US3761657A - Flow switch vane with apertures covering substantially the entire surface area to minimize turbulence - Google Patents

Flow switch vane with apertures covering substantially the entire surface area to minimize turbulence Download PDF

Info

Publication number
US3761657A
US3761657A US00243934A US3761657DA US3761657A US 3761657 A US3761657 A US 3761657A US 00243934 A US00243934 A US 00243934A US 3761657D A US3761657D A US 3761657DA US 3761657 A US3761657 A US 3761657A
Authority
US
United States
Prior art keywords
flow
paddle
switch
flow switch
sensor member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00243934A
Inventor
L Miller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3761657A publication Critical patent/US3761657A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H35/00Switches operated by change of a physical condition
    • H01H35/24Switches operated by change of fluid pressure, by fluid pressure waves, or by change of fluid flow
    • H01H35/40Switches operated by change of fluid pressure, by fluid pressure waves, or by change of fluid flow actuated by devices allowing continual flow of fluid, e.g. vane

Definitions

  • ABSTRACT 5 Claims, 7 Drawing Figures BACKGROUND OF THE INVENTION Paddles and other similar devices have been in use for sensing flow in pipes for some time.
  • the paddle is rigidly connected to a switch which is normally located outside and above the pipe. When flow occursin the pipe, a dynamic head develops against the paddle and thereby activates the switch.
  • the paddle To obtain an accurate indication of flow through a pipe using such a paddle, the paddle must be of lightweight construction, provide a substantial frontal area to the flow and extend into the fluid stream.
  • the lightweight construction is required in order that the unit may have low inertia and thus be more responsive and require less force to swing the paddle.
  • the paddle In most applications, the paddle should extend across the diameter of the pipe carrying the fluid stream to insure operation with the pipe, only partially full or experiencing an anomalous flow situation.
  • the paddle must be of sufficient frontal area to provide an operative force for the switch under anticipated low velocity flow conditions.
  • the improved sensing device of this invention in its several configurations provides an increased surface area parallel to the direction of flow and a body which is pervious to the passage of fluid.
  • the device acts to sense the flow using boththe dynamic head of the flow and the drag of the fluid passing an increased surface area parallel to the direction of flow.
  • the pervious nature of the paddle prevents cavitation and helps to normalize the paddle movement.
  • the operating life of the unit near an elbow, bend or pump is greatly increased and is comparable to the standard paddle configuration in a region of uniform flow.
  • the pervious nature of the novel paddle may be realized by any one of a multitude of configurations.
  • the most basic of the designs uses a standard paddle which has had an extensive pattern of holes extending through the paddle in the direction of flow.
  • the holes are kept relatively small to insure a large amount of drag from the fluid passing therethrough.
  • By covering, the entire surface of the paddle with holes the possibility of flow about the paddle creating cavitation and extreme turbulence is greatly reduced.
  • Other configurations including a rigid screen mesh or a brush supported by a thin rigid back also provide a high amount of drag and a uniform pervious nature.
  • a paddle type sensing device for a flow switch is here disclosed.
  • the paddle is rigid, perforated, creates a great deal of drag on the passing fluid and is pervious to the flowing fluid.
  • Several configurations employing these characteristics are available.
  • FIG. 1 is a side view, partly in section, showing a sensing paddle assembled with a flow switch, and constituting a preferred embodiment of this invention.
  • FIG. 2 is a transverse sectional'view taken along lines 2-2 of FIG. 1.
  • FIG. 3 is a cross sectional view of the paddle configuration of FIG. 2 taken along lines 13-13 of FIG. 2.
  • FIG. 4 is a front view showing a modification.
  • FIG. 5 is a front view of a second modification.
  • FIG. SA is a fragmentary view of the device of FIG. 5, with the parts shown in a different position.
  • FIG. 6 is a front view of another modification.
  • the flow sensing means 10 is shown as a paddle formed from a sheet of metal.
  • the exterior dimensions of the paddle conform to present practice.
  • the paddle 10 is given a slight curvature as shown in FIG. 3 to increase its strength and rigidity for better withstanding the forces associated with the flowing fluid.
  • Many small holes 12 extend through the paddle 10 so as to cover its forward surface.
