US3758241A - Fuel injection pump for multi-cylinder internal combustion engines - Google Patents

Fuel injection pump for multi-cylinder internal combustion engines Download PDF

Info

Publication number
US3758241A
US3758241A US00277116A US3758241DA US3758241A US 3758241 A US3758241 A US 3758241A US 00277116 A US00277116 A US 00277116A US 3758241D A US3758241D A US 3758241DA US 3758241 A US3758241 A US 3758241A
Authority
US
United States
Prior art keywords
pump
distributor member
springs
improvement
control sleeve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00277116A
Inventor
F Eheim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Application granted granted Critical
Publication of US3758241A publication Critical patent/US3758241A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M41/00Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor
    • F02M41/08Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined
    • F02M41/10Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined pump pistons acting as the distributor
    • F02M41/12Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined pump pistons acting as the distributor the pistons rotating to act as the distributor
    • F02M41/123Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined pump pistons acting as the distributor the pistons rotating to act as the distributor characterised by means for varying fuel delivery or injection timing
    • F02M41/125Variably-timed valves controlling fuel passages
    • F02M41/126Variably-timed valves controlling fuel passages valves being mechanically or electrically adjustable sleeves slidably mounted on rotary piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M41/00Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor
    • F02M41/08Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined
    • F02M41/10Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined pump pistons acting as the distributor
    • F02M41/12Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined pump pistons acting as the distributor the pistons rotating to act as the distributor
    • F02M41/121Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined pump pistons acting as the distributor the pistons rotating to act as the distributor with piston arranged axially to driving shaft

