US3764071A - Gas turbine engine combustion apparatus - Google Patents

Gas turbine engine combustion apparatus Download PDF

Info

Publication number
US3764071A
US3764071A US00221952A US3764071DA US3764071A US 3764071 A US3764071 A US 3764071A US 00221952 A US00221952 A US 00221952A US 3764071D A US3764071D A US 3764071DA US 3764071 A US3764071 A US 3764071A
Authority
US
United States
Prior art keywords
fuel
fuel nozzle
nozzle
ducts
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00221952A
Inventor
R Carlisle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UK Secretary of State for Defence
Original Assignee
UK Secretary of State for Defence
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UK Secretary of State for Defence filed Critical UK Secretary of State for Defence
Application granted granted Critical
Publication of US3764071A publication Critical patent/US3764071A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/10Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D17/00Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
    • F23D17/002Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel gaseous or liquid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/10Air inlet arrangements for primary air
    • F23R3/12Air inlet arrangements for primary air inducing a vortex
    • F23R3/14Air inlet arrangements for primary air inducing a vortex by using swirl vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/30Application in turbines
    • F05B2220/302Application in turbines in gas turbines

Definitions

  • Sheets-Sheet l Patented Oct. 9, 1973 2 Sheets-Sheet 2
  • This invention relates to combustion apparatus for gas turbine engines and is concerned with burner assemblies for such engines.
  • a fuel burner assembly for a gas turbine engine, the burner assembly including a main fuel nozzle having a plurality of fuel supply ducts, each of said ducts being arranged to receive a supply of fuel and an annular air supply duct surrounding the main fuel nozzle, the said annular air duct arranged to receive a supply of air and the fuel supply ducts being in communication with the air supply duct.
  • Each of the fuel supply ducts may comprise two portions, one portion extending in the axial direction and the other portion extending radially and in a downstream direction and opening out into the air supply duct.
  • the air supply duct maybe formed by the outer surface of the main fuel nozzle and the inner surface of a ring member which is attached to the main fuel nozzle by a number of radially extending projections.
  • the burner assembly may include a primary fuel nozzle and a primary fuel injector the primary fuel nozzle being retained in position by the attachment of the main fuel nozzle to a fuel feed arm, the primary fuel injector being retained in position by a spring biassing the injector against a shoulder formed on the primary fuel nozzle.
  • a heat shield may be attached to the downstream face of the main fuel nozzle and a number of apertures may be provided in the main fuel nozzle to connect the air supply duct with the recess which is formed between the main fuel nozzle and the heat shield.
  • FIG. 1 shows a diagrammatic layout of a gas turbine engine having one or more fuel burners according to the present invention
  • FIG. 2 shows a part sectional elevation to an enlarged scale of one of the burners and part of one of the combustion chambers shown in FIG. 1.
  • FIG. 3 shows in greater detail the shown primary fuel injector shown in FIG. 2 and FIG. 4, shows a part end elevation of FIG. 2.
  • a gas turbine engine has compressor means 12, combustion means 14 and turbine means 16.
  • the combustion means 14 comprises a ring of equispaced combustion chambers 18 each being provided with a burner assembly 20 which is shown in detail in FIG. 2.
  • the burner assembly 20 is attached to a fuel feed arm 22 which is provided with ducts (not shown) for the flow of the primary fuel and the main fuel, the burner assembly 20 being screwed into the end of the feed arm at 2 4.
  • the burner assembly 20 comprises a main fuel nozzle 26 which is screwed onto the fuel feed arm and locates and retains a primary fuel nozzle 28.
  • a primary fuel injector 30 is located in a central bore 32 of the primary fuel nozzle 28 and is biassed in the downstream direction (indicated by arrow A) by a coil spring 34.
  • the primary fuel duct in the feed arm 22 is in communication with the bore 32 and a number of circumferentially equi-spaced ducts 36 in the primary fuel nozzle 28 are in communication with the main fuel duct in the feed arm 22.
  • Each duct 36 is axially aligned with a blind hole 38 and each hole 38 is in communication with an inclined duct 40.
  • the ducts 40 are inclined in a downstream direction at an angle of 65 to the longitudinal axis of the burner assembly.
  • a heat shield 42 is positioned in a recess 44 formed in the main fuel nozzle 26 and is held in position by four welded tags 46.
  • the heat shield has a central bore formed with a projection (not shown) which engages with an axial slot (not shown) in the primary fuel nozzle 28 to prevent rotation of the nozzle 28.