  • the holes 12 extend through parallel to the direction of the flow to create the pervious condition, required for the reduction of cavitation and turbulence.
  • the possibility that partial vacuum may build up and flow separation may occur behind the paddle 10 is greatly reduced by the presence of the pattem of holes extending across the total operative area.
  • the holes 12 are shown as being relatively small.
  • the use of small rather than large holes 12 in the flow sensing means 10 is beneficial because a greater amount of drag is created.
  • the substantial drag created by the fluid passing through the small holes 12 adds to the force created by the dynamic head on the flow sensing means 10 to create greater sensitivity of the overall system. It has been found that holes having a diameter of one-eighth inch anda diagonal distance between centers of three-sixteenth inch provide sufficient drag on the fluid and yet provide sufficient flow through the body to reduce cavitation and turbulence.
  • the density and speed of the fluid and the thickness of the flow sensing means may require selection of a different configuration.
  • the paddle 10 is held to the extended arm 14 of the switch 16 by two screws 18.
  • a flat surface 20 is machined on the arm 14 to accommodate the end of the paddle 10.
  • a pipe 22 is illustrated to show placement of the device.
  • a portion of an elbow 24 is shown to emphasize that the maximum benefit from this pervious sensing device is realized in disturbed flow conditions.
  • An access pipe 26 with a mounting flange 28 is provided for mounting of the unit. Sufficient room is provided in the access pipe 26 to provide for the maximum travel of the switch arm 14.
  • the switch 16 is normally a mechanical action switch that closes or opens an electrical circuit.
  • FIG. 4 illustrates an alternate configuration for the flow sensing device.
  • a rigid wire mesh or screen 30 is shown in place of the perforated metal sheet 10.
  • the screen 30 provides sufficient area and resistance to flow required by the flow switch 16.
  • the screen 30 is also pervious and will prevent the. build-up of vacuum and excessive turbulence behind the sensing device.
  • A- solid metal sheet 32 is provided for the coupling of the flow sensing device to the lever 14. Holes 34 are positioned to accept screws 18.
  • FIGS. and 5A illustrate another configuration which uses a disk 40 which is centered in pipe 22.
  • the pervious nature of this configuration may be altered by slightly realigning backup plate 42 so that holes 44 on plate 40 and holes 46 on plate 42 are partially misaligned. When very light flow is anticipated, the holes 44 may be blocked completely.
  • Switch arm 48 extends past the center line of disks 40 and 42 and is adjacent to plate 42 on the downstream side.
  • a central machine screw 50 supports plates 40 and 42 and permits angular adjustment between them.
  • FIG. 6 shows yet another configuration of the paddle.
  • Bristles 36 are positioned in a plane perpendicular to the direction of flow and are held in place by a conventional twisted wire backing 38.
  • the bristles 36 mustbe of sufficient strength to remain relatively perpendicular to the direction of flow for sufficient drag. Again the bristles are pervious to the passage of fluid which inhibits the formation of a partial vacuum or extreme turbulence on the downstream side of the flow sensing device 10.
  • a threaded coupling 39 is provided to connect the bristle paddle to the flow switch.
  • a flow switch having a means for sensing flow in a pipe, wherein said sensing means is pervious to fluids, said pervious sensing means comprising a brush having bristles and a thin rigid base.
  • a flow switch device for sensing flow in a pipe, said device having a sensor member extending into the path of the flow to be sensed, said sensor member having symmetrically placed apertures which cover substantially the entire effective surface of said member in order to minimize turbulence.
  • the sensor member comprises a plurality of apertured plates, one of the plates being movable relative to another of the plates to vary the degree of alignment of the apertures in the plates.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Abstract

A sensing device for a switch activated by fluid flow through a pipe. The flowing fluid exerts a force on the device which in turn activates the switch. The device in its preferred form includes a paddle with symmetrically placed apertures which cover substantially the entire effective surface and to allow flow through the body of the paddle to prevent cavitation and turbulence in the fluid. Reduction or elimination of these flow disturbances extends the service life of the paddle and its connection to the flow switch.