Definitions

  • ABSTRACT [30] Foreign Application Priority Data In a fuel injection pump a pump-and-distributor mem- Aug. 26, 1971 Germany P 21 42 704.3 is axially mvably and Mammy disposed between two axially parallel compression springs which are 52 us. c1 417/494, 417 499, 417/500, Spaced apart with respect to the P axis and 123/139 AP which, through a common yoke, oppose the pressure 51 Int. CL m 04 04 7/0 F04]; 39 10 strokes of said member.
  • a control sleeve is slidably and [58] Field of Search 4'17/494, 499, 500, rmatably arranged Said pump-and-dismbutor 447/492; 23/139 AL, 139 AP 139 R member for altering the starting moment and the period of injection.
  • the angular and axial displacement of [56] References Cited the control sleeve is effected by actuating elements UNITED STATES PATENTS connected to said control sleeve and arranged radially outwardly thereof.
  • This invention relates to a fuel injection pump particularly for a multi-cylinder internal combustion engine and is of the type that has an axially reciprocating and simultaneously rotating pump-and-distributor member, a cam mechanism causing the axial displacements of the pump-and-distributor member against a return force and at least one control sleeve surrounding the pump-and-distributor member and slidable on the lateral face thereof.
  • the control sleeve cooperates with a channel having its terminal opening on the lateral face of the pump-and-distributor member.
  • the resilient return force is supplied by at least two compression springs which are arranged axially parallel with respect to, and uniformly spaced apart from the pump-anddistributor member, so that the control sleeve is adapted to reciprocate between the two compression springs.
  • FIG. 1 is an axial sectional view of the fuel injection pump according to the preferred embodiment
  • FIG. 2 is a partial axial sectional view along line Il-II of FIG. 1;
  • FIG. 3 is a' partial sectional view along line III-III of FIG. 2.
  • a housing 1 of a fuel injection pumpfor a multi-cylinder internal combustion engine there journals a drive shaft 2 to which there is keyed a radial cam disc 3.
  • the latter carries as many cams 4 as there are cylinders in theintemal combustion engine.
  • the cam track of the cam disc 3 is engaged by rollers 5 which journal on pins 6.
  • the latter in turn, are supported in a bearing ring 7 which is inserted in the pump housing I.
  • a pump-and-distributor member 8 carries at its driven end a collar 9 which is coupled with the cam disc 3 by means of a pin 10.
  • a barlike yoke 13 having a central concave face which is complemental to the convex spherical face of the disc 12 and is in a face-to-face engagement therewith.
  • the yoke 13 is engaged by one end of two coil-type compression springs 14 which, at their other end, are supported, through spring seat discs 16, by a radial face of a pump body 15 which fits into the opening of the pump housing 1.
  • the two springs 14 are spaced apart with respect to the axis of the pump-and-distributor member 8.
  • the springs 14 exert an axial force on the pump-and-distributor member 8.
  • the pump-and-distributor member 8 reciprocates and rotates in a cylindrical sleeve 19 which is firmly inserted into the pump body l5.
  • the latter is closed at its external end by a threaded closure 21 which presses a valve seat body 22 against a axial end face of the cylindrical sleeve 19.
  • a valve member 23 which in its closed position is pressed against the valve seat body 22 by means of a spring 24.
  • the inner chamber 26 defined by the pump housing 1 is filled with low-pressure fuel from a source, not shown. From the chamber 26 there extends a channel 27 which leads to an inlet port 28 passing through the cylindrical sleeve 19. The port 28 cooperates with axially parallel grooves 29 provided in a terminal portion of the pump-and-distributor member 8. The grooves 29 communicate with the pump work chamber 30 which is closed by the pressure valve. 22, 23. From the inner cavity defined by the threaded closure 21 and disposed downstream of the pressure valve 22, 23, there extends a channel 31 which is formed in the valve body 22 and in the wall of the cylindrical sleeve 19. The channel 31 merges into a radial channel 32 passing through the cylindrical sleeve 19.
  • control grooves 41 and 42 are provided in the lateral face of the pump-and-distributor member 8 and cooperate with radial controlbores 37 which, in turn, are formed in a control sleeve 43 which surrounds the pump-and-distributor member 8 and is axially and rotatably slidable thereon.
  • the number of the control bores 37 is equal to the number of the cylinders in the internal combustion engine.
  • the control groove 41 extends helically with respect to the axis of the pumpand-distributor member 8 while the control groove 42 extends parallel thereto.
  • eccentrically supported radial pin 44 For the axial displacement of the control sleeve 43 there serves an eccentrically supported radial pin 44 which projects into a transversal groove 45 provided on the control sleeve 43.
  • eccentrically supported radial pin 46 For the rotary motion of the latter there serves an eccentrically supported radial pin 46 which projects into an axially parallel longitudinal groove 47 provided in the control sleeve 43.
  • the eccentric pins 44 and 46 may be arbitrarily operated by setting shafts 49 and 48, respectively, or by adjusting means (not shown) as a function, for example, of the rpm of the internal combustion engine.
  • the beginning and the end of the fuel delivery is determined by the control grooves 42 and 4], respectively. Assuming that the pumpand-distributor member 8 rotates in the direction of the arrow A, the effective pressure stroke begins when the groove 42 leaves the associated control bore 37 and terminates when the groove 41 arrives into alignment therewith.
  • control sleeve 43 which is movable between the compression springs I4 is easily accessible by the components 44 and 46 arranged radially and necessary for its actuation.
  • control sleeves instead of a sole control sleeve which serves for independently controlling both the fuel quantities and the starting moment of the fuel injection, there may be provided two control sleeves, one controlling the beginning of the fuel injection while the other controlling the terminal moment thereof.
  • a fuel injection pump serving a multi-cylinder internal combustion engine and being of the known type that has (a) a pump-and-distributor member, (b) means for continuously rotating said pump-anddistributor member, (0) means causing said pump-anddistributor member to periodically execute pressure strokes, ((1) means continuously exerting an axially directed force on said pump-and-distributor member, said force opposing the displacement thereof in executing said delivery strokes, (e) at least one control sleeve slidably mounted on said pump-and-distributor member, (f) groove means provided on said pump-anddistributor member and cooperating with said control sleeve to control, dependent upon the position of the latter, the fuel injection during each said pressure stroke, the improvement comprising,
  • B. means connecting said springs to said pump-anddistributor member, said springs constituting said means continuously exerting an axially directed force on said pump-and-distributor member and
  • said means connecting said springs to said pump-and-distributor member being formed of a sole yoke supporting one end of said springs and including means engaging said pump-and-distributor member.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

In a fuel injection pump a pump-and-distributor member is axially movably and rotatably disposed between two axially parallel compression springs which are spaced apart 180* with respect to the pump axis and which, through a common yoke, oppose the pressure strokes of said member. A control sleeve is slidably and rotatably arranged on said pump-and-distributor member for altering the starting moment and the period of injection. The angular and axial displacement of the control sleeve is effected by actuating elements connected to said control sleeve and arranged radially outwardly thereof.