  • a number of circumferentially arranged equi-spaced ducts 48 are formed in annular flange 50 of the nozzle 26 and communicate between the recess 44 and an annular duct 52 with which the ducts 40 also communicate.
  • the ducts 48 are inclined in an upstream direction at an angle of 45 to the longitudinal axis of the burner assembly and serve for the passage of high pres sure air from the duct 52 into the recess 44.
  • the duct 52 is formed between the main fuel nozzle 26 and a ring shaped member 54 which is secured to the nozzle 26 on a number of equi-spaced radially extending arms 56.
  • the outer and inner surfaces of the nozzle 26 and ring 54 respectively are so shaped that the duct 52 is inclined inwardly to the burner assembly axis and then outwardly at the required cone angle.
  • the combustion chamber 18 has a forwardly extending neck 58 on which are supported a number of swirler vanes 60 the inner ends of which are secured to a ring 62.
  • a duct 64 for the flow of high pressure air is formed between the outer surface of the ring 54 and the inner surface of the ring 62.
  • the primary fuel injector 30 has central bore 66 which connects with two radially extending ducts 68.
  • the ducts 68 are inclined in the downstream direction at an angle of typically approximately 80 to the burner axis and fuel passing out of these ducts is arranged to impinge against a frustoconical deflecting face formed on the primary fuel nozzle 28.
  • a screw-driver slot 70 is machined in the end face of the injector 30 so that the angular position of the ducts 68 can be varied.
  • the primary fuel injector functions as described in the copending US. application Ser. No. 221,953 filed Jan. 31, 1972 by Denis Richard Carlisle and assigned to the same assignee, the said application being now abandoned.
  • the main fuel is pumped through the ducts 40 into the annular duct 52 and the high pressure air flowing through this duct atomises the fuel and forces the fuel out of the downstream end of the duct and high pressure air flowing through the duct 64 also atomises the fuel after fuel has passed out of the duct 52.
  • At low main flows it is sometimes difficult to ensure that the fuel is completely atomised and the disposition and arrangement of the fuel ducts 40 and air duct 52 ensure that substantially all the main fuel is atomised particularly at low fuel flows.
  • High pressure air also flows through the ducts 48 into the recess 44 and out of the recess both through the annular slot between the heat shield 42 and the primary nozzle 28 and the annular slot between the heat shield 42 and the flange 50 to prevent the deposition of carbon on the heat shield 42.
  • a fuel burner assembly for a gas turbine engine comprising a main fuel nozzle having a plurality of fuel supply ducts extending therethrough, each of said fuel supply ducts being arranged to receive a supply of fuel, and an annular air supply duct surrounding the main fuel nozzle and having an upstream end for receiving a supply of air and a downstream end, said annular air supply duct being unobstructed and capable of only axial flow of air therethrough, and each of said fuel supply ducts extending through said main fuel nozzle being in communication with said annular air supply duct at a point upstream of the downstream end of said annular air duct whereby atomization of fuel takes place in said annular air duct even at low fuel flow.
  • each of said fuel ducts in said main fuel nozzle comprises two portions, one portion extending in the axial direction and the other portion extending radially and in a downstream direction and opening out into the air supply duct.
  • a fuel burner assembly as claimed in claim 1 in which the annular air supply duct is formed between the outer surface of the main fuel nozzle and the inner surface of a ring member which is attached to the main fuel nozzle by means of a plurality of radially extending members.
  • a fuel burner assembly as claimed in claim I having a primary fuel nozzle and a primary fuel injector, the primary fuel nozzle being'retained in position by the attachment of the main fuel nozzle to a fuel feed arm and the primary fuel injector being retained in position by a spring biassing the primary fuel injector against an abutment face of the primary fuel nozzle.
  • a fuel burner assembly as claimed in claim 1 including a heat shield attached to the downstream face of said main fuel nozzle and forming with said main fuel nozzle a recess.
  • a fuel burner assembly as claimed in claim 5 in which a number of ducts connect the annular air supply duct with the recess formed between the main fuel nozzle and the heat shield.
  • a fuel burner assembly for a gas turbine engine comprising a main fuel nozzle having a plurality of fuel ducts, each of said ducts being arranged to receive a supply of fuel, an annular air supply duct surrounding said main fuel nozzle, said annular air supply duct being arranged to receive a supply of air and the fuel supply ducts being in communication with the air supply duct, a primary fuel nozzle and a primary fuel injector, said primary fuel nozzle being retained in position by attachment of the main fuel nozzle to a fuel feed arm and the primary fuel injector being retained in position by a spring biasing the primary fuel injector against an abutment face of the primary fuel nozzle.