Description

United States Patent [191 Miller FLOW SWITCH VANE WITH APERTURES COVERING SUBSTANTIALLY THE ENTIRE SURFACE AREA TO MINIMIZE TURBULENCE [76] Inventor: Leonidas C. Miller, 1321 Sombrero Dr., Monterey Pk., Calif. 91754 [22] Filed: Apr. 14, 1972 [21] Appl. No.: 243,934
[52] 11.8. CI. ZOO/81.9 R, 73/228, 340/239 R [51] Int. Cl. HOlh 35/40 [58] Field of Search 200/8l.9 R, 81.9 M;
73/228; 116/117 R; 340/239 R, 239 F [56] References Cited UNITED STATES PATENTS 2,421,768 6/1947 Voliazzo et a1. ZOO/81.9 R X 3,387,489 6/1968 Young 340/239 R X 2,789,175 4/1957 Mahr ZOO/81.9 R 2,347,830 5/1944 Kiburz et a1. ZOO/81.9 R X 3,535,479 10/1970 Smyers Jr. et al 200/83 T FOREIGN PATENTS OR APPLICATIONS 53,637 7/1942 Netherlands 340/239 Sept. 25, 1973 OTHER PUBLICATIONS IBM Technical Disclosure; Vol. 12, No. 8, P. 1195; Flow Switch For Low-Volume Fluid Flow, by J. G. Boles; Jan., 1970 Primary Examiner-J-Ierman J. Hohauser Assistant Examiner-Robert A. Vanderhye Attorney-Charles G. Lyon et a1.
[5 7] ABSTRACT 5 Claims, 7 Drawing Figures BACKGROUND OF THE INVENTION Paddles and other similar devices have been in use for sensing flow in pipes for some time. The paddle is rigidly connected to a switch which is normally located outside and above the pipe. When flow occursin the pipe, a dynamic head develops against the paddle and thereby activates the switch.
To obtain an accurate indication of flow through a pipe using such a paddle, the paddle must be of lightweight construction, provide a substantial frontal area to the flow and extend into the fluid stream. The lightweight construction is required in order that the unit may have low inertia and thus be more responsive and require less force to swing the paddle. In most applications, the paddle should extend across the diameter of the pipe carrying the fluid stream to insure operation with the pipe, only partially full or experiencing an anomalous flow situation. Finally the paddle must be of sufficient frontal area to provide an operative force for the switch under anticipated low velocity flow conditions.
This standard configuration has proven sufficient under normal operating conditions. However, if the paddle is placed near an elbow, bend or pump, the flow takes on nonuniform characteristics and very high flow rates are produced in certain portions of the flow stream. This nonuniform flow has resulted in turbulence and cavitation around the flow switch paddle. The rapidly changing forces on the paddle have caused high loads and severe vibration of the paddle, resulting in erratic action, rapid switching and sometimes early fatigue and loss of the paddle into the system.
SUMMARY OF THE INVENTION The improved sensing device of this invention in its several configurations provides an increased surface area parallel to the direction of flow and a body which is pervious to the passage of fluid. The device acts to sense the flow using boththe dynamic head of the flow and the drag of the fluid passing an increased surface area parallel to the direction of flow. At the same time, the pervious nature of the paddle prevents cavitation and helps to normalize the paddle movement. As a result, the operating life of the unit near an elbow, bend or pump is greatly increased and is comparable to the standard paddle configuration in a region of uniform flow.
The pervious nature of the novel paddle may be realized by any one of a multitude of configurations. The most basic of the designs uses a standard paddle which has had an extensive pattern of holes extending through the paddle in the direction of flow. The holes are kept relatively small to insure a large amount of drag from the fluid passing therethrough. By covering, the entire surface of the paddle with holes, the possibility of flow about the paddle creating cavitation and extreme turbulence is greatly reduced. Other configurations including a rigid screen mesh or a brush supported by a thin rigid back also provide a high amount of drag and a uniform pervious nature.
In summary, a paddle type sensing device for a flow switch is here disclosed. The paddle is rigid, perforated, creates a great deal of drag on the passing fluid and is pervious to the flowing fluid. Several configurations employing these characteristics are available.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a side view, partly in section, showing a sensing paddle assembled with a flow switch, and constituting a preferred embodiment of this invention.
FIG. 2 is a transverse sectional'view taken along lines 2-2 of FIG. 1.
FIG. 3 is a cross sectional view of the paddle configuration of FIG. 2 taken along lines 13-13 of FIG. 2.
FIG. 4 :is a front view showing a modification.
FIG. 5 is a front view of a second modification.
FIG. SA is a fragmentary view of the device of FIG. 5, with the parts shown in a different position.
FIG. 6 is a front view of another modification.
