US3753459A - Method and apparatus for cooling and guiding strands in continuous casting machines - Google Patents
Method and apparatus for cooling and guiding strands in continuous casting machines Download PDFInfo
- Publication number
- US3753459A US3753459A US00176107A US3753459DA US3753459A US 3753459 A US3753459 A US 3753459A US 00176107 A US00176107 A US 00176107A US 3753459D A US3753459D A US 3753459DA US 3753459 A US3753459 A US 3753459A
- Authority
- US
- United States
- Prior art keywords
- casting
- guide
- areas
- cooling
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 39
- 238000009749 continuous casting Methods 0.000 title claims abstract description 16
- 238000000034 method Methods 0.000 title claims description 17
- 238000005266 casting Methods 0.000 claims abstract description 129
- 239000007921 spray Substances 0.000 claims abstract description 45
- 239000000498 cooling water Substances 0.000 claims abstract description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 30
- 238000005507 spraying Methods 0.000 claims description 8
- 229910001018 Cast iron Inorganic materials 0.000 claims description 3
- 210000001161 mammalian embryo Anatomy 0.000 claims description 2
- 230000000694 effects Effects 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- QEIQEORTEYHSJH-UHFFFAOYSA-N Armin Natural products C1=CC(=O)OC2=C(O)C(OCC(CCO)C)=CC=C21 QEIQEORTEYHSJH-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- IHQKEDIOMGYHEB-UHFFFAOYSA-M sodium dimethylarsinate Chemical class [Na+].C[As](C)([O-])=O IHQKEDIOMGYHEB-UHFFFAOYSA-M 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/12—Accessories for subsequent treating or working cast stock in situ
- B22D11/128—Accessories for subsequent treating or working cast stock in situ for removing
- B22D11/1282—Vertical casting and curving the cast stock to the horizontal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/12—Accessories for subsequent treating or working cast stock in situ
- B22D11/124—Accessories for subsequent treating or working cast stock in situ for cooling
- B22D11/1243—Accessories for subsequent treating or working cast stock in situ for cooling by using cooling grids or cooling plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/12—Accessories for subsequent treating or working cast stock in situ
- B22D11/128—Accessories for subsequent treating or working cast stock in situ for removing
Definitions
- Cited windows are cooled by sprays of cooling water from UNITED STATES PATENTS spray nozzles located in the windows. 2,284,503 5/1942 Williams l64/282 16 Claims, 5 Drawing Figures 14 ⁇ J z/ a J 8 1 1 5 i 2i y q I 11 8 PATENTED M18 21 I975 SHEEI 1 0F 2 PAlENlEuAuszl ms SHEET 2 0f 2 METHOD AND APPARATUS FOR COOLING AND GUIDING STRANDS IN CONTINUOUS CASTING MACHINES
- This invention relates to a method and apparatus for cooling and guiding a continuous casting in the secondary cooling zone of a continuous casting machine, comprising guiding the casting between guide elements contacting opposite sides of the casting and cooling the casting by spraying areas of the casting exposed by windows in said guide elements.
- a short copper mold in which cooling is indirect is followed by a cooling grate of roughly the same length as the mold.
- This cooling grate is connected to the short mold and has guide rails extending in the longitudinal direction of the casting. Fan-spray nozzles mounted in the horizontal banks between the rails spray water with considerable kinetic energy against the casting.
- the difficulty with this arrangement is that only a relatively narrow region is intensely cooled by the spray jets, and that the cooling water that flows down the casting impairs and interferes with the cooling effect of the jets.
- the cooling of the casting between and underneath the elongated guide rails varies considerably and the resultant casting may show faults.
- this object is achieved by cooling the moving casting by spraying unsupported surface areas that alternate in the longitudinal and transverse directions with supported surface areas for guiding the casting, said supported surface areas being kept substantially free from water.
- This method provides a desirable combination of guidance and cooling for continuous casting, since cooled and guided surface areas alternate along the length and width of the casting in close side-by-side and up-anddown juxaposition.
