the detergent.
  • the compounds of the present invention are excellent soil removers without the aid of any phosphate builder. That is, the compounds of this invention satisfy all need for both organic surfactant and builder in the final heavy duty detergent formulation.
  • One way that this may be accomplished is by preparing a mixture of the disulfonate materials of the instant invention and an inert material, e.g. water, sodium sulfate, sodium carbonate, etc.
  • Such mixtures may contain any amount of disulfonate in excess of about 10%, preferably or more.
  • One useful composition comprises from 30 to 50% disulfonate and the remainder, sodium sulfate. Many other combinations make useful formulations and may be either liquid solutions or particulate solids.
  • the disulfonate compounds will be used in wash water at concentrations of about 0.01% to about 0.10%. This is within the same range of concentrations as are employed with the present day commercial detergents.
  • the soil removal properties of the present compounds are essentially equivalent to the soil removal properties of an equal amount of the current commercial surfactant combined with at least an equal amount of phosphate.
  • Detergency of the compounds of the present invention is measured by their ability to remove natural sebum soil from cotton cloth.
  • small swatches of cloth, soiled by rubbing over face and neck are washed with test solutions of detergents in a miniature laboratory washer.
  • the quantity of soil removed by this washing procedure is determined by measuring the refiectances of the new cloth, the soiled cloth, and the washed cloth, the results being expressed as percent soil removal. Because of variations in degree and type of soiling, in water and in cloth, and other unknown variables, the absolute value of percent soil removal is not an accurate measure of detergent effectiveness and cannot be used to compare various detergents. Therefore, the art has developed the method of using relative detergency ratings for comparing detergent effectiveness.
  • the relative detergency ratings are obtained by comparing and correlating the percent soil removal results from solutions containing the detergents being tested with the results from two defined standard solutions.
  • the two standard solutions are selected to represent a detergent system exhibiting relatively high detersive characteristics and a system exhibiting relatively low detersive characteristics.
  • the systems are assigned detergency ratings of 6.3 and 2.1, respectively.
  • the two standard solutions are identical in formulation but are employed at different hardnesses.
  • Control B is prepared by dissolving the above formulation (1.0 g.) in one liter of 50 p.p.m. hard water (calculated as /3 calcium carbonate and /3 magnesium carbonate).
  • the low detersive standard (Control A) contained the formulation (1.0 g.) dissolved in one liter of 180 ppm. water (same basis).
  • RDRs Relative detergency ratings
  • Table I presents the detergency data on a group of representative alkylphenol disulfonates, all having at least ortho alkyl attachment. For comparison, the detergency rating is given for a linear alkylbenzene sulfonate (LAS) (having from 11 to 14 carbon atoms straight chain alkyl groups) both with and without a phosphate builder.
  • LAS linear alkylbenzene sulfonate
  • Alkylphenol monosulfonates are known detergents and V constitute the main by-product occurring in the prepara-' tion of alkyphenol disulfonates.
  • the amount of monosulfonate in the product is determined by analyzing for the average number of surface active groups incorporated (AG1) into the alkylphenol molecule.
  • Table III presents the detergency of several mixtures of monoand di-sul- Test 50 ppm. 180 ppm.
  • alkylphenolin' which thearomatic nucleus is attached predominately to the number two carbon of the alkyl group (end chain attachment).
  • end chain attachment Essentially the same detergency results are obtained fromalkylphenol disulfonates in which the aromatic nucleus is not attached predominately to any one carbon atom of the alkyl group, but is at all possible positions (random attachment).
  • disulfonates of this invention remove soil as'eifectively TABLE II Effect of para isomer content on the detergency of alkylphenol.
  • disulfonates Isorner distribution of the Relative detergency alkylphenol disulfonate test rating (at 0.15% compound 1 concentration),
  • compositions will comprise mixtures wherein at least 10 and preferably at least 15% by weight of at least two species of the sulfonated alkylphenols are present in which R is an alkyl radical of V ;l6, 17, 18, 19, 20, 21 or 22 carbon atoms.
  • R is an alkyl radical of V ;l6, 17, 18, 19, 20, 21 or 22 carbon atoms.
  • the preferred range of carbon atoms will be from about 17 to 21 and most preferably from about 18 to 20, carbon atoms.
  • the alkylphenoldisulfonates may be employed in combination withother detergent active materials. They, are, 1,.
  • Suchmaterials mayinclude but are not limited to anticorrosion, antiredeposition, bleaching and sequestering agents, and certain organic and inorganic alkali. metal. and alkaline earth metal salts such as inorganic sulfates, carbonates or borates', Also nonphosphate builders may be included in the composition.
  • these builders are the sodium salts of nitrilotriacetic acid, ethylene didecylphenol disulfonates were'synthesized and found to a have no soil removal properties.
  • small quantities of phosphate builders may soft wa- V the effective compositions of 7 this invention include those materials which comprise a mixture of the sulfonated alkylphenols in which the alkyl be included although, of course, they are not necessary for efiective detergency.
  • Detergent active polysulfonated alkylphenols produced by reacting a sulfonating agent selected from the group consisting of sulfuric acid, chlorosulfonic acid, and oleum with a mixture of monoalkylphenols in which the alkyl groups are substantially linear and of 1622 carbon atoms and wherein the ratio of the sulfonating agent to the alkylphenol is suflicient to provide at least two mols of available S per mol of alkylphenol, the reaction being carried out at a temperature of from 0 to 150 C.
  • a sulfonating agent selected from the group consisting of sulfuric acid, chlorosulfonic acid, and oleum
  • a mixture of monoalkylphenols in which the alkyl groups are substantially linear and of 1622 carbon atoms and wherein the ratio of the sulfonating agent to the alkylphenol is suflicient to provide at least two mols of available S per mol of alkylphenol, the
  • alkylphenols for a period of time sufiicient to incorporate an average of 1.5 to 2 sulfonic acid groups per molecule into the alkylphenol, said alkylphenols being characterized in that not more than 25 mol percent of the molecules have the alkyl group attached in a position para to the phenolic hydroxyl group.
  • polysulfonated alkylphenol of claim 1 in which 10 the sulfonating agent is employed in an amount sufficient to provide from 4 to 10 mols of available S0 per mol of alkylphenol.
  • Detergent active material prepared by neutralizing the product of claim 1 with an equivalent amount of a base selected from the group consisting of alkali metal or alkaline earth metal hydroxides or oxides.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Detergent Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
US00034886A 1970-05-05 1970-05-05 Linear alkylphenol disulfonate phosphate free detergent actives Expired - Lifetime US3766254A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US3488670A 1970-05-05 1970-05-05
US00130512A US3816353A (en) 1970-05-05 1971-04-01 Method of washing fabrics using polysulfonated alkylphenols