Description

finite tates atet [1 1 Eheim Sept. 11, 1973 I FUEL INJECTION PUMP FOR 2,813,523 11 1957 Bischoff 417 494 x MULTLCYLINDER INTERNAL 3,311,062 3/1967 Knapp et al. 417/494 X COMBUSTION ENGINES FOREIGN PATENTS OR APPLICATIONS [75] Inventor: Franz Eheim, Stuttgart, Germany 1,051,067 2/1959 Germany 417/494 [73] Assignee: Robert Bosch GmbH, Stuttgart,
Germany Prlmary Examiner-Carlton R. Croyle Assistant ExaminerRichard E. Gluck 1 1 Filed! g- 1, 1972 Att0meyEdwin E. Greigg [21] Appl. No.: 277,116
[57] ABSTRACT [30] Foreign Application Priority Data In a fuel injection pump a pump-and-distributor mem- Aug. 26, 1971 Germany P 21 42 704.3 is axially mvably and Mammy disposed between two axially parallel compression springs which are 52 us. c1 417/494, 417 499, 417/500, Spaced apart with respect to the P axis and 123/139 AP which, through a common yoke, oppose the pressure 51 Int. CL m 04 04 7/0 F04]; 39 10 strokes of said member. A control sleeve is slidably and [58] Field of Search 4'17/494, 499, 500, rmatably arranged Said pump-and-dismbutor 447/492; 23/139 AL, 139 AP 139 R member for altering the starting moment and the period of injection. The angular and axial displacement of [56] References Cited the control sleeve is effected by actuating elements UNITED STATES PATENTS connected to said control sleeve and arranged radially outwardly thereof. 2,794,397 6/1957 Burman 417/499 X 2,810,376 10/1957 Aldinger 417/500 X 6 Claims, 3 Drawing Figures H 21 o 'E j 4 I 29 23 a0 36 v 28 J 1 l5 8 -15 g 33- t 32 Y e T1 I 3g 1| 4B 47 H 34 1 v 1 48 9 1 I. 1 1.3 u 43 1/. K! 1 17 26 4 42 8 PATENTEUSEPI 1 ms sum-2 0F 2 FUEL HNJECTHON PUMP FOR MULTI-CYLINDER INTERNAL COMBUSTION ENGINES This invention relates to a fuel injection pump particularly for a multi-cylinder internal combustion engine and is of the type that has an axially reciprocating and simultaneously rotating pump-and-distributor member, a cam mechanism causing the axial displacements of the pump-and-distributor member against a return force and at least one control sleeve surrounding the pump-and-distributor member and slidable on the lateral face thereof. For the purpose of altering the beginning and/or the terminal moment of fuel delivery of the fuel injection pump, the control sleeve cooperates with a channel having its terminal opening on the lateral face of the pump-and-distributor member.
In fuel injection pumps of the aforenoted type, such as disclosed, for example, in U. S. Pat. No. 2,813,523, the return force for the pump-and-distributor member is generally supplied by a coil-type compression spring which is arranged beneath the pump-and-distributor member coaxially therewith. In this manner the control sleeve is radially accessible for actuating members. Such a structure, however, results in a relatively large axial dimension of the fuel injection pump.
It is an object of the invention to provide an improved fuel injection pump of the aforenoted type which has a reduced axial dimension permitting nevertheless an easy radial access of the actuating members to the control sleeve.
Briefly stated, according to the invention, the resilient return force is supplied by at least two compression springs which are arranged axially parallel with respect to, and uniformly spaced apart from the pump-anddistributor member, so that the control sleeve is adapted to reciprocate between the two compression springs.
The invention will be better understood, as well as further objects and advantages become more apparent, from the ensuing detailed specification of a preferred, although exemplary, embodiment of the invention taken in conjunction with the drawing wherein:
FIG. 1 is an axial sectional view of the fuel injection pump according to the preferred embodiment;
FIG. 2 is a partial axial sectional view along line Il-II of FIG. 1; and
FIG. 3 is a' partial sectional view along line III-III of FIG. 2.
Turning .now to FIG 1, in a housing 1 of a fuel injection pumpfor a multi-cylinder internal combustion engine there journals a drive shaft 2 to which there is keyed a radial cam disc 3. The latter carries as many cams 4 as there are cylinders in theintemal combustion engine. The cam track of the cam disc 3 is engaged by rollers 5 which journal on pins 6. The latter, in turn, are supported in a bearing ring 7 which is inserted in the pump housing I. A pump-and-distributor member 8 carries at its driven end a collar 9 which is coupled with the cam disc 3 by means of a pin 10. On the collar 9 there-are disposed, in a stacked relationship, two sliding discs II and an upwardly spherical disc 12.