Abstract

A fuel burner assembly for a gas turbine engine has a number of main fuel ducts each one of which opens cut into an annular duct which surrounds the main fuel nozzle. Air is arranged to flow through the annular duct and completely atomise the main fuel flow and this is particularly the case at low fuel flows when it is sometimes difficult to ensure that complete atomisation takes place.

Description

United States Patent 1191 Carlisle Oct. 9, 1973 GAS TURBINE ENGINE COMBUSTION APPARATUS [75] Inventor: Richard Carlisle, Risley, England [73] Assignee: The Secretary of State for Defence in Her Britannic Majestys Government of the United Kingdom of Great Britain and Northern Ireland, London, England 22 Filed: 1811.31, 1972 21 Appl. 110.; 221,952
[30] Foreign Application Priority Data Feb. 2, 1971 Great Britain 3,657/71 [52] U.S. Cl 239/l32.5, 239/424.5, 239/433, 239/533, 60/3974 R [51] Int. Cl. F02g l/00, B05b 7/04 [58] Field of Search 239/l32.5, 127.3,
[5 6] References Cited UNITED STATES PATENTS 2,327,508 8/1943 Craig 2319/1325 Simmons 239/403 2,566,040 8/1951 2,643,916 6/1953 White et a1. 239/423 2,812,978 11/1957 Billman 239/424 2,907,529 10/1959 Ghelfi .l 239/423 2,933,259 4/1960 Raskin 239/423 2,965,303 12/1960 Jackson 239/132 5 3,468,487 9/1969 Warren 239/403 3,498,055 3/1970 Faitani et al. 239/403 3,520,480 7/1970 Halvorsen.... 239/424 3,610,537 10/1971 Nakagawa et a1. 239/424 FOREIGN PATENTS OR APPLICATIONS 869,852 6/1961 Great Britain 239/403 178,679 l2/1935 Switzerland 239/403 Primary Examiner-Robert S. Ward, Jr. Attorney-Cushman, Darby & Cushman [57] ABSTRACT and this is particularly the case at low fuel flows when it is sometimes difficult to ensure that complete atomisation takes place.
7 Claims, 4 Drawing Figures Patented Oct. 9, 1973 3,764,071
2 Sheets-Sheet l Patented Oct. 9, 1973 2 Sheets-Sheet 2 This invention relates to combustion apparatus for gas turbine engines and is concerned with burner assemblies for such engines.
At low fuel flows it is sometimes difficult to ensure that all the main fuel is atomised and the present invention seeks to provide a burner assembly in which substantially complete atomisation takes place at low fuel flow. I
According to the present invention there is provided a fuel burner assembly for a gas turbine engine, the burner assembly including a main fuel nozzle having a plurality of fuel supply ducts, each of said ducts being arranged to receive a supply of fuel and an annular air supply duct surrounding the main fuel nozzle, the said annular air duct arranged to receive a supply of air and the fuel supply ducts being in communication with the air supply duct.
Each of the fuel supply ducts may comprise two portions, one portion extending in the axial direction and the other portion extending radially and in a downstream direction and opening out into the air supply duct.
The air supply duct maybe formed by the outer surface of the main fuel nozzle and the inner surface of a ring member which is attached to the main fuel nozzle by a number of radially extending projections.
The burner assembly may include a primary fuel nozzle and a primary fuel injector the primary fuel nozzle being retained in position by the attachment of the main fuel nozzle to a fuel feed arm, the primary fuel injector being retained in position by a spring biassing the injector against a shoulder formed on the primary fuel nozzle.
A heat shield may be attached to the downstream face of the main fuel nozzle and a number of apertures may be provided in the main fuel nozzle to connect the air supply duct with the recess which is formed between the main fuel nozzle and the heat shield. By this means, a supply of air can flow into the recess and out around the heat shield to prevent the deposition of carbon.
.The invention will now be more particularly described with reference to the accompanying drawings in which,
FIG. 1 shows a diagrammatic layout of a gas turbine engine having one or more fuel burners according to the present invention,
FIG. 2 shows a part sectional elevation to an enlarged scale of one of the burners and part of one of the combustion chambers shown in FIG. 1.
FIG. 3 shows in greater detail the shown primary fuel injector shown in FIG. 2 and FIG. 4, shows a part end elevation of FIG. 2.
In FIG. 1, a gas turbine engine has compressor means 12, combustion means 14 and turbine means 16. The combustion means 14 comprises a ring of equispaced combustion chambers 18 each being provided with a burner assembly 20 which is shown in detail in FIG. 2.
In FIG. 2 the burner assembly 20 is attached to a fuel feed arm 22 which is provided with ducts (not shown) for the flow of the primary fuel and the main fuel, the burner assembly 20 being screwed into the end of the feed arm at 2 4.
The burner assembly 20 comprises a main fuel nozzle 26 which is screwed onto the fuel feed arm and locates and retains a primary fuel nozzle 28. A primary fuel injector 30 is located in a central bore 32 of the primary fuel nozzle 28 and is biassed in the downstream direction (indicated by arrow A) by a coil spring 34. The primary fuel duct in the feed arm 22 is in communication with the bore 32 and a number of circumferentially equi-spaced ducts 36 in the primary fuel nozzle 28 are in communication with the main fuel duct in the feed arm 22. Each duct 36 is axially aligned with a blind hole 38 and each hole 38 is in communication with an inclined duct 40. The ducts 40 are inclined in a downstream direction at an angle of 65 to the longitudinal axis of the burner assembly.
A heat shield 42 is positioned in a recess 44 formed in the main fuel nozzle 26 and is held in position by four welded tags 46. The heat shield has a central bore formed with a projection (not shown) which engages with an axial slot (not shown) in the primary fuel nozzle 28 to prevent rotation of the nozzle 28.