- the proposed apparatus for performing this method is characterized by the fact that the guide elements are lattice-like plates having guiding surface areas facing and contacting the opposed surface areas of the casting and conforming therewith in shape, said plates in both the longitudinal and transverse directions being provided with windows between the guiding surface areas which face the unsupported surface areas of the casting. Spray nozzles are located at the windows for spraying cooling water onto the surfaces of the casting which are exposed through the windows.
- the unsupported widths may be as wide as about 2 metres.
- cooling water is applied directly to these short surface areas a very intense cooling effect is provided'even in the immediate neighborhood of the supported surfaces.
- the method of alternately cooling and supporting the casting surface in the lengthwise direction utilizes the available casting surface to the best advantage. Since a withdrawing unit withdraws the casting downstream between two facing guide elements on opposite sides of the casting each part of the casting surface which has just been sprayed moves then downstream under a transverse guiding surface and thus becomes a supported surface.
- the proposed method supports and guides substantial areas of the surface of the casting and not merely a narrow transverse line as with a roller support.
- the size of the area wetted by the spray nozzles corresponds roughly to the area of the unsupported surface. This can be achieved in various ways, as for example, by the choice of spray noules having a spray cone of suitable aperture, by adjustment of the distance of the spray nozzles from the surface of the casting and so forth. Cooled and supported surfaces will thus directly adjoin. It is also advantageous to provide that the sprayed water should also wet those parts of the supporting guiding elements above and on each side of the nozzle that are located close to the casting in order to cool these parts that are in continuous contact with the hot casting.
- lt is further possible to spray the casting with spray nozzles that are closely adjacent in the transverse direction so that the surfaces wetted by adjacent nozzles are contiguous and together substantially cover the unsupported surface area. This is particularly advantageous for areas of the casting where no support is needed, as for example along the areas near the edges of slab castings where the risk of bulging is very much less.
- the omission of a guiding surface between the wetted surfaces permits the surface of the casting to be more efficiently cooled.
- the water sprayed on the casting should be drained away rapidly to prevent it from interfering with the cooling effect of the water spray. Since a transverse guiding surface directly below a nozzle makes contact with the casting, water may tend to accumulate above its edge and prevent the casting surface from being sprayed as desired. Arrangements should be made, therefore, to ensure that the spraying does not interfere with the draining of the water.
- the angle of the spray cone of the nozzle or the nozzle setting may be so chosen that the surface wetted by the spray does not extend completely to the transverse guiding surface below the nozzle, i.e. so that the spray cone does not quite reach the latter.
- the lower walls of the windows behind which the nozzles are mounted are preferably arranged to slope downwards away from the casting at an angle between about and 25 so that the sprayed water will first flow a short distance down the casting before running down the sloped lower wall.
- This water should not be allowed to interfere with the spray cone of the next nozzle in the direction of movement of the casting, and it should therefore also be deflected away from the next spray cone underneath. Drain holes may be provided to facilitate the removal of this water.
- the transverse walls of the windows are preferably extended beyond the spray nozzles underneath, and drain holes through the walls are preferably located further away from the casting than the nozzle.
- the method of the invention will be particularly effective if the casting moves across a plurality of consecutive rows of windows separated by the supported surfaces, and especially if the windows of consecutive rows are staggered relative to each other.
- the unsupported width of the casting surface can be continuously changed if the lattice-like guiding surfaces are arranged to extend obliquely across the direction of travel of the casting.
- the cooling of the casting can be rendered even more uniform.
- a wear-resistant cast iron has proved to be a very satisfactory material for making the lattice plates since it combines favorable properties with regard to strength and abrasion while being resistant to heat damage.
- the facing plates on opposite sides of the casting may be adjusted to comply with the required cross sections.
- Adjustment may be accomplished by using conventional means of a hydraulic or mechanical nature, such as hydraulic rams adapted to advance the guide plates up to limit stops, or thrust and draw bolts. Such devices also permit the desired path of the casting to be adjustably controlled within limits.
- FIG. 1 is a schematic vertical section through a casting machine having guide elements according to the invention.
- FIG. 2 is a fragmentary plan view of a guide element.
- FIG. 3 is a section taken on the line IIIIII in FIG.
