US3749529A - Plunger packing wash system - Google Patents

Plunger packing wash system Download PDF

Info

Publication number
US3749529A
US3749529A US00115239A US3749529DA US3749529A US 3749529 A US3749529 A US 3749529A US 00115239 A US00115239 A US 00115239A US 3749529D A US3749529D A US 3749529DA US 3749529 A US3749529 A US 3749529A
Authority
US
United States
Prior art keywords
plunger
gland
wash liquid
wiping
valve means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00115239A
Inventor
D Cornelsen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Oilwell Varco LP
Original Assignee
Armco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Armco Inc filed Critical Armco Inc
Application granted granted Critical
Publication of US3749529A publication Critical patent/US3749529A/en
Assigned to NATIONAL OILWELL, A GENERAL PARTNERSHIP OF DE reassignment NATIONAL OILWELL, A GENERAL PARTNERSHIP OF DE ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: NATIONAL SUPPLY COMPANY, INC., A CORP. OF DE
Assigned to NATIONAL SUPPLY COMPANY, INC., A CORP. OF DE reassignment NATIONAL SUPPLY COMPANY, INC., A CORP. OF DE ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: ARMCO INC
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/16Casings; Cylinders; Cylinder liners or heads; Fluid connections
    • F04B53/162Adaptations of cylinders
    • F04B53/164Stoffing boxes