Publications (1)

Publication Number Publication Date
US3766254A true US3766254A (en) 1973-10-16

Family

ID=26711527

Family Applications (2)

Application Number Title Priority Date Filing Date
US00034886A Expired - Lifetime US3766254A (en) 1970-05-05 1970-05-05 Linear alkylphenol disulfonate phosphate free detergent actives
US00130512A Expired - Lifetime US3816353A (en) 1970-05-05 1971-04-01 Method of washing fabrics using polysulfonated alkylphenols

Family Applications After (1)

Application Number Title Priority Date Filing Date
US00130512A Expired - Lifetime US3816353A (en) 1970-05-05 1971-04-01 Method of washing fabrics using polysulfonated alkylphenols

Country Status (8)

Country Link
US (2) US3766254A (cs)
AT (1) AT312772B (cs)
BE (1) BE766765A (cs)
DE (1) DE2121675A1 (cs)
FR (1) FR2090904A5 (cs)
GB (1) GB1321002A (cs)
NL (1) NL7106158A (cs)
SE (1) SE360108B (cs)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3974210A (en) * 1972-09-01 1976-08-10 Chevron Research Company Alkylphenol disulfonates of improved color by neutralizing with strong caustic
US4088680A (en) * 1975-02-03 1978-05-09 Chevron Research Company Linear alkyl hydrocarbyloxybenzene disulfonates
US4110367A (en) * 1976-02-02 1978-08-29 Diamond Shamrock Corporation Sulfonated alkylphenoxy acetones
US4439374A (en) * 1982-06-28 1984-03-27 Ethyl Corporation Process for sulfonating impure ortho alkylphenol
US10626350B2 (en) 2015-12-08 2020-04-21 Ecolab Usa Inc. Pressed manual dish detergent