Also referring now to FIG. 2, there is provided a barlike yoke 13 having a central concave face which is complemental to the convex spherical face of the disc 12 and is in a face-to-face engagement therewith. The yoke 13 is engaged by one end of two coil-type compression springs 14 which, at their other end, are supported, through spring seat discs 16, by a radial face of a pump body 15 which fits into the opening of the pump housing 1. As best seen in FIG. 3, the two springs 14 are spaced apart with respect to the axis of the pump-and-distributor member 8. By means of the aforedescribed structure, the springs 14 exert an axial force on the pump-and-distributor member 8. It is noted that by providing a common yoke 13 for both compression springs 14, manufacturing tolerances in the latter are compensated. In the pump body 15 there are press-fitted two axially parallel guiding pins 17 which project through openings 18 provided in the yoke 13 and thus secure the latter against rotation. It is thus seen that the cam disc 3 is pressed against the rollers 5 under the effect of the springs 14.
The pump-and-distributor member 8 reciprocates and rotates in a cylindrical sleeve 19 which is firmly inserted into the pump body l5. The latter is closed at its external end by a threaded closure 21 which presses a valve seat body 22 against a axial end face of the cylindrical sleeve 19. In the valve seat body 22 there is slidably arranged a valve member 23 which in its closed position is pressed against the valve seat body 22 by means of a spring 24. i
The inner chamber 26 defined by the pump housing 1 is filled with low-pressure fuel from a source, not shown. From the chamber 26 there extends a channel 27 which leads to an inlet port 28 passing through the cylindrical sleeve 19. The port 28 cooperates with axially parallel grooves 29 provided in a terminal portion of the pump-and-distributor member 8. The grooves 29 communicate with the pump work chamber 30 which is closed by the pressure valve. 22, 23. From the inner cavity defined by the threaded closure 21 and disposed downstream of the pressure valve 22, 23, there extends a channel 31 which is formed in the valve body 22 and in the wall of the cylindrical sleeve 19. The channel 31 merges into a radial channel 32 passing through the cylindrical sleeve 19. The channel 32 cooperates with an annular groove 33 in the pump-and-distributor member 8. From the annular groove 33 there extends in the pump-and-distributor member 8 a distributor groove 34 which cooperates with outlet channels 35 (only one shown). Each output channel 35-is arranged radially in the cylinder sleeve 19 and in an inclined manner in the pump body 15 and merges into an associated outlet opening 36 to which there is coupled an injection conduit (not shown) leading to an injection nozzle (also not shown) of the internal combustion engine. Similarly to the cams 4 of the cam disc 3, the axial grooves 29 and the outlet channels 35 together with the outlet openings 36 are equal in number to the cylinders of the internal combustion engine.
From the pump work chamber 30 there extends, within the pump-and-distributor member 8, an axial channel 38 to two radial channels 39 and 40 which merge into control grooves 4E and 42, respectively. The control grooves 41 and 42 are provided in the lateral face of the pump-and-distributor member 8 and cooperate with radial controlbores 37 which, in turn, are formed in a control sleeve 43 which surrounds the pump-and-distributor member 8 and is axially and rotatably slidable thereon. The number of the control bores 37 is equal to the number of the cylinders in the internal combustion engine. The control groove 41 extends helically with respect to the axis of the pumpand-distributor member 8 while the control groove 42 extends parallel thereto.
For the axial displacement of the control sleeve 43 there serves an eccentrically supported radial pin 44 which projects into a transversal groove 45 provided on the control sleeve 43. For the rotary motion of the latter there serves an eccentrically supported radial pin 46 which projects into an axially parallel longitudinal groove 47 provided in the control sleeve 43. The eccentric pins 44 and 46 may be arbitrarily operated by setting shafts 49 and 48, respectively, or by adjusting means (not shown) as a function, for example, of the rpm of the internal combustion engine.
The aforedescribed fuel injection operates in the following manner:
When the internal combustion engine is running, the rotating drive shaft 2 of the fuel injection pump and the rotating cam disc 3 generate an axial reciprocating motion and'a simultaneous rotary motion of the pumpand-distributor member 8 which is shown in the figures in its lower dead center position. During this operation the cam disc 3 is maintained in continuous contact with the rollers by the force of the return springs 14. The pump work chamber 30 is charged with fuel entering through the inlet port 28. As the cam disc 3 rotates, first the inlet port 28 is closed. During the subsequent effective pressure stroke of the pump-and-distributor member 8, the fuel is delivered from the pump work chamber 30 through the open pressure valve 22, 23 and the channels 31, 32 into the annular groove 33 and therefrom through the distributor groove 34 into one of the outlet channels 35 and the associated coupling opening 36. Therefrom the fuel is admitted to a fuel injection nozzle of the internal combustion engine.
The beginning and the end of the fuel delivery is determined by the control grooves 42 and 4], respectively. Assuming that the pumpand-distributor member 8 rotates in the direction of the arrow A, the effective pressure stroke begins when the groove 42 leaves the associated control bore 37 and terminates when the groove 41 arrives into alignment therewith.
The duration of injection and thus the quantity of the injected fuel may be varied by an axial displacement of the control sleeve 43, because in this manner the arcuate distance between the grooves 41 and 42 measured at the height of the radial control bores 37 is altered while the moment of injection start remains the same. The control sleeve 43 is axially displaced by rotating the adjusting shaft 49. The beginning moment of the injection may be varied by an angular displacement of the control sleeve 43, because in this manner the relative position between the control bores 37 and the control groove 42 is altered, while the aforenoted arcuate distance between the control grooves 41 and 42 remains the same. The control sleeve 43 is angularly displaced by turning the setting shaft 48.
Turning now to FIG. 3, it is seen that the control sleeve 43 which is movable between the compression springs I4 is easily accessible by the components 44 and 46 arranged radially and necessary for its actuation. By virtue of arranging the control sleeve 43 between the compression springs 14, there is achieved a reduction in the axial dimension of the fuel injection pump.
Instead of a sole control sleeve which serves for independently controlling both the fuel quantities and the starting moment of the fuel injection, there may be provided two control sleeves, one controlling the beginning of the fuel injection while the other controlling the terminal moment thereof.
That which is claimed is:
1. In a fuel injection pump serving a multi-cylinder internal combustion engine and being of the known type that has (a) a pump-and-distributor member, (b) means for continuously rotating said pump-anddistributor member, (0) means causing said pump-anddistributor member to periodically execute pressure strokes, ((1) means continuously exerting an axially directed force on said pump-and-distributor member, said force opposing the displacement thereof in executing said delivery strokes, (e) at least one control sleeve slidably mounted on said pump-and-distributor member, (f) groove means provided on said pump-anddistributor member and cooperating with said control sleeve to control, dependent upon the position of the latter, the fuel injection during each said pressure stroke, the improvement comprising,
A. a plurality of spaced compression springs disposed axially parallel and adjacent said pump-anddistributor member,
B. means connecting said springs to said pump-anddistributor member, said springs constituting said means continuously exerting an axially directed force on said pump-and-distributor member and C. setting means passing through the space between two adjacent springs and connected to said control sleeve to displace the same.
2. An improvement as defined in claim 1, said springs being two in number and being spaced apart 180 with respect to the axis of said pump-and-distributor member.
3. An improvement as defined in claim 1, said means connecting said springs to said pump-and-distributor member being formed of a sole yoke supporting one end of said springs and including means engaging said pump-and-distributor member.
4. An improvement as defined in claim 3, including a disc means affixed to said pump-and-distributor member and having an annular surface of spherical configuration, said means engaging said pump-anddistributor member and forming part of said yoke including a complemental spherical surface in engagement with said disc means.
5. An improvement as defined in claim 3, including means securing said yoke against rotation.
6. An improvement as defined in claim 5, said lastnamed means being formed of axially parallel fixed guiding pins passing through said yoke.