Definitions

  • Drilling fluid employed in the drilling operations of oil and water wells contains abrasive materials in suspension therein. These materials quickly wear the surfaces of the working parts of the pump unless the sur faces are constantly cleaned.
  • the present invention provides an improved plunger packing wash system to keep the engaging surfaces of the plunger and packing clear of all abrasive substances in suspension in the fluid pumped so as to prolong the life of the several parts of the pump beyond that common to the conventional type of equipment.
  • the improved plunger packing wash system of the present invention includes a wiping gland in the periphery of the cylinder around the plunger, the annular clearance between the gland and the plunger being controlled to provide a maximum velocity flow at the surface of the plunger. At least one annular chamber is provided in the wiping gland and at least one of the chambers so provided is packed with open pore foam continuous with the surface of the plunger. A source of wash liquid at a pressure greater than the suction pressure of the pump communicates with the wiping gland during the suction or backstroke of the plunger. Valve means responsive to the movement of the plunger controls the flow of wash liquid to the wiping gland. When the plunger moves between its extended or discharge position to its retracted or backstroke position, wash liquid communicates with the wiping gland.
  • valve means precludes the flow of wash liquid to the wiping gland, maintaining a fresh charge of wash liquid in the annular chamber of the gland. Accordingly, the wash liquid therein is slowly discharged with the drilling fluid and the plunger is continuously wiped and cleaned by the open pore foam and by the wash liquid which is maintained therearound.
  • a surge chamber and bypass arrangement may be provided in the wash system to compensate for, as well as to dampen, the resultant surges.
  • FIG. 1 is a fragmentary, longitudinal, cross sectional view of a pump showing the improved piston packing wash system of the present invention.
  • FIG. 2 is an enlarged cross sectional view showing typical annular chambers in the wiping gland with one such chamber being filled with open pore foam.
  • FIG. 3 is an enlarged fragmentary longitudinal cross sectional view of a pump similar to FIG. 1 but showing the piston and cylinder area.
  • FIG. 4 is a cross sectional view taken on the line 44 of FIG. 3.
  • FIG. 5 is an enlarged fragmentary, cross sectional view showing exemplary non-adjustable packing which may be used in lieu of spring loaded vee packing.
  • FIG. 6 is a schematic outline of an exemplary surge chamber and a by-pass arrangement which may be provided in the wash system.
  • FIG. 1 A typical pump or pumping mechanism 10, which may be employed in but which is not necessarily limited to the drilling operations of oil and water wells, is disclosed in FIG. 1.
  • the pump 10 is provided with a pump body 12 including an intake and outlet manifold 14 provided with an inlet connection 16 communicating with a well or any suitable supply reservoir and an outlet connection (not shown) communicating with any desired vessel or the like.
  • Valve seats 20 and 22 are provided at the connections between the the intake connection 16 and the outlet connection and the intake and outlet manifold 14, respectively.
  • Intake and outlet valves, such as the spring loaded check valves 24 and 26, control the flow of fluid from the intake connection 16, into the manifold 14, and through the outlet connection.
  • a plunger cylinder 28 is fixedly attached to the intake and outlet manifold 14 by means of coupling 30 and the bracket 32, which, along with the seal 34, such as an O-ring, secure the cylinder 28 and the manifold 14 in sealing engagement.
  • a plunger 36 having a plunger rod 38 is axially mounted within the cylinder 28 and movable therein between an extended position, as shown in FIG. 1, and a retracted position, as shown in FIG. 3. Movement of the plunger 36 is accomplished by joining the plunger rod 38 through suitable coupling means 40 to any desired power source.
  • a wiping gland 42 is provided in the periphery of the cylinder 28 around the plunger 36.
  • the annular clearance or annulus 44 between the wiping gland 42 and the periphery of the plunger 36 is controlled so as to provide a maximum velocity flow at the surface of the plunger 36 consistent with the plunger diameter, stroke length, and pump speed, to keep the amount of wash fluid required to the absolute minimum and effectively wash the plunger during the suction or backstroke thereof.
  • the annular clearance 44 between the wiping gland 42 and the plunger 36 may be kept as small as possible within practical limits because of machinery tolerances and the need to provide sufficient clearance to keep the rubbing of the plunger 36 and the gland 42 to a minimum. Accordingly, a high forward velocity of the wall" of clean wash fluid is produced which results in a greater length of travel or movement of the clean wash fluid for a given amount taken in as the plunger 36 moves in the suction or backstroke.
  • the wiping gland 42 includes the lands 46 which divide it into at least one annular chamber 48.
  • Open pore foam 50 is provided within at least one of the annular chambers 48 contiguous with the surface of the plunger 36 so as to provide a means of wiping the plunger 36 and keeping the wash liquid therearound.
  • Suitable packing such as spring loaded Vee packing 52, as shown in FIGS. 1 and 3, or nonadjustable packing 53, as shown in FIG. 5, along with the retaining nut or cap 54 and the bushing or retaining member 56, secure the lands 46 and the open pore foam 50 within the wiping gland 42.
  • annular chambers 48 in the wiping gland 42 is optional, as is the use of open pore foam 50 in one or more of the chambers.