A number of circumferentially arranged equi-spaced ducts 48 are formed in annular flange 50 of the nozzle 26 and communicate between the recess 44 and an annular duct 52 with which the ducts 40 also communicate. The ducts 48 are inclined in an upstream direction at an angle of 45 to the longitudinal axis of the burner assembly and serve for the passage of high pres sure air from the duct 52 into the recess 44.
The duct 52 is formed between the main fuel nozzle 26 and a ring shaped member 54 which is secured to the nozzle 26 on a number of equi-spaced radially extending arms 56. The outer and inner surfaces of the nozzle 26 and ring 54 respectively are so shaped that the duct 52 is inclined inwardly to the burner assembly axis and then outwardly at the required cone angle.
The combustion chamber 18 has a forwardly extending neck 58 on which are supported a number of swirler vanes 60 the inner ends of which are secured to a ring 62. A duct 64 for the flow of high pressure air is formed between the outer surface of the ring 54 and the inner surface of the ring 62.
As shown in detail in FIG. 3, the primary fuel injector 30 has central bore 66 which connects with two radially extending ducts 68. The ducts 68 are inclined in the downstream direction at an angle of typically approximately 80 to the burner axis and fuel passing out of these ducts is arranged to impinge against a frustoconical deflecting face formed on the primary fuel nozzle 28. A screw-driver slot 70 is machined in the end face of the injector 30 so that the angular position of the ducts 68 can be varied.
In operation, the primary fuel injector functions as described in the copending US. application Ser. No. 221,953 filed Jan. 31, 1972 by Denis Richard Carlisle and assigned to the same assignee, the said application being now abandoned. The main fuel is pumped through the ducts 40 into the annular duct 52 and the high pressure air flowing through this duct atomises the fuel and forces the fuel out of the downstream end of the duct and high pressure air flowing through the duct 64 also atomises the fuel after fuel has passed out of the duct 52. At low main flows it is sometimes difficult to ensure that the fuel is completely atomised and the disposition and arrangement of the fuel ducts 40 and air duct 52 ensure that substantially all the main fuel is atomised particularly at low fuel flows.
High pressure air also flows through the ducts 48 into the recess 44 and out of the recess both through the annular slot between the heat shield 42 and the primary nozzle 28 and the annular slot between the heat shield 42 and the flange 50 to prevent the deposition of carbon on the heat shield 42.
I claim:
1. A fuel burner assembly for a gas turbine engine, the burner assembly comprising a main fuel nozzle having a plurality of fuel supply ducts extending therethrough, each of said fuel supply ducts being arranged to receive a supply of fuel, and an annular air supply duct surrounding the main fuel nozzle and having an upstream end for receiving a supply of air and a downstream end, said annular air supply duct being unobstructed and capable of only axial flow of air therethrough, and each of said fuel supply ducts extending through said main fuel nozzle being in communication with said annular air supply duct at a point upstream of the downstream end of said annular air duct whereby atomization of fuel takes place in said annular air duct even at low fuel flow.
2. A fuel burner assembly as claimed in claim 1 in which each of said fuel ducts in said main fuel nozzle comprises two portions, one portion extending in the axial direction and the other portion extending radially and in a downstream direction and opening out into the air supply duct. 1
3. A fuel burner assembly as claimed in claim 1 in which the annular air supply duct is formed between the outer surface of the main fuel nozzle and the inner surface of a ring member which is attached to the main fuel nozzle by means of a plurality of radially extending members.
4. A fuel burner assembly as claimed in claim I having a primary fuel nozzle and a primary fuel injector, the primary fuel nozzle being'retained in position by the attachment of the main fuel nozzle to a fuel feed arm and the primary fuel injector being retained in position by a spring biassing the primary fuel injector against an abutment face of the primary fuel nozzle.
5. A fuel burner assembly as claimed in claim 1 including a heat shield attached to the downstream face of said main fuel nozzle and forming with said main fuel nozzle a recess.
6. A fuel burner assembly as claimed in claim 5 in which a number of ducts connect the annular air supply duct with the recess formed between the main fuel nozzle and the heat shield.
7. A fuel burner assembly for a gas turbine engine, the burner assembly comprising a main fuel nozzle having a plurality of fuel ducts, each of said ducts being arranged to receive a supply of fuel, an annular air supply duct surrounding said main fuel nozzle, said annular air supply duct being arranged to receive a supply of air and the fuel supply ducts being in communication with the air supply duct, a primary fuel nozzle and a primary fuel injector, said primary fuel nozzle being retained in position by attachment of the main fuel nozzle to a fuel feed arm and the primary fuel injector being retained in position by a spring biasing the primary fuel injector against an abutment face of the primary fuel nozzle.
UNITE STATES PATENT OFFICE QERTIFICATE OF CORRECTION Patent; No. 3,76% 7 Dated October 9, 1973 Inventor(s) Denis Richard Carlisle It is certified that error appears in the above-identified patent "hat said Letters Patent are hereby corrected as shown below:
Please correct front page format as follows:
In [75] Inventor: "Richard Carlisle, Risley, England" 7 should read [75] Invenizor: --Denis Richard Carlisle,
Risley, England Signed and sealed this 1st day of January 197L|..
(SEAL) Attest:
EDWARD M.FLETG HER ,JR. RENE D; TEGTMEYER Attesting Officer Y Acting Commissioner of Patents