DESCRIPTION OF THE PREFERRED EMBODIMENTS Turning now to the drawings, specifically FIGS. 1, 2 and 3, the flow sensing means 10 is shown as a paddle formed from a sheet of metal. The exterior dimensions of the paddle conform to present practice. The paddle 10 is given a slight curvature as shown in FIG. 3 to increase its strength and rigidity for better withstanding the forces associated with the flowing fluid. Many small holes 12 extend through the paddle 10 so as to cover its forward surface. The holes 12 extend through parallel to the direction of the flow to create the pervious condition, required for the reduction of cavitation and turbulence. The possibility that partial vacuum may build up and flow separation may occur behind the paddle 10 is greatly reduced by the presence of the pattem of holes extending across the total operative area. All portions of the paddle which form an obstruction to flow are immediately adjacent to at least one of the holes 12. A small area of the flow sensing means 10 about its point of attachment to the flow switch arm remains imperforate. This gives added strength to the paddle 10 around the point of attachment to the remainder of the system.
The holes 12 are shown as being relatively small. The use of small rather than large holes 12 in the flow sensing means 10 is beneficial because a greater amount of drag is created. The substantial drag created by the fluid passing through the small holes 12 adds to the force created by the dynamic head on the flow sensing means 10 to create greater sensitivity of the overall system. It has been found that holes having a diameter of one-eighth inch anda diagonal distance between centers of three-sixteenth inch provide sufficient drag on the fluid and yet provide sufficient flow through the body to reduce cavitation and turbulence. Naturally, the density and speed of the fluid and the thickness of the flow sensing means may require selection of a different configuration.
The paddle 10 is held to the extended arm 14 of the switch 16 by two screws 18. A flat surface 20 is machined on the arm 14 to accommodate the end of the paddle 10. A pipe 22 is illustrated to show placement of the device. A portion of an elbow 24 is shown to emphasize that the maximum benefit from this pervious sensing device is realized in disturbed flow conditions. An access pipe 26 with a mounting flange 28 is provided for mounting of the unit. Sufficient room is provided in the access pipe 26 to provide for the maximum travel of the switch arm 14. The switch 16 is normally a mechanical action switch that closes or opens an electrical circuit.
FIG. 4 illustrates an alternate configuration for the flow sensing device. A rigid wire mesh or screen 30 is shown in place of the perforated metal sheet 10. The screen 30 provides sufficient area and resistance to flow required by the flow switch 16. The screen 30 is also pervious and will prevent the. build-up of vacuum and excessive turbulence behind the sensing device. A- solid metal sheet 32 is provided for the coupling of the flow sensing device to the lever 14. Holes 34 are positioned to accept screws 18.
FIGS. and 5A illustrate another configuration which uses a disk 40 which is centered in pipe 22. The pervious nature of this configuration may be altered by slightly realigning backup plate 42 so that holes 44 on plate 40 and holes 46 on plate 42 are partially misaligned. When very light flow is anticipated, the holes 44 may be blocked completely. Switch arm 48 extends past the center line of disks 40 and 42 and is adjacent to plate 42 on the downstream side. A central machine screw 50 supports plates 40 and 42 and permits angular adjustment between them.
FIG. 6 shows yet another configuration of the paddle. Bristles 36 are positioned in a plane perpendicular to the direction of flow and are held in place by a conventional twisted wire backing 38. The bristles 36 mustbe of sufficient strength to remain relatively perpendicular to the direction of flow for sufficient drag. Again the bristles are pervious to the passage of fluid which inhibits the formation of a partial vacuum or extreme turbulence on the downstream side of the flow sensing device 10. A threaded coupling 39 is provided to connect the bristle paddle to the flow switch.
Having fully described my invention, it is to be understood that I am not to be limited to the details herein set forth but that my invention is of the full scope of the appended claims.
I claim:
1. A flow switch having a means for sensing flow in a pipe, wherein said sensing means is pervious to fluids, said pervious sensing means comprising a brush having bristles and a thin rigid base.
2. A flow switch device for sensing flow in a pipe, said device having a sensor member extending into the path of the flow to be sensed, said sensor member having symmetrically placed apertures which cover substantially the entire effective surface of said member in order to minimize turbulence.
3. The device of claim 2 in which the sensor member comprises a rigid screen.
4. The device of claim 2 wherein the sensor member is curved transversely to enhance structural rigidity.
5. The device of claim 2 wherein the sensor member comprises a plurality of apertured plates, one of the plates being movable relative to another of the plates to vary the degree of alignment of the apertures in the plates.