  • the embodiment of FIG. 2 discloses the use of open pore foam 50 in only one of the two annular chambers 48 of the wiping gland 42.
  • the pressure of the clean wash liquid must be sufficiently greater than the main pump suction line pressure so that a positive flow of clean wash liquid can be achieved.
  • Such pressure is determined by the friction loss in the inlet lines 59, the pressure necessary to overcome the spring load on the inlet check valve 60, and the pressure necessary to effectively move the clean wash liquid through the wiping gland 42 and ahead of the open pore foam as the plunger 36 moves back during its suction or backstroke.
  • this pressure may be as high as two to three times the main pump suction line pressure.
  • the wash inlet check valve 60 closes during the extended or discharge stroke of the plunger 36, keeping a fresh charge of clean'wash liquid in the annular chambers 48 of the gland 42.
  • a suitable surge chamber and by-pass arrangement may be provided in the wash liquid supply system to compensate for, as well as to dampen, the resultant surges.
  • the source of wash liquid 58 such as a supply reservoir (not shown), is connected to the suction of a supply pump 62, which has a greater capacity than the actual demand in order to insure a steady supply of clean wash liquid to the inlets of the check valves 60.
  • the discharge of the supply pump 62 is taken to a volume tank 64.
  • a suitable by-pass 66, pressure control valve 68 and pressure gauge 70 permit regulation of the pressure in the system leading to the check valves by varying the amount of the wash liquid allowed to by-pass and return to the supply reservoir, since, as was previously explained, the supply of wash liquid exceeds the demand therefore.
  • a flow meter 72 may be positioned in the line leading to the surge chamber 74 (or surge chambers, if a surge chamber is used at each connection of the inlet lines 59) from the volume tank 64 to permit a reading of the amount of wash liquid being used.
  • the surge chamber or chambers 74 serve to dampen the normal pulsations resulting from the intermittent flow to each plunger 36, which provides for a smoother flow of wash liquid with less chance of damage to the system and better filling of the annulas 44 during the suction stroke of the pump 10.
  • the plunger packing wash system of the present invention may also be adapted for use with a close fitting sleeve-liner arrangement, not requiring a packing arrangement, if the area occupied by the spring loaded Vee packing 52, rear bushing or retaining member 56 and retaining nut or cap 54, was replaced by a very close fit, i.e., very small annular clearance, between the cylinder 28 and the plunger 36.
  • the very close fit between the cylinder 28 and the plunger 36 actually accomplishes the seal with a minimum of leakage and the fluid wash provides a clean fluid to prevent wear and/or galling of the cylinder 28 and the plunger 36.
  • Both the open pore foam 50 and the annular clearance 44 assist in wiping, cleaning and keeping the clean wash liquid around the plunger 36 during the retracted or backstroke thereof.
  • the plunger 36 moves from its retracted or backstroke position, as shown in FIG. 3, to its extended or discharge position, as shown in FIG. 1, it pushes against the drilling fluid within the cylinder 28 and the manifold 14, causing the intake valve 24 to close and the outlet valve 26 to open. The drilling fluid is then discharged through the outlet connection.
  • the increased pressure within the cylinder 28 and the manifold 14 quickly equals the pressure of the clean wash liquid 58 and the spring 61 of the check valve 60 closes the flow of clean wash liquid to the wiping gland 42.
  • a pumping mechanism for pumping fluids containing abrasive materials in suspension therein having an intake and outlet mainfold provided with an intake valve and an outlet valve, at least one cylinder communicating with said manifold, a plunger axially mounted within said cylinder and movable therein between an extended position and a retracted position, said pump pulling fluid through said intake valve intosaid manifold and said cylinder when said plunger moves from its extended position to its retracted position and discharging fluid through said outlet valve when said plunger moves from its retracted position to its extended position, the improvement, in combination therewith, comprising a wiping gland in the periphery of said cylinder around said plunger, the annular clearance between said wiping gland and said plunger being controlled to provide a maximum velocity flow at the surface of said plunger, said wiping gland being provided with at least one annular chamber, open pore foam in at least one of said chambers contiguous with the surface of said plunger, and a source of clean wash liquid at a pressure greater than the suction
  • said surge chamber and by-pass means comprises a supply pump communicating with said source of wash liquid, said supply pump having a greater capacity than the actual demand to insure a steady supply of said wash liquid to said valve means, a volume tank which receives the discharge from said supply pump and communicates with each of said valve means, a bypass communicating between said volume tank and said source of supply, second valve means to control the regulation of pressure in the system leading to said valve means by varying the amount of fluid allowed to by-pass and return to said source, and at least one surge chamber disposed between said volume tank and each of said valve means.
  • said wiping gland is provided with two annular chambers having open pore foam in each chamber.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Reciprocating Pumps (AREA)
  • Reciprocating Pumps (AREA)