Claims (7)

1. A fuel burner assembly for a gas turbine engine, the burner assembly comprising a main fuel nozzle having a plurality of fuel supply ducts extending therethrough, each of said fuel supply ducts being arranged to receive a supply of fuel, and an annular air supply duct surrounding the main fuel nozzle and having an upstream end for receiving a supply of air and a downstream end, said annular air supply duct being unobstructed and capable of only axial flow of air therethrough, and each of said fuel supply ducts extending through said main fuel nozzle being in communication with said annular air supply duct at a point upstream of the downstream end of said annular air duct whereby atomization of fuel takes place in said annular air duct even at low fuel flow.
2. A fuel burner assembly as claimed in claim 1 in which each of said fuel ducts in said main fuel nozzle comprises two portions, one portion extending in the axial direction and the other portion extending radially and in a downstream direction and opening out into the air supply duct.
3. A fuel burner assembly as claimed in claim 1 in which the annular air supply duct is formed between the outer surface of the main fuel nozzle and the inner surface of a ring member which is attached to the main fuel nozzle by means of a plurality of radially extending members.
4. A fuel burner assembly as claimed in claim 1 having a primary fuel nozzle and a primary fuel injector, the primary fuel nozzle being retained in position by the attachment of the main fuel nozzle to a fuel feed arm and the primary fuel injector being retained in position by a spring biassing the primary fuel injector against an abutment face of the primary fuel nozzle.
5. A fuel burner assembly as claimed in claim 1 including a heat shield attached to the downstream face of said main fuel nozzle and forming with said main fuel nozzle a recess.
6. A fuel burner assembly as claimed in claim 5 in which a number of ducts connect the annular air supply duct with the recess formed between the main fuel nozzle and the heat shield.
7. A fuel burner assembly for a gas turbine engine, the burner assembly comprising a main fuel nozzle having a plurality of fuel ducts, each of said ducts being arranged to receive a supply of fuel, an annular air supply duct surrounding said main fuel nozzle, said annular air supply duct being arranged to receive a supply of air and the fuel supply ducts being in communication with the air supply duct, a primary fuel nozzle and a primary fuel injector, said primary fuel nozzle being retained in position by attachment of the main fuel nozzle to a fuel feed arm and the primary fuel injector being retained in position by a spring biasing the primary fuel injector against an abutment face of the primary fuel nozzle.
US00221952A 1971-02-02 1972-01-31 Gas turbine engine combustion apparatus Expired - Lifetime US3764071A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB365771A GB1377184A (en) 1971-02-02 1971-02-02 Gas turbine engine combustion apparatus