Claims (5)

1. A flow switch having a means for sensing flow in a pipe, wherein said sensing means is pervious to fluids, said pervious sensing means comprising a brush having bristles and a thin rigid base.
2. A flow switch device for sensing flow in a pipe, said device having a sensor member extending into the path of the flow to be sensed, said sensor member having symmetrically placed apertures which cover substantially the entire effective surface of said member in order to minimize turbulence.
3. The device of claim 2 in which the sensor member comprises a rigid screen.
4. The device of claim 2 wherein the sensor member is curved transversely to enhance structural rigidity.
5. The device of claim 2 wherein the sensor member comprises a plurality of apertured plates, one of the plates being movable relative to another of the plates to vary the degree of alignment of the apertures in the plates.
US00243934A 1972-04-14 1972-04-14 Flow switch vane with apertures covering substantially the entire surface area to minimize turbulence Expired - Lifetime US3761657A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US24393472A 1972-04-14 1972-04-14

Publications (1)

Publication Number Publication Date
US3761657A true US3761657A (en) 1973-09-25

Family

ID=22920705

Family Applications (1)

Application Number Title Priority Date Filing Date
US00243934A Expired - Lifetime US3761657A (en) 1972-04-14 1972-04-14 Flow switch vane with apertures covering substantially the entire surface area to minimize turbulence

Country Status (1)