Abstract

A plunger packing wash system for a pumping mechanism for fluids containing abrasive materials in suspension therein comprising a wiping gland in the periphery of the cylinder of the pumping mechanism around the plunger, the annular clearance between the gland and the plunger being controlled so as to provide a maximum velocity flow at the surface of the plunger, at least one annular chamber in the wiping gland, open pore foam in at least one of the annular chambers, and a source of wash liquid at a pressure greater than the suction pressure of the pump communicating with the wiping gland on the intake or suction stroke of the plunger.

Description

United States Patent Cornelsen 1 July 31, 1973 [54] PLUNGER PACKING WASH SYSTEM 2,678,609 5/1954 Ashton 92/865 [75] Inventor: David J. Cornelsen, Grainesville,
Primary Examiner-William L. Freeh Assistant Examiner-Gregory La Point 1 Asslgnee: 33 Steel firp Att0rneyMelville, Strasser, Foster & Hoffman 1 etown, i0
[22] Filed: Feb. 16, 1971 [57] ABSTRACT [21] Ap 1. No.: 115,239 A lunger acking wash s stern for a umping mecha- P P P y P nism for fluids containing abrasive materials in suspension therein comprising a wiping gland in the periphery 417/437 gg g gg of the cylinder of the pumping mechanism around the plunger the annular clearance between the gland and [58] Field of Search 417/540, 437, l b n d 92/86 5 87 153 the p unger elng contro e so as to provi e a maximum velocity flow at the surface of the plunger, at least [56] References Cited one annular chamber in the wiping gland, open pore foam in at least one of the annular chambers, and a UNITED STATES PATENTS source of wash liquid at a pressure greater than the suc- 2,869,5l4 1/1959 Gluss 92/153 {ion pressure of the pump communicating with the wipg lfl ing gland on the intake or suction stroke of the plunger. oes ing e 2,330,781 9/1943 Langmyhr et a] 92186.5 X 6 Claims, 6 Drawing Figures 2 Z g 26 0 59 O 30 x 40 36 O O o o I I l J 24 n Patonled July 31, 1973 3,749,529
35 Sheets-Sheet 73 -a w o o lNVENTOR/S DAVID J CORNELSEN ATTORNEYS Patented July 31, 1973 3 Sheets-Sheet 5 INVENTOR/S DAVID J CORNELSEN BY ,W/
ATTOR N EYS PLUNGER PACKING WASH SYSTEM BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to improvements in pumps employed in connection with rotary drilling of wells, and in particular, to improvements in pumps for fluids carrying abrasives in suspension in the fluid pumped.
2. Description of the Prior Art Drilling fluid employed in the drilling operations of oil and water wells contains abrasive materials in suspension therein. These materials quickly wear the surfaces of the working parts of the pump unless the sur faces are constantly cleaned.
US. Pat. No. 2,367,185, dated Jan. l6, I945, in the name of AP. Cary, is exemplary of prior art attempts to solve the aforementioned problem by flushing the piston rod and liner or cylinder with water, or other suitable fluid, at each operation of the moving part, and, at the same time, providing wiping means for the moving part to remove the abrasive substances from the contacting surfaces before the packing on either the piston or the stuffing box of the rod comes into contact with the moving surfaces.
While prior art flushing and wiping arrangements, as exemplified by Cary, have proven to be satisfactory in some respects, they have also proven to have major limitations. For example, when double acting pumps such as Cary work on the backstroke, as to require cleaning of the piston shaft during the retraction into the packing, there is a high pressure on the working system, which requires the use of an extremely high pressure wash system in order to overcome the work pressure. Additionally, pumps such as Cary only accomplish washing on the suction or backstroke, which results in a major contamination from abrasive materials in suspension in the drilling fluid on the discharge stroke.
SUMMARY OF THE INVENTION The present invention provides an improved plunger packing wash system to keep the engaging surfaces of the plunger and packing clear of all abrasive substances in suspension in the fluid pumped so as to prolong the life of the several parts of the pump beyond that common to the conventional type of equipment.
The improved plunger packing wash system of the present invention includes a wiping gland in the periphery of the cylinder around the plunger, the annular clearance between the gland and the plunger being controlled to provide a maximum velocity flow at the surface of the plunger. At least one annular chamber is provided in the wiping gland and at least one of the chambers so provided is packed with open pore foam continuous with the surface of the plunger. A source of wash liquid at a pressure greater than the suction pressure of the pump communicates with the wiping gland during the suction or backstroke of the plunger. Valve means responsive to the movement of the plunger controls the flow of wash liquid to the wiping gland. When the plunger moves between its extended or discharge position to its retracted or backstroke position, wash liquid communicates with the wiping gland. Likewise, when the plunger moves between its retracted or backstroke position to its extended or discharge position, the valve means precludes the flow of wash liquid to the wiping gland, maintaining a fresh charge of wash liquid in the annular chamber of the gland. Accordingly, the wash liquid therein is slowly discharged with the drilling fluid and the plunger is continuously wiped and cleaned by the open pore foam and by the wash liquid which is maintained therearound.
In a preferred embodiment a surge chamber and bypass arrangement may be provided in the wash system to compensate for, as well as to dampen, the resultant surges.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a fragmentary, longitudinal, cross sectional view of a pump showing the improved piston packing wash system of the present invention.
FIG. 2 is an enlarged cross sectional view showing typical annular chambers in the wiping gland with one such chamber being filled with open pore foam.
FIG. 3 is an enlarged fragmentary longitudinal cross sectional view of a pump similar to FIG. 1 but showing the piston and cylinder area.
FIG. 4 is a cross sectional view taken on the line 44 of FIG. 3.
FIG. 5 is an enlarged fragmentary, cross sectional view showing exemplary non-adjustable packing which may be used in lieu of spring loaded vee packing.
FIG. 6 is a schematic outline of an exemplary surge chamber and a by-pass arrangement which may be provided in the wash system.