Publications (1)

Publication Number Publication Date
US3764071A true US3764071A (en) 1973-10-09

Family

ID=9762466

Family Applications (2)

Application Number Title Priority Date Filing Date
US00221952A Expired - Lifetime US3764071A (en) 1971-02-02 1972-01-31 Gas turbine engine combustion apparatus
US00221954A Expired - Lifetime US3788067A (en) 1971-02-02 1972-01-31 Fuel burners

Family Applications After (1)

Application Number Title Priority Date Filing Date
US00221954A Expired - Lifetime US3788067A (en) 1971-02-02 1972-01-31 Fuel burners

Country Status (2)

Country Link
US (2) US3764071A (en)
GB (1) GB1377184A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4070826A (en) * 1975-12-24 1978-01-31 General Electric Company Low pressure fuel injection system
US4198815A (en) * 1975-12-24 1980-04-22 General Electric Company Central injection fuel carburetor
US4662179A (en) * 1984-06-14 1987-05-05 Lucas Industries Public Limited Company Fuel injector
US4850194A (en) * 1986-12-11 1989-07-25 Bbc Brown Boveri Ag Burner system
US5097657A (en) * 1989-12-07 1992-03-24 Sundstrand Corporation Method of fabricating a fuel injector
US5351489A (en) * 1991-12-24 1994-10-04 Kabushiki Kaisha Toshiba Fuel jetting nozzle assembly for use in gas turbine combustor
US5365738A (en) * 1991-12-26 1994-11-22 Solar Turbines Incorporated Low emission combustion nozzle for use with a gas turbine engine
US5988531A (en) * 1997-11-25 1999-11-23 Solar Turbines Method of making a fuel injector
US6128894A (en) * 1996-12-19 2000-10-10 Asea Brown Boveri Ag Method of operating a burner
US6415594B1 (en) * 2000-05-31 2002-07-09 General Electric Company Methods and apparatus for reducing gas turbine engine emissions
WO2003091557A1 (en) * 2002-04-26 2003-11-06 Rolls-Royce Corporation Fuel premixing module for gas turbine engine combustor
US6758045B2 (en) 2002-08-30 2004-07-06 General Electric Company Methods and apparatus for operating gas turbine engines
US20040255422A1 (en) * 2003-06-18 2004-12-23 Reback Scott Mitchell Methods and apparatus for injecting cleaning fluids into combustors
EP1413830A3 (en) * 2002-10-24 2006-07-26 ROLLS-ROYCE plc Piloted airblast fuel injector with modified air splitter
US20100038455A1 (en) * 2008-08-14 2010-02-18 Rolls-Royce Plc Liquid ejector
US20100115956A1 (en) * 2008-11-11 2010-05-13 Rolls-Royce Plc Fuel injector
US20150308349A1 (en) * 2014-04-23 2015-10-29 General Electric Company Fuel delivery system
US20160341427A1 (en) * 2015-05-21 2016-11-24 Doosan Heavy Industries & Construction Co., Ltd. Fuel supply nozzle for minimizing burning damage