- FIG. 4 is a section taken on the line IVIV in FIG. 2, and
- FIG. 5 is a plan view of part of a modified form of guide element.
- molten steel is poured from a tundish 1 into a water-cooled mold 2.
- the guide elements 3, 3' and 4, 4' Disposed below the mold 2 are the guide elements 3, 3' and 4, 4' which are arranged in pairs to bear against opposite sides of the casting 5 that has been formed in the mold 2.
- the casting 5 straightening withdrawn from the machine by a withdrawing and straightenein unit 6.
- the casting is cooled by being sprayed with water from spray nozzles 8.
- FIGS. 2, 3 and 4 show details of this arrangement.
- FIG. 2 is a fragmentary plan view of a guide element consisting of a lattice-like plate 3", preferably of a wear-resistant cast iron.
- the plate 3" has guide faces 10 which bear against the surface of the casting and is provided with spaced windows 11. In the region of the windows the surface areas 16 of the casting are unsupported. As shown in FIG. 3 the guide faces 10 are in contact with and support the casting 5 which in this region has not yet completely solified and encloses a liquid core 14 contained in a relatively thin frozen shell 15.
- Spray nozzles 8 are disposed in the windows 11 to spray cooling water onto the unsupported surface areas 16 so that the casting is alternately sprayed and supported in both the longitudinal direction 18 and transverse direction 19.
- the size of the sprayed surface area is so chosen that it roughly corresponds to the size of the windows 11. This can be achieved by choosing suitable nozzles and by adjusting their distance from the surface of the casting. It is important that the supported surface area of the casting be kept substantially free from water to avoid an uncontrolled cooling effect.
- the windows 11 in the lattice-like plates are square, and it is assumed that nozzles are used that deliver a full spray cone so that the sprayed area of the surface is circular. Moreover, as shown in FIG.
- the nozzles are so adjusted that a narrow unsprayed region 20 remains between the guide surface 10 and the sprayed surface. This prevents the spray cone from being disturbed by accumulated water.
- the bottom walls 21 slope rearwardly and downwardly away from the casting at an angle 22 and therefore allow inadvertently accumulating water to flow away.
- the walls may also contain holes 23 through which the water can drain.
- the angle 22 is about 15, but it may be any angle between l0 and 25 depending upon the cross section of the casting and the volume of cooling water required.
- the mouth of each spray nozzle is located within the walls that surround it.
- the rear portions of the walls 21 extend beyond the spray nozzles and that the drain holes 23 be located further away from the casting 5 than the nozzle.
- the side of the plate 3" facing the casting 5 may be subdivided, as shown in FIG. 2, into readily replaceable component plates 30,
- F108. 2 and 4 illustrate how the plate 3" is held by and attached to the steel framework.
- a member 25 which projects from frame 24 engages a window 26 in the edge of plate 3 and thereby supports the plate.
- the plate is held in fixed position on the frame by two thrust bolts 27. in order to change the spacing between two guide elements on opposite sides of a casting when the cross section of the casting is to be changed, a draw bolt 28 is provided.
- the adjustment of the spacing could be effected by other means, such as hydraulic devices cooperating with stops.
- FIG. 5 is a plan view of a plate having guide surfaces that extend at an oblique angle to the direction of movement of the casting. These oblique guide surfaces have the advantage of reducing the risk that projecting parts of the casting may be intercepted and that the casting surface may be torn open thereby as it moves across the guide surfaces.
- the windows may be circular or elliptical or otherwise shaped to conform to any particular shape of surface sprayed by a nozzle.
- the windows nearest the mold may be in the form of wide slots extending across the direction of movement of the casting, and cooling may be effected by fan-type spray nozzles. Optimum cooling can thus be achieved while the surface is at the same time afforded maximum support.
- the guide plates may be attached to the mold and participate in the customary mold oscillation.
- the gap between mold and the guide plates which otherwise continuously changes in width, remains constant, a factor which likewise assists in reducing the risk of metal break-out.