DESCRIPTION OF THE PREFERRED EMBODIMENTS A typical pump or pumping mechanism 10, which may be employed in but which is not necessarily limited to the drilling operations of oil and water wells, is disclosed in FIG. 1. As can be seen, the pump 10 is provided with a pump body 12 including an intake and outlet manifold 14 provided with an inlet connection 16 communicating with a well or any suitable supply reservoir and an outlet connection (not shown) communicating with any desired vessel or the like. Valve seats 20 and 22 are provided at the connections between the the intake connection 16 and the outlet connection and the intake and outlet manifold 14, respectively. Intake and outlet valves, such as the spring loaded check valves 24 and 26, control the flow of fluid from the intake connection 16, into the manifold 14, and through the outlet connection.
A plunger cylinder 28 is fixedly attached to the intake and outlet manifold 14 by means of coupling 30 and the bracket 32, which, along with the seal 34, such as an O-ring, secure the cylinder 28 and the manifold 14 in sealing engagement.
A plunger 36 having a plunger rod 38 is axially mounted within the cylinder 28 and movable therein between an extended position, as shown in FIG. 1, and a retracted position, as shown in FIG. 3. Movement of the plunger 36 is accomplished by joining the plunger rod 38 through suitable coupling means 40 to any desired power source.
A wiping gland 42 is provided in the periphery of the cylinder 28 around the plunger 36. The annular clearance or annulus 44 between the wiping gland 42 and the periphery of the plunger 36 is controlled so as to provide a maximum velocity flow at the surface of the plunger 36 consistent with the plunger diameter, stroke length, and pump speed, to keep the amount of wash fluid required to the absolute minimum and effectively wash the plunger during the suction or backstroke thereof. For example, the annular clearance 44 between the wiping gland 42 and the plunger 36 may be kept as small as possible within practical limits because of machinery tolerances and the need to provide sufficient clearance to keep the rubbing of the plunger 36 and the gland 42 to a minimum. Accordingly, a high forward velocity of the wall" of clean wash fluid is produced which results in a greater length of travel or movement of the clean wash fluid for a given amount taken in as the plunger 36 moves in the suction or backstroke.
lt will, of course, be evident that on small diameter plungers and/or in short stroke pumps, it is more practically possible to use a closer fit between the wiping gland and the plunger and to obtain a resulting higher velocity of flow of clean wash fluid than it is on larger diameter plungers and/or in longer stroke pumps.
As can be seen, the wiping gland 42 includes the lands 46 which divide it into at least one annular chamber 48. Open pore foam 50 is provided within at least one of the annular chambers 48 contiguous with the surface of the plunger 36 so as to provide a means of wiping the plunger 36 and keeping the wash liquid therearound. Suitable packing, such as spring loaded Vee packing 52, as shown in FIGS. 1 and 3, or nonadjustable packing 53, as shown in FIG. 5, along with the retaining nut or cap 54 and the bushing or retaining member 56, secure the lands 46 and the open pore foam 50 within the wiping gland 42.
It will, or course, be understood that the number of annular chambers 48 in the wiping gland 42 is optional, as is the use of open pore foam 50 in one or more of the chambers. For example, the embodiment of FIG. 2 discloses the use of open pore foam 50 in only one of the two annular chambers 48 of the wiping gland 42.
A source of wash liquid, such as water or the like, 58, at a pressure greater than the suction pressure of the pump 10, communicates with the wiping gland 42 during the suction or backstroke of the plunger 36. Valve means, such as the check valve 60, which is responsive to the movement of the plunger 36, controls the flow of clean wash liquid to the wiping gland 42.
The pressure of the clean wash liquid must be sufficiently greater than the main pump suction line pressure so that a positive flow of clean wash liquid can be achieved. Such pressure is determined by the friction loss in the inlet lines 59, the pressure necessary to overcome the spring load on the inlet check valve 60, and the pressure necessary to effectively move the clean wash liquid through the wiping gland 42 and ahead of the open pore foam as the plunger 36 moves back during its suction or backstroke. For example, it has been found that this pressure may be as high as two to three times the main pump suction line pressure.
As will be more fully explained hereinafter, the wash inlet check valve 60 closes during the extended or discharge stroke of the plunger 36, keeping a fresh charge of clean'wash liquid in the annular chambers 48 of the gland 42.
As shown by the schematic outline of HO. 6, a suitable surge chamber and by-pass arrangement may be provided in the wash liquid supply system to compensate for, as well as to dampen, the resultant surges. The source of wash liquid 58, such as a supply reservoir (not shown), is connected to the suction of a supply pump 62, which has a greater capacity than the actual demand in order to insure a steady supply of clean wash liquid to the inlets of the check valves 60. The discharge of the supply pump 62 is taken to a volume tank 64. A suitable by-pass 66, pressure control valve 68 and pressure gauge 70 permit regulation of the pressure in the system leading to the check valves by varying the amount of the wash liquid allowed to by-pass and return to the supply reservoir, since, as was previously explained, the supply of wash liquid exceeds the demand therefore. A flow meter 72 may be positioned in the line leading to the surge chamber 74 (or surge chambers, if a surge chamber is used at each connection of the inlet lines 59) from the volume tank 64 to permit a reading of the amount of wash liquid being used. The surge chamber or chambers 74 serve to dampen the normal pulsations resulting from the intermittent flow to each plunger 36, which provides for a smoother flow of wash liquid with less chance of damage to the system and better filling of the annulas 44 during the suction stroke of the pump 10.
Further, it will be understood that the plunger packing wash system of the present invention may also be adapted for use with a close fitting sleeve-liner arrangement, not requiring a packing arrangement, if the area occupied by the spring loaded Vee packing 52, rear bushing or retaining member 56 and retaining nut or cap 54, was replaced by a very close fit, i.e., very small annular clearance, between the cylinder 28 and the plunger 36. The very close fit between the cylinder 28 and the plunger 36 actually accomplishes the seal with a minimum of leakage and the fluid wash provides a clean fluid to prevent wear and/or galling of the cylinder 28 and the plunger 36.