Claims (6)

1. In a fuel injection pump serving a multi-cylinder internal combustion engine and being of the known type that has (a) a pump-and-distributor member, (b) means for continuously rotating said pump-and-distributor member, (c) means causing said pumpand-distributor member to periodically execute pressure strokes, (d) meAns continuously exerting an axially directed force on said pump-and-distributor member, said force opposing the displacement thereof in executing said delivery strokes, (e) at least one control sleeve slidably mounted on said pump-and-distributor member, (f) groove means provided on said pump-and-distributor member and cooperating with said control sleeve to control, dependent upon the position of the latter, the fuel injection during each said pressure stroke, the improvement comprising, A. a plurality of spaced compression springs disposed axially parallel and adjacent said pump-and-distributor member, B. means connecting said springs to said pump-and-distributor member, said springs constituting said means continuously exerting an axially directed force on said pump-and-distributor member and C. setting means passing through the space between two adjacent springs and connected to said control sleeve to displace the same.
2. An improvement as defined in claim 1, said springs being two in number and being spaced apart 180* with respect to the axis of said pump-and-distributor member.
3. An improvement as defined in claim 1, said means connecting said springs to said pump-and-distributor member being formed of a sole yoke supporting one end of said springs and including means engaging said pump-and-distributor member.
4. An improvement as defined in claim 3, including a disc means affixed to said pump-and-distributor member and having an annular surface of spherical configuration, said means engaging said pump-and-distributor member and forming part of said yoke including a complemental spherical surface in engagement with said disc means.
5. An improvement as defined in claim 3, including means securing said yoke against rotation.
6. An improvement as defined in claim 5, said lastnamed means being formed of axially parallel fixed guiding pins passing through said yoke.
US00277116A 1971-08-26 1972-08-01 Fuel injection pump for multi-cylinder internal combustion engines Expired - Lifetime US3758241A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2142704A DE2142704C3 (en) 1971-08-26 1971-08-26 Fuel injection pump for multi-cylinder internal combustion engines

Publications (1)

Publication Number Publication Date
US3758241A true US3758241A (en) 1973-09-11

Family

ID=5817809

Family Applications (1)

Application Number Title Priority Date Filing Date
US00277116A Expired - Lifetime US3758241A (en) 1971-08-26 1972-08-01 Fuel injection pump for multi-cylinder internal combustion engines

Country Status (12)

Country Link
US (1) US3758241A (en)
JP (1) JPS5531308B2 (en)
AT (1) AT311123B (en)
BR (1) BR7205875D0 (en)
CS (1) CS157605B2 (en)
DE (1) DE2142704C3 (en)
FR (1) FR2151412A5 (en)
GB (1) GB1366048A (en)
IT (1) IT964277B (en)
PL (1) PL78254B1 (en)
RO (1) RO61989A (en)
SU (1) SU488423A3 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3942914A (en) * 1973-10-26 1976-03-09 Robert Bosch Gmbh Fuel injection pump
US4043713A (en) * 1974-10-24 1977-08-23 Robert Bosch Gmbh Fuel injection pump with screw cap insert
US4065236A (en) * 1974-10-17 1977-12-27 Robert Bosch Gmbh Fuel injection pump for an internal combustion engine
US4064845A (en) * 1975-10-22 1977-12-27 Eaton Corporation Metering valve for pilot fuel injection
US4073277A (en) * 1975-01-28 1978-02-14 Robert Bosch Gmbh Fuel injection pump for internal combustion engines
US4164922A (en) * 1976-08-27 1979-08-21 Robert Bosch Gmbh Timing control system affording maintenance of fuel quanity delivered
US4394964A (en) * 1980-06-27 1983-07-26 Institut Francais Du Petrole Fuel pump-injector unitary assembly for internal combustion engine
US4413600A (en) * 1981-04-18 1983-11-08 Diesel Kiki Co., Ltd. Distributor type fuel injection pump adapted for partial cylinder operation of an internal combustion engine
DE3325196A1 (en) * 1983-07-13 1985-01-24 Robert Bosch Gmbh, 7000 Stuttgart FUEL INJECTION PUMP FOR INTERNAL COMBUSTION ENGINES
US4535925A (en) * 1983-08-10 1985-08-20 Micro Plastics, Inc. Semi-automatic pneumatic expansion rivet gun
US4561398A (en) * 1983-06-14 1985-12-31 Spica S.P.A. Injection pump regulator systems for internal combustion engines
US4662337A (en) * 1984-10-31 1987-05-05 Robert Bosch Gmbh Fuel injection pump for internal combustion engines
US4788959A (en) * 1984-11-06 1988-12-06 Nissan Motor Company, Limited Fuel injection pump
USRE32965E (en) * 1984-07-31 1989-06-27 Robert Bosch Gmbh Fuel injection pump for internal combustion engines
US4854289A (en) * 1986-12-27 1989-08-08 Robert Bosch Gmbh Fuel injection pump for internal combustion engines
US4870936A (en) * 1986-12-23 1989-10-03 Robert Bosch Gmbh Fuel injection pump for internal combustion engines
US5127381A (en) * 1988-12-22 1992-07-07 Robert Bosch Gmbh Fuel injection pump for internal combustion engines
US5138997A (en) * 1989-06-22 1992-08-18 Robert Bosch Gmbh Fuel injection pump for internal combustion engines
US20040020463A1 (en) * 2002-07-31 2004-02-05 Anderson Michael D. Pump and hydraulic system with low pressure priming and over pressurization avoidance features
US20050013708A1 (en) * 2003-05-20 2005-01-20 Peeler Scott C. Systems and methods for providing a dynamically adjustable reciprocating fluid dispenser