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4327547A (en) * 1978-11-23 1982-05-04 Rolls-Royce Limited Fuel injectors
GB2044431B (en) * 1979-03-20 1983-03-16 Rolls Royce Gas turbine
GB2055186B (en) * 1979-08-01 1983-05-25 Rolls Royce Gas turbine engine dual fuel injector
US4362022A (en) * 1980-03-03 1982-12-07 United Technologies Corporation Anti-coke fuel nozzle
US4735044A (en) * 1980-11-25 1988-04-05 General Electric Company Dual fuel path stem for a gas turbine engine
SE456601B (en) * 1980-12-02 1988-10-17 United Technologies Corp FUEL COUPLE OF DOUBLE-MOUNTING TYPE FOR A FURNACE CHAMBER IN A GAS TURBINE ENGINE
RO77519A2 (en) * 1980-12-27 1983-09-26 Institutul National De Motoare Termice,Ro FLUID FUEL INJECTOR
GB2175993B (en) * 1985-06-07 1988-12-21 Rolls Royce Improvements in or relating to dual fuel injectors
US4901524A (en) * 1987-11-20 1990-02-20 Sundstrand Corporation Staged, coaxial, multiple point fuel injection in a hot gas generator
US4854127A (en) * 1988-01-14 1989-08-08 General Electric Company Bimodal swirler injector for a gas turbine combustor
US5269468A (en) * 1992-06-22 1993-12-14 General Electric Company Fuel nozzle
US5359847B1 (en) * 1993-06-01 1996-04-09 Westinghouse Electric Corp Dual fuel ultra-flow nox combustor
US5394688A (en) * 1993-10-27 1995-03-07 Westinghouse Electric Corporation Gas turbine combustor swirl vane arrangement
US5444982A (en) * 1994-01-12 1995-08-29 General Electric Company Cyclonic prechamber with a centerbody
GB2297151B (en) * 1995-01-13 1998-04-22 Europ Gas Turbines Ltd Fuel injector arrangement for gas-or liquid-fuelled turbine
US5813232A (en) * 1995-06-05 1998-09-29 Allison Engine Company, Inc. Dry low emission combustor for gas turbine engines
US6141967A (en) * 1998-01-09 2000-11-07 General Electric Company Air fuel mixer for gas turbine combustor
JP3337427B2 (en) 1998-09-17 2002-10-21 三菱重工業株式会社 Gas turbine combustor
US6536216B2 (en) * 2000-12-08 2003-03-25 General Electric Company Apparatus for injecting fuel into gas turbine engines
ES2295423T3 (en) * 2001-12-20 2008-04-16 Alstom Technology Ltd PROCEDURE FOR INJECTION OF A FUEL / AIR MIXTURE IN A COMBUSTION CHAMBER.
US6871488B2 (en) * 2002-12-17 2005-03-29 Pratt & Whitney Canada Corp. Natural gas fuel nozzle for gas turbine engine
EP2002185B8 (en) * 2006-03-31 2016-09-14 General Electric Technology GmbH Fuel lance for a gas turbine plant and a method of operating a fuel lance
US20080078183A1 (en) * 2006-10-03 2008-04-03 General Electric Company Liquid fuel enhancement for natural gas swirl stabilized nozzle and method
US8015815B2 (en) * 2007-04-18 2011-09-13 Parker-Hannifin Corporation Fuel injector nozzles, with labyrinth grooves, for gas turbine engines
US8096132B2 (en) 2008-02-20 2012-01-17 Flexenergy Energy Systems, Inc. Air-cooled swirlerhead
US9464808B2 (en) * 2008-11-05 2016-10-11 Parker-Hannifin Corporation Nozzle tip assembly with secondary retention device
US20130199191A1 (en) * 2011-06-10 2013-08-08 Matthew D. Tyler Fuel injector with increased feed area
US20130047619A1 (en) * 2011-08-30 2013-02-28 General Electric Company Injection nozzle assembly for a gas turbomachine
DE102017101167A1 (en) 2017-01-23 2018-07-26 Man Diesel & Turbo Se Combustion chamber of a gas turbine, gas turbine and method for operating the same
US10663171B2 (en) * 2017-06-19 2020-05-26 General Electric Company Dual-fuel fuel nozzle with gas and liquid fuel capability
US11920793B1 (en) * 2023-06-23 2024-03-05 Pratt & Whitney Canada Corp. Adjustable gaseous fuel injector

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH388022A (en) * 1960-10-07 1965-02-15 Maschf Augsburg Nuernberg Ag Combustion chamber for the simultaneous combustion of gaseous and non-gaseous fuels, especially for gas turbine systems
GB1284439A (en) * 1969-12-09 1972-08-09 Rolls Royce Fuel injector for a gas turbine engine
GB1284440A (en) * 1969-12-09 1972-08-09 Rolls Royce Improvements in or relating to gas turbine engines
US3630024A (en) * 1970-02-02 1971-12-28 Gen Electric Air swirler for gas turbine combustor
US3724207A (en) * 1971-08-05 1973-04-03 Gen Motors Corp Combustion apparatus