In operation, when the plunger 3 moves from its extended or discharge position, as shown in FIG. 1, to its retracted or backstroke position, as shown in FIG. 3, the reduction of pressure within the manifold 14 causes the intake valve 24 to open and drilling fluid is drawn through the intake connection 16 into the manifold 14 and into the cylinder 28. Contemporaneously therewith, the pressure of the clean wash liquid overcomes the load of the spring 61 in the check valve 60 and the suction pressure within the manifold 14 so that clean wash liquid fills the annular chambers 48 in the wiping gland 42. The annular clearance 44 between the wiping gland 42 and the plunger 36 is such that it provides a maximum velocity flow of the clean wash liquid at the surface of the plunger 36. Both the open pore foam 50 and the annular clearance 44 assist in wiping, cleaning and keeping the clean wash liquid around the plunger 36 during the retracted or backstroke thereof. When the plunger 36 moves from its retracted or backstroke position, as shown in FIG. 3, to its extended or discharge position, as shown in FIG. 1, it pushes against the drilling fluid within the cylinder 28 and the manifold 14, causing the intake valve 24 to close and the outlet valve 26 to open. The drilling fluid is then discharged through the outlet connection. Contemporaneously therewith, the increased pressure within the cylinder 28 and the manifold 14 quickly equals the pressure of the clean wash liquid 58 and the spring 61 of the check valve 60 closes the flow of clean wash liquid to the wiping gland 42. However, a fresh charge of clean wash liquid 58 is maintained in the annular chamhers 48 of the wiping gland 42. The open pore foam 50, the annular clearance 44 between the wiping gland 42 and the plunger 36, along with the fresh charge of clean wash liquid 58, assist in wiping, cleaning and keeping the clean wash liquid around the plunger 36 during the extended or discharge stroke.
While certain preferred embodiments of the invention have been specifically illustrated and described, it is understood that the invention is not limited thereto, as many variations will be apparent to those skilled in the art, and the invention is to be given its broadest interpretation within the terms of the following claims.
The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. In a pumping mechanism for pumping fluids containing abrasive materials in suspension therein having an intake and outlet mainfold provided with an intake valve and an outlet valve, at least one cylinder communicating with said manifold, a plunger axially mounted within said cylinder and movable therein between an extended position and a retracted position, said pump pulling fluid through said intake valve intosaid manifold and said cylinder when said plunger moves from its extended position to its retracted position and discharging fluid through said outlet valve when said plunger moves from its retracted position to its extended position, the improvement, in combination therewith, comprising a wiping gland in the periphery of said cylinder around said plunger, the annular clearance between said wiping gland and said plunger being controlled to provide a maximum velocity flow at the surface of said plunger, said wiping gland being provided with at least one annular chamber, open pore foam in at least one of said chambers contiguous with the surface of said plunger, and a source of clean wash liquid at a pressure greater than the suction pressure of said pump communicating directly with said wiping gland and said open pore foam, upstream of said open pore foam, whens said plunger moves from its extended position to its retracted position, including valve means responsive to the movement of said plunger for controlling the flow of clean wash liquid to said wiping gland, whereby said plunger is continuously wiped and cleaned both when it moves from its extended position to its retracted position, during which time clean wash liquid communicates with said wiping gland, and when Y it moves from its retracted position to its extended position, during which time said valve means precludes the flow of clean wash liquid to said wiping gland, and maintains a fresh charge of clean wash liquid within said annular chamber of said wiping gland, the fresh charge of clean wash liquid being slowly discharged with the fluid being pumped.
2. The pumping mechanism according to claim 1, wherein the pressure of said clean wash liquid is sufficiently greater than the main pump suction pressure so that a positive flow of wash liquid can be achieved.
3. The pumping mechanism according to claim 1, wherein surge chamber and by-pass means are provided between said source of wash liquid and said valve means to dampen the normal pulsations resulting from the intermittent flow of wash liquid to said plunger, providing for a smoother flow of wash liquid with less chance of damage to the system and better filling of said wiping gland during the suction stroke of said pump.
4. The pumping mechanism according to claim 3, wherein said surge chamber and by-pass means comprises a supply pump communicating with said source of wash liquid, said supply pump having a greater capacity than the actual demand to insure a steady supply of said wash liquid to said valve means, a volume tank which receives the discharge from said supply pump and communicates with each of said valve means, a bypass communicating between said volume tank and said source of supply, second valve means to control the regulation of pressure in the system leading to said valve means by varying the amount of fluid allowed to by-pass and return to said source, and at least one surge chamber disposed between said volume tank and each of said valve means.
5. The pumping mechanism according to claim 4, wherein a flow meter is disposed between said surge chamber and said volume tank to permit a reading of the amount of wash liquid being utilized.
6. The pumping mechanism according to claim 1,
wherein said wiping gland is provided with two annular chambers having open pore foam in each chamber.
52 33 warm STATES PATENT QFFICE QER'HEMQATE @F EDRECTEGN Patent 3,749,529 r Dated July 31, 1973 Invevrtofl DAVID J CORNELSEN It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
- Please correct the title page of the Patent as '1 follows: I
"Cancel the residence of the Inventor reading "Grainesville, Tex," and substitute therefor -Gainesville, Tex,-.
Signed and sealed this 18th day of December 1973.
(SEAL) V Attest:
EDWARD Mo FLETCHER, JR, RENE Do TEGTMEYER Attesting Officer Acting Commissioner of Patents