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2349581C2 (en) * 1973-10-03 1983-10-13 Robert Bosch Gmbh, 7000 Stuttgart Fuel distributor injection pump for internal combustion engines
JPS5692328A (en) * 1979-12-27 1981-07-27 Diesel Kiki Co Ltd Distribution-type fuel injection pump
JPS5853646A (en) * 1981-09-24 1983-03-30 Hitachi Ltd Controller of fuel injection pump
AT380312B (en) * 1982-07-14 1986-05-12 Steyr Daimler Puch Ag FUEL INJECTION UNIT FOR CYLINDER OF A DIESEL ENGINE
DE3644147A1 (en) * 1986-12-23 1988-07-07 Bosch Gmbh Robert FUEL INJECTION PUMP FOR INTERNAL COMBUSTION ENGINES
DE3644583A1 (en) * 1986-12-27 1988-07-07 Bosch Gmbh Robert FUEL INJECTION PUMP FOR INTERNAL COMBUSTION ENGINES
DE3938780A1 (en) * 1989-11-23 1991-02-07 Bayerische Motoren Werke Ag Fuel distribution and injection system - is for Diesel engine and can be controlled either by accelerator pedal or by electrical device
DE4436733A1 (en) * 1994-10-14 1996-04-18 Bosch Gmbh Robert Fuel injection pump
CH692461A5 (en) * 1997-06-09 2002-06-28 Saphirwerk Ind Prod Device for the metered delivery of liquids.

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2794397A (en) * 1952-04-19 1957-06-04 Bosch Arma Corp Fuel injection pump
US2810376A (en) * 1954-07-29 1957-10-22 Bosch Gmbh Robert Injection pump
US2813523A (en) * 1953-10-29 1957-11-19 Bosch Arma Corp Fuel injection pump
DE1051067B (en) * 1953-02-20 1959-02-19 Texaco Development Corp Fuel injection pump
US3311062A (en) * 1964-07-10 1967-03-28 Bosch Gmbh Robert Fuel injection pump

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2794397A (en) * 1952-04-19 1957-06-04 Bosch Arma Corp Fuel injection pump
DE1051067B (en) * 1953-02-20 1959-02-19 Texaco Development Corp Fuel injection pump
US2813523A (en) * 1953-10-29 1957-11-19 Bosch Arma Corp Fuel injection pump
US2810376A (en) * 1954-07-29 1957-10-22 Bosch Gmbh Robert Injection pump
US3311062A (en) * 1964-07-10 1967-03-28 Bosch Gmbh Robert Fuel injection pump