Country Link
US (1) US3761657A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4361189A (en) * 1979-11-02 1982-11-30 Adams Lyle G Automatic fire extinguishing and alarm system for mobile homes
US20060048821A1 (en) * 2004-09-08 2006-03-09 Fenton John A Method and apparatus for selectively shutting off the flow of water to a building
US7299819B1 (en) * 2006-06-12 2007-11-27 John A. Fenton Water flow sensor alone and in combination with a method and apparatus for selectively shutting off the flow of water to a building
US20110113894A1 (en) * 2008-03-20 2011-05-19 Reiner Brill Flow monitor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2347830A (en) * 1942-01-10 1944-05-02 John Kiburz Pattern Company Flow indicator
US2421768A (en) * 1945-06-29 1947-06-10 Voliazzo Jesse Fuel flow warning device
US2789175A (en) * 1954-03-10 1957-04-16 Jacob K Mahr Filter condition indicator
US3387489A (en) * 1965-07-19 1968-06-11 Ingersoll Rand Canada Breakage detector for screening apparatus
US3535479A (en) * 1968-06-07 1970-10-20 Koehler Dayton Time delay pressure switch

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2347830A (en) * 1942-01-10 1944-05-02 John Kiburz Pattern Company Flow indicator
US2421768A (en) * 1945-06-29 1947-06-10 Voliazzo Jesse Fuel flow warning device
US2789175A (en) * 1954-03-10 1957-04-16 Jacob K Mahr Filter condition indicator
US3387489A (en) * 1965-07-19 1968-06-11 Ingersoll Rand Canada Breakage detector for screening apparatus
US3535479A (en) * 1968-06-07 1970-10-20 Koehler Dayton Time delay pressure switch

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IBM Technical Disclosure; Vol. 12, No. 8, P. 1195; Flow Switch For Low Volume Fluid Flow , by J. G. Boles; Jan., 1970 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4361189A (en) * 1979-11-02 1982-11-30 Adams Lyle G Automatic fire extinguishing and alarm system for mobile homes
US20060048821A1 (en) * 2004-09-08 2006-03-09 Fenton John A Method and apparatus for selectively shutting off the flow of water to a building
US7299814B2 (en) 2004-09-08 2007-11-27 Fenton John A Method and apparatus for selectively shutting off the flow of water to a building
US7299819B1 (en) * 2006-06-12 2007-11-27 John A. Fenton Water flow sensor alone and in combination with a method and apparatus for selectively shutting off the flow of water to a building
US20110113894A1 (en) * 2008-03-20 2011-05-19 Reiner Brill Flow monitor
US8397587B2 (en) * 2008-03-20 2013-03-19 Maschinenfabrik Reinhausen Gmbh Paddle-type flowmeter with magnetic coupling

Similar Documents

Publication Publication Date Title
US3761657A (en) Flow switch vane with apertures covering substantially the entire surface area to minimize turbulence
US4344459A (en) Flow control device employing elastomeric element
JP2686999B2 (en) Sealing member for valve
EP0013601B1 (en) Variable flow control valve
ES228316U (en) Low noise faucet
US3630455A (en) Spout end apparatus
KR900017044A (en) Bottom nozzle of a nuclear fuel assembly having a particle retention device and a nuclear fuel assembly having the same
ES2139895T3 (en) ASSEMBLY OF STEAM / LIQUID CONTACT DISHES AND DOWN PIPES AND THEIR METHOD OF USE.
SK393092A3 (en) Rotating percussion sprinkler
US4192465A (en) Vortex generating device with external flow interrupting body
JPS6151712B2 (en)
US3008652A (en) Emergency shower head
DE3577587D1 (en) FLOWING MACHINE.
US4356362A (en) Hazard switch arrangement
US2422527A (en) Gas separator
FI77518C (en) Noise-canceling mixing valve.
DE29802369U1 (en) Solenoid valve, especially for sanitary fittings
GB2066984A (en) A pressure reducing device
US3143882A (en) Fluid transducer
KR880001983A (en) Flow deflector
FR2405621A7 (en) ROTARY SPRINKLER WITH ADJUSTABLE IRRIGATION SURFACE
JPH09248408A (en) Strainer element
ATE116044T1 (en) NOISE SHIELDING FOR SPINDLE VALVES WITH CERAMIC SEALING WASHERS.
JPH0718505B2 (en) Pilot valve
SU1674721A1 (en) Device for introducing liquid fertilizer