Claims (6)

1. In a pumping mechanism for pumping fluids containing abrasive materials in suspension therein having an intake and outlet mainfold provided with an intake valve and an outlet valve, at least one cylinder communicating with said manifold, a plunger axially mounted within said cylinder and movable therein between an extended position and a retracted position, said pump pulling fluid through said intake valve into said manifold and said cylinder when said plunger moves from its extended position to its retracted position and discharging fluid through said outlet valve when said plunger moves from its retracted position to its extended position, the improvement, in combination therewith, comprising a wiping gland in the periphery of said cylinder around said plunger, the annular clearance between said wiping gland and said plunger being controlled to provide a maximum velocity flow at the surface of said plunger, said wiping gland being provided with at least one annular chamber, open pore foam in at least one of said chambers contiguous with the surface of said plunger, and a source of clean wash liquid at a pressure greater than the suction pressure of said pump communicating directly with said wiping gland and said open pore foam, upstream of said open pore foam, whens said plunger moves from its extended position to its retracted position, including valve means responsive to the movement of said plunger for controlling the flow of clean wash liquid to said wiping gland, whereby said plunger is continuously wiped and cleaned both when it moves from its extended position to its retracted position, during which time clean wash liquid communicates with said wiping gland, and when it moves from its retracted position to its extended position, during which time said valve means precludes the flow of clean wash liquid to said wiping gland, and maintains a fresh charge of clean wash liquid within said annular chamber of said wiping gland, the fresh charge of clean wash liquid being slowly discharged with the fluid being pumped.
2. The pumping mechanism according to claim 1, wherein the pressure of said clean wash liquid is sufficiently greater than the main pump suction pressure so that a positive flow of wash liquid can be achieved.
3. The pumping mechanism according to claim 1, wherein surge chamber and by-pass means are provided between said source of wash liquid and said valve means to dampen the normal pulsations resulting from the intermittent flow of wash liquid to said plunger, providing for a smoother flow of wash liquid with less chance of damage to the system and better filling of said wiping gland during the suction stroke of said pump.
4. The pumping mechanism according to claim 3, wherein said surge chamber and by-pass means comprises a supply pump communicating with said source of wash liquid, said supply pump having a greater capacity than the actual demand to insure a steady supply of said wash liquid to said valve means, a volume tank which receives the discharge from said supply pump and communicates with each of said valve means, a by-pass communicating between said volume tank and said source of supply, second valve means to control the regulation of pressure in the system leading to said valve means by varying the amount of fluid allowed to by-pass and return to said source, and at least one surge chamber disposed between said volume tank and each of said valve means.
5. The pumping mechanism according to claim 4, wherein a flow meter is disposed between said surge chamber and said volume tank to permit a reading of the amount of wash liquid being utilized.
6. The pumping mechanism according to claim 1, wherein said wiping gland is provided with two annular chambers having open pore foam in each chamber.
US00115239A 1971-02-16 1971-02-16 Plunger packing wash system Expired - Lifetime US3749529A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11523971A 1971-02-16 1971-02-16