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3942914A (en) * 1973-10-26 1976-03-09 Robert Bosch Gmbh Fuel injection pump
US4065236A (en) * 1974-10-17 1977-12-27 Robert Bosch Gmbh Fuel injection pump for an internal combustion engine
US4043713A (en) * 1974-10-24 1977-08-23 Robert Bosch Gmbh Fuel injection pump with screw cap insert
US4073277A (en) * 1975-01-28 1978-02-14 Robert Bosch Gmbh Fuel injection pump for internal combustion engines
US4064845A (en) * 1975-10-22 1977-12-27 Eaton Corporation Metering valve for pilot fuel injection
US4164922A (en) * 1976-08-27 1979-08-21 Robert Bosch Gmbh Timing control system affording maintenance of fuel quanity delivered
US4394964A (en) * 1980-06-27 1983-07-26 Institut Francais Du Petrole Fuel pump-injector unitary assembly for internal combustion engine
US4413600A (en) * 1981-04-18 1983-11-08 Diesel Kiki Co., Ltd. Distributor type fuel injection pump adapted for partial cylinder operation of an internal combustion engine
US4561398A (en) * 1983-06-14 1985-12-31 Spica S.P.A. Injection pump regulator systems for internal combustion engines
DE3325196A1 (en) * 1983-07-13 1985-01-24 Robert Bosch Gmbh, 7000 Stuttgart FUEL INJECTION PUMP FOR INTERNAL COMBUSTION ENGINES
US4535925A (en) * 1983-08-10 1985-08-20 Micro Plastics, Inc. Semi-automatic pneumatic expansion rivet gun
USRE32965E (en) * 1984-07-31 1989-06-27 Robert Bosch Gmbh Fuel injection pump for internal combustion engines
US4662337A (en) * 1984-10-31 1987-05-05 Robert Bosch Gmbh Fuel injection pump for internal combustion engines
US4788959A (en) * 1984-11-06 1988-12-06 Nissan Motor Company, Limited Fuel injection pump
US4870936A (en) * 1986-12-23 1989-10-03 Robert Bosch Gmbh Fuel injection pump for internal combustion engines
US4854289A (en) * 1986-12-27 1989-08-08 Robert Bosch Gmbh Fuel injection pump for internal combustion engines
US5127381A (en) * 1988-12-22 1992-07-07 Robert Bosch Gmbh Fuel injection pump for internal combustion engines
US5138997A (en) * 1989-06-22 1992-08-18 Robert Bosch Gmbh Fuel injection pump for internal combustion engines
US20040020463A1 (en) * 2002-07-31 2004-02-05 Anderson Michael D. Pump and hydraulic system with low pressure priming and over pressurization avoidance features
US6901911B2 (en) * 2002-07-31 2005-06-07 Caterpillar Inc Pump and hydraulic system with low pressure priming and over pressurization avoidance features
US20050013708A1 (en) * 2003-05-20 2005-01-20 Peeler Scott C. Systems and methods for providing a dynamically adjustable reciprocating fluid dispenser
US7708535B2 (en) * 2003-05-20 2010-05-04 Zaxis, Inc. Systems and methods for providing a dynamically adjustable reciprocating fluid dispenser

Also Published As

Publication number Publication date
FR2151412A5 (en) 1973-04-13
DE2142704C3 (en) 1974-04-25
CS157605B2 (en) 1974-09-16
AT311123B (en) 1973-10-25
GB1366048A (en) 1974-09-11
JPS5531308B2 (en) 1980-08-16
DE2142704B2 (en) 1973-09-27
RO61989A (en) 1977-09-15
DE2142704A1 (en) 1973-03-08
IT964277B (en) 1974-01-21
BR7205875D0 (en) 1973-08-21
PL78254B1 (en) 1975-04-30
SU488423A3 (en) 1975-10-15
JPS4831322A (en) 1973-04-24

Similar Documents

Publication Publication Date Title
US3758241A (en) Fuel injection pump for multi-cylinder internal combustion engines
US3906916A (en) Fuel injection apparatus for internal combustion engines
US3880131A (en) Fuel injection system for an internal combustion engine
US2582535A (en) Fuel injection pump
US4083345A (en) Fuel injection pump
US3943902A (en) Fuel injection pumping apparatus
US3847509A (en) Fuel injection pumps for i.c. engines
JPH05288128A (en) Distributor type fuel injection pump
US4041919A (en) Fuel injection pump for internal combustion engines, in particular for diesel engines
US2813523A (en) Fuel injection pump
US3338168A (en) Fuel injection pump
US4564341A (en) Fuel injection pump for an internal combustion engine
JPH0364708B2 (en)
US3177860A (en) Liquid fuel injection pumps for internal combustion engines
US4660522A (en) Fuel injection pump for internal combustion engines
JPH024780B2 (en)
US4446835A (en) Liquid fuel injection pumping apparatus
US2759422A (en) Fuel injection apparatus
US3506381A (en) Liquid fuel pumping apparatus for supplying fuel to internal combustion engines
US2922371A (en) Fuel injection pump
US3910723A (en) Fuel injection pumps for I.C. engines
US3861835A (en) Liquid fuel pumping apparatus
JPH023033B2 (en)
US2922369A (en) Fuel injection apparatus
US3811799A (en) Liquid fuel pumping apparatus