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4070826A (en) * 1975-12-24 1978-01-31 General Electric Company Low pressure fuel injection system
US4198815A (en) * 1975-12-24 1980-04-22 General Electric Company Central injection fuel carburetor
US4662179A (en) * 1984-06-14 1987-05-05 Lucas Industries Public Limited Company Fuel injector
US4850194A (en) * 1986-12-11 1989-07-25 Bbc Brown Boveri Ag Burner system
US5097657A (en) * 1989-12-07 1992-03-24 Sundstrand Corporation Method of fabricating a fuel injector
US5351489A (en) * 1991-12-24 1994-10-04 Kabushiki Kaisha Toshiba Fuel jetting nozzle assembly for use in gas turbine combustor
US5365738A (en) * 1991-12-26 1994-11-22 Solar Turbines Incorporated Low emission combustion nozzle for use with a gas turbine engine
US6128894A (en) * 1996-12-19 2000-10-10 Asea Brown Boveri Ag Method of operating a burner
US5988531A (en) * 1997-11-25 1999-11-23 Solar Turbines Method of making a fuel injector
US6415594B1 (en) * 2000-05-31 2002-07-09 General Electric Company Methods and apparatus for reducing gas turbine engine emissions
WO2003091557A1 (en) * 2002-04-26 2003-11-06 Rolls-Royce Corporation Fuel premixing module for gas turbine engine combustor
US20040003596A1 (en) * 2002-04-26 2004-01-08 Jushan Chin Fuel premixing module for gas turbine engine combustor
US6968692B2 (en) 2002-04-26 2005-11-29 Rolls-Royce Corporation Fuel premixing module for gas turbine engine combustor
US6758045B2 (en) 2002-08-30 2004-07-06 General Electric Company Methods and apparatus for operating gas turbine engines
EP1413830A3 (en) * 2002-10-24 2006-07-26 ROLLS-ROYCE plc Piloted airblast fuel injector with modified air splitter
US20040255422A1 (en) * 2003-06-18 2004-12-23 Reback Scott Mitchell Methods and apparatus for injecting cleaning fluids into combustors
US7065955B2 (en) * 2003-06-18 2006-06-27 General Electric Company Methods and apparatus for injecting cleaning fluids into combustors
US20100038455A1 (en) * 2008-08-14 2010-02-18 Rolls-Royce Plc Liquid ejector
US20100115956A1 (en) * 2008-11-11 2010-05-13 Rolls-Royce Plc Fuel injector
US8733105B2 (en) 2008-11-11 2014-05-27 Rolls-Royce Plc Fuel injector
US20150308349A1 (en) * 2014-04-23 2015-10-29 General Electric Company Fuel delivery system
US9803555B2 (en) * 2014-04-23 2017-10-31 General Electric Company Fuel delivery system with moveably attached fuel tube
US20160341427A1 (en) * 2015-05-21 2016-11-24 Doosan Heavy Industries & Construction Co., Ltd. Fuel supply nozzle for minimizing burning damage
US10359195B2 (en) * 2015-05-21 2019-07-23 DOOSAN Heavy Industries Construction Co., LTD Fuel supply nozzle for minimizing burning damage

Also Published As

Publication number Publication date
GB1377184A (en) 1974-12-11
US3788067A (en) 1974-01-29

Similar Documents

Publication Publication Date Title
US3764071A (en) Gas turbine engine combustion apparatus
US10711699B2 (en) Auxiliary torch ignition
US2968925A (en) Fuel nozzle head for anti-coking
EP1087178B1 (en) Pre-mixing chamber for gas turbines
US5263316A (en) Turbine engine with airblast injection
US10190776B2 (en) Fuel injector system
US3720058A (en) Combustor and fuel injector
EP3341656B1 (en) Fuel nozzle assembly for a gas turbine
US5277022A (en) Air blast fuel injecton system
US2959003A (en) Fuel burner
GB1252194A (en)
CA2845156C (en) Combustor for gas turbine engine
US5027603A (en) Turbine engine with start injector
US6487861B1 (en) Combustor for gas turbine engines with low air flow swirlers
CN112005051B (en) Injection system for an annular combustion chamber of a turbine engine
US4373342A (en) Combustion equipment
US4936090A (en) Assuring reliable starting of turbine engines
EP0446311B1 (en) Turbine engine with pin injector
EP3428537B1 (en) Combustion chamber for a turbomachine with an integrated fuel nozzle connection
US5431019A (en) Combustor for gas turbine engine
US5088287A (en) Combustor for a turbine
CN109140503B (en) Dual fuel nozzle with gaseous and liquid fuel capability
US10746101B2 (en) Annular fuel manifold with a deflector
CN111043625A (en) Combustion chamber of micro gas turbine and micro gas turbine
EP3415818B1 (en) Fuel supply assembly