- a method of cooling and guiding a continuous casting in the secondary cooling zone of a continuous casting machine which comprises forming a continuous embryo casting in a chilled mold, guiding the casting between guide elements located downstream'from said mold, said guide elements having latticed guide faces contacting areas of the surface of the casting which are supported thereby, and cooling the moving casting by spraying with cooling water only the unsupported areas of the surface of the casting that alternate in both the longitudinal and transverse directions with said supported surface areas for guiding the casting, removing the sprayed waterto keep said supported surface areas being kept substantially free from water.
- Apparatus for cooling and guiding a continuous casting in the secondary cooling zone located downstream from the mold of a continuous casting machine comprising a pair of opposed guide elements each comprising latticed guide plates with faces for contacting areas of the surface of the casting which are supported thereby, said guide plates having windows therethrough which are bounded by said guide faces, and spray nozzles located in said windows between said guide faces for spraying cooling water through said windows onto the un-supported areas only of the surface of the casting which are exposed thereby, said window areas being shaped to keep said contacting areas substantlally free of water.
- each of said guide plates contains at least two rows of windows which are consecutive in the direction of motion of the casting and which are separated by a guide face.
- Apparatus according to claim 9 in which the angle of slope is between 10 and 25 11. Apparatus according to claim 9, in which said bottom wall contains at least one hole for draining off accumulating water.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Continuous Casting (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH1326670A CH530831A (de) | 1970-09-04 | 1970-09-04 | Verfahren und Vorrichtung zum Kühlen mittels Sprühdüsen und Führen eines Stranges in der Sekundärkühlzone einer Stranggiessanlage |
Publications (1)
Publication Number | Publication Date |
---|---|
US3753459A true US3753459A (en) | 1973-08-21 |
Family
ID=4390889
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00176107A Expired - Lifetime US3753459A (en) | 1970-09-04 | 1971-08-30 | Method and apparatus for cooling and guiding strands in continuous casting machines |
Country Status (16)
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3931848A (en) * | 1973-06-04 | 1976-01-13 | Concast Ag | Method and apparatus for cooling a strand cast in an oscillating mold during continuous casting of metals, especially steel |
US3946797A (en) * | 1972-12-05 | 1976-03-30 | Concast Ag | Arrangement for cooling and supporting a continuously cast metal strand |
US3981350A (en) * | 1974-03-08 | 1976-09-21 | Fives-Cail Babcock | Apparatus for supporting and cooling a continuously cast product |
EP0011446A1 (en) * | 1978-11-09 | 1980-05-28 | Kabushiki Kaisha Toshiba | A frequency characteristic-adjusting circuit |
US4537241A (en) * | 1982-02-25 | 1985-08-27 | Sumitomo Heavy Industries, Ltd. | Metal supporting structure for continuous casting machines |
US4572280A (en) * | 1981-04-02 | 1986-02-25 | Swiss Aluminium Ltd. | Process for cooling a continuously cast ingot during casting |
US4669526A (en) * | 1985-06-20 | 1987-06-02 | Sms Concast Inc. | Remotely adjustable continuous casting mold |
US4815519A (en) * | 1987-03-23 | 1989-03-28 | Dujardin Montbard Somenor Z. I. Lille-Seclin | Device for supporting and cooling a continuous casting emerging from a mold |
US5850871A (en) * | 1996-04-04 | 1998-12-22 | Ag Industries, Inc. | Foot guide and control system for continuous casting machine |