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4058472A (en) * 1976-06-28 1977-11-15 Texaco Inc. Detergent composition
GB8810191D0 (en) * 1988-04-29 1988-06-02 Unilever Plc Liquid cleaning products
GB2232665A (en) * 1989-05-31 1990-12-19 Exxon Chemical Patents Inc Sulphonic acid derivatives and their use as emulsifiers
EP3262147B1 (en) 2015-02-26 2025-01-22 The Lubrizol Corporation Aromatic detergents and lubricating compositions thereof
WO2017105948A1 (en) 2015-12-15 2017-06-22 The Lubrizol Corporation Sulfurized catecholate detergents for lubricating compositions
US10260019B2 (en) 2016-06-30 2019-04-16 The Lubrizol Corporation Hydroxyaromatic succinimide detergents for lubricating compositions

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3974210A (en) * 1972-09-01 1976-08-10 Chevron Research Company Alkylphenol disulfonates of improved color by neutralizing with strong caustic
US4088680A (en) * 1975-02-03 1978-05-09 Chevron Research Company Linear alkyl hydrocarbyloxybenzene disulfonates
US4110367A (en) * 1976-02-02 1978-08-29 Diamond Shamrock Corporation Sulfonated alkylphenoxy acetones
US4439374A (en) * 1982-06-28 1984-03-27 Ethyl Corporation Process for sulfonating impure ortho alkylphenol
US10626350B2 (en) 2015-12-08 2020-04-21 Ecolab Usa Inc. Pressed manual dish detergent
US11268045B2 (en) 2015-12-08 2022-03-08 Ecolab Usa Inc. Pressed manual dish detergent
US11746304B2 (en) 2015-12-08 2023-09-05 Ecolab Usa Inc. Pressed manual dish detergent
US12227717B2 (en) 2015-12-08 2025-02-18 Ecolab Usa Inc. Pressed manual dish detergent

Also Published As

Publication number Publication date
FR2090904A5 (cs) 1972-01-14
AT312772B (de) 1974-01-25
NL7106158A (cs) 1971-11-09
SE360108B (cs) 1973-09-17
US3816353A (en) 1974-06-11
BE766765A (fr) 1971-10-01
DE2121675A1 (de) 1971-11-25
GB1321002A (en) 1973-06-20

Similar Documents

Publication Publication Date Title
US3766254A (en) Linear alkylphenol disulfonate phosphate free detergent actives
US4645623A (en) Alkylaryl sulfonate compositions
US3708437A (en) 2-olefin sulfonate for liquid detergents
US3325412A (en) Vicinal acylamido sulfonates as lime soap dispersants
US3346629A (en) Process for preparing beta-ethylenically unsaturated organic sulfonates
US3344174A (en) Vicinal acylamido sulfonate compounds
US3836484A (en) Phosphate-free detergent concentrates containing sulfated and sulfonated linear alkylphenols
US3705113A (en) Hydrogenated olefin sulfonate-alkyl-1,2-glycol detergent compositions
US2712530A (en) Sulfonate detergent blend
US3793226A (en) Detergent composition containing monoamide hydrocarbyl sulfonic acid salts of hydrocarbyl succinic acid
US3632517A (en) Synergistic tallow-based detergent compositions
US3980588A (en) Detergents containing olefin sulfonate
US2390295A (en) Soap composition
US3843707A (en) Phosphate-free carboxylate-sulfate detergents
US4088680A (en) Linear alkyl hydrocarbyloxybenzene disulfonates
US4687593A (en) Alkylaryl sulfonate compositions
US2223363A (en) Alkyl-hydroxy-diphenyl sulphonates and method of producing them
US4104023A (en) Ring polysulfonated alkylphenoxy alkylols as detergents
US2298696A (en) Detergent composition
US3821272A (en) Dialkylphenol sulfate-sulfonate
US3819691A (en) Linear alkyl geminal disulfonates as phosphate-free actives
US2694086A (en) Sulfonation of poly-alkyl substituted aromatic hydrocarbons
US2335193A (en) Sulphonic acid and process for producing it
US4011264A (en) Carboxymethyloxysuccinates
US3230249A (en) Salts of (n-alkyl-n-sulfoalkylamino) alkyl alkylated phenols