US20080115906A1 (en) * | 2006-11-22 | 2008-05-22 | Peterson Oren V | Method and Apparatus for Horizontal Continuous Metal Casting in a Sealed Table Caster |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2534166A1 (fr) * | 1982-10-08 | 1984-04-13 | Clecim Sa | Installation de coulee continue de l'acier |
US4687047A (en) * | 1985-08-03 | 1987-08-18 | Nippon Steel Corporation | Continuous casting method |
US4588103A (en) * | 1985-09-18 | 1986-05-13 | Rieke Corporation | Closure construction having back-up support means |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2284503A (en) * | 1939-09-14 | 1942-05-26 | Himself And Julia Lce Cox Will | Apparatus for continuous casting |
GB702719A (en) * | 1951-03-02 | 1954-01-20 | Rossi Irving | Improvements in or relating to continuous casting of metal |
US2698467A (en) * | 1950-06-05 | 1955-01-04 | Edward W Osann Jr | Method and apparatus for the continuous casting of metal |
GB759290A (en) * | 1953-02-21 | 1956-10-17 | Boehler & Co Ag Geb | An improved process of cooling billets in continuous-casting plants |
US3391725A (en) * | 1966-01-13 | 1968-07-09 | Concast Inc | Process and apparatus for cooling and supporting a continuous casting strand |
US3399716A (en) * | 1966-01-17 | 1968-09-03 | Concast Inc | Method for cooling hot metal, especially continuously cast metal |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49659A (enrdf_load_stackoverflow) * | 1972-04-21 | 1974-01-07 |
-
1970
- 1970-09-04 CH CH1326670A patent/CH530831A/de not_active IP Right Cessation
-
1971
- 1971-08-30 US US00176107A patent/US3753459A/en not_active Expired - Lifetime
- 1971-09-02 GB GB4110171A patent/GB1354758A/en not_active Expired
- 1971-09-02 AT AT766271A patent/AT316037B/de not_active IP Right Cessation
- 1971-09-02 FR FR7131801A patent/FR2105249B1/fr not_active Expired
- 1971-09-02 LU LU63835D patent/LU63835A1/xx unknown
- 1971-09-03 CA CA122,139A patent/CA944121A/en not_active Expired
- 1971-09-03 JP JP46068018A patent/JPS5111565B1/ja active Pending
- 1971-09-03 BE BE772165A patent/BE772165A/xx not_active IP Right Cessation
- 1971-09-03 AU AU33100/71A patent/AU457483B2/en not_active Expired
- 1971-09-03 SE SE7111168A patent/SE396895B/xx unknown
- 1971-09-03 YU YU2250/71A patent/YU35219B/xx unknown
- 1971-09-03 NL NL7112127.A patent/NL157821B/xx not_active IP Right Cessation
- 1971-09-03 ZA ZA715905A patent/ZA715905B/xx unknown
- 1971-09-03 ES ES395110A patent/ES395110A1/es not_active Expired
- 1971-09-04 RO RO68123A patent/RO59394A/ro unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2284503A (en) * | 1939-09-14 | 1942-05-26 | Himself And Julia Lce Cox Will | Apparatus for continuous casting |
US2698467A (en) * | 1950-06-05 | 1955-01-04 | Edward W Osann Jr | Method and apparatus for the continuous casting of metal |
GB702719A (en) * | 1951-03-02 | 1954-01-20 | Rossi Irving | Improvements in or relating to continuous casting of metal |
GB759290A (en) * | 1953-02-21 | 1956-10-17 | Boehler & Co Ag Geb | An improved process of cooling billets in continuous-casting plants |
US3391725A (en) * | 1966-01-13 | 1968-07-09 | Concast Inc | Process and apparatus for cooling and supporting a continuous casting strand |
US3399716A (en) * | 1966-01-17 | 1968-09-03 | Concast Inc | Method for cooling hot metal, especially continuously cast metal |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3946797A (en) * | 1972-12-05 | 1976-03-30 | Concast Ag | Arrangement for cooling and supporting a continuously cast metal strand |
US3931848A (en) * | 1973-06-04 | 1976-01-13 | Concast Ag | Method and apparatus for cooling a strand cast in an oscillating mold during continuous casting of metals, especially steel |
US3981350A (en) * | 1974-03-08 | 1976-09-21 | Fives-Cail Babcock | Apparatus for supporting and cooling a continuously cast product |
EP0011446A1 (en) * | 1978-11-09 | 1980-05-28 | Kabushiki Kaisha Toshiba | A frequency characteristic-adjusting circuit |
US4572280A (en) * | 1981-04-02 | 1986-02-25 | Swiss Aluminium Ltd. | Process for cooling a continuously cast ingot during casting |
US4537241A (en) * | 1982-02-25 | 1985-08-27 | Sumitomo Heavy Industries, Ltd. | Metal supporting structure for continuous casting machines |
US4669526A (en) * | 1985-06-20 | 1987-06-02 | Sms Concast Inc. | Remotely adjustable continuous casting mold |
US4815519A (en) * | 1987-03-23 | 1989-03-28 | Dujardin Montbard Somenor Z. I. Lille-Seclin | Device for supporting and cooling a continuous casting emerging from a mold |
US5850871A (en) * | 1996-04-04 | 1998-12-22 | Ag Industries, Inc. | Foot guide and control system for continuous casting machine |
US20080115906A1 (en) * | 2006-11-22 | 2008-05-22 | Peterson Oren V | Method and Apparatus for Horizontal Continuous Metal Casting in a Sealed Table Caster |
US7451804B2 (en) | 2006-11-22 | 2008-11-18 | Peterson Oren V | Method and apparatus for horizontal continuous metal casting in a sealed table caster |
Also Published As
Publication number | Publication date |
---|---|
YU35219B (en) | 1980-10-31 |
LU63835A1 (enrdf_load_stackoverflow) | 1972-06-27 |
FR2105249B1 (enrdf_load_stackoverflow) | 1974-05-10 |
CA944121A (en) | 1974-03-26 |
YU225071A (en) | 1980-04-30 |
AU457483B2 (en) | 1975-01-30 |
FR2105249A1 (enrdf_load_stackoverflow) | 1972-04-28 |
NL157821B (nl) | 1978-09-15 |
AU3310071A (en) | 1973-03-08 |
JPS5111565B1 (enrdf_load_stackoverflow) | 1976-04-12 |
ZA715905B (en) | 1972-05-31 |
NL7112127A (enrdf_load_stackoverflow) | 1972-03-07 |
BE772165A (fr) | 1972-03-03 |
RO59394A (enrdf_load_stackoverflow) | 1976-03-15 |
ES395110A1 (es) | 1973-12-16 |
GB1354758A (en) | 1974-06-05 |
CH530831A (de) | 1972-11-30 |
SE396895B (sv) | 1977-10-10 |
AT316037B (de) | 1974-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3753459A (en) | Method and apparatus for cooling and guiding strands in continuous casting machines | |
US4635702A (en) | Mold for continuous casting of steel strip | |
ES422534A1 (es) | Tobera pulverizadora para el enfriamiento de barras conti- nuas. | |
US4721152A (en) | Apparatus for continuous casting | |
DE69706510T2 (de) | Verfahren und Vorrichtung zum Giessen von Metallbändern | |
US6012508A (en) | Strip casting | |
US6003589A (en) | Strip casting apparatus | |
US3399716A (en) | Method for cooling hot metal, especially continuously cast metal | |
US5345994A (en) | Casting metal strip | |
US3209452A (en) | Method of producing bars or sections by continuous casting | |
US3628596A (en) | Contoured mold for horizontal continuous casting | |
US3931848A (en) | Method and apparatus for cooling a strand cast in an oscillating mold during continuous casting of metals, especially steel | |
US4375830A (en) | Method and apparatus for supporting a steel strand produced during a continuous strand casting method | |
US3989093A (en) | Continuous casting plant for slabs | |
US3536127A (en) | Cooling system for continuous casting machine | |
US3572423A (en) | Cooling device for castings in continuous casting installations for heavy metals or alloys thereof,particularly steel | |
US4036281A (en) | Method for continuously casting a slab | |
US4751960A (en) | Apparatus and method for cooling a continuously cast metal product | |
US3367399A (en) | Continuous casting apparatus | |
AU630337B2 (en) | Continuous casting on a solid elongated metal strand | |
US20050028962A1 (en) | Method and device for cooling and guiding a beam blank in a curved secondary cooling zone of a beam blank caster | |
CA1057931A (en) | Oscillating mould containing a mould cavity arcuately curved in casting direction | |
JP4998666B2 (ja) | 連続鋳造機用クーリンググリッド設備及び連続鋳造鋳片の製造方法 | |
AU2004238514A1 (en) | Method for producing a cast metal strip and corresponding twin roll casting installation | |
JP3377340B2 (ja) | 連続鋳造方法 |