Publications (1)

Publication Number Publication Date
US3749529A true US3749529A (en) 1973-07-31

Family

ID=22360113

Family Applications (1)

Application Number Title Priority Date Filing Date
US00115239A Expired - Lifetime US3749529A (en) 1971-02-16 1971-02-16 Plunger packing wash system

Country Status (2)

Country Link
US (1) US3749529A (en)
GB (1) GB1361742A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3891356A (en) * 1973-11-21 1975-06-24 Armco Steel Corp Fluid guide plunger system
US4086029A (en) * 1976-12-06 1978-04-25 United States Steel Corporation Method and apparatus for flushing the plunger of a positive displacement pump
US4087209A (en) * 1975-12-05 1978-05-02 Aluterv Aluminiumipari Tervezo Vallalat Displacement slurry pump
US4157057A (en) * 1976-11-18 1979-06-05 Reed Tool Company Single acting piston
US4205946A (en) * 1976-09-09 1980-06-03 Huso Maurice A Slurry pump system - method for preventing slurry from entering water pumping fluids
US4419804A (en) * 1980-05-31 1983-12-13 Fichtel & Sachs Ag Method for manufacturing a piston rod unit
US20070009367A1 (en) * 2005-04-21 2007-01-11 Kmt Waterjet Systems, Inc. Close fit cylinder and plunger
US20080193299A1 (en) * 2007-02-12 2008-08-14 Kenneth Doyle Oglesby High pressure slurry plunger pump
US8056251B1 (en) 2009-09-21 2011-11-15 Regency Technologies Llc Top plate alignment template device
US11447592B2 (en) * 2017-11-07 2022-09-20 Sabic Global Technologies B.V. Piston system and high pressure homogenizer using the piston system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1483143A (en) * 1920-12-23 1924-02-12 Whitlock James Gilbert Dredging pump
US1964932A (en) * 1931-06-01 1934-07-03 Stoesling Ludwig Slush pump
US2330781A (en) * 1941-05-28 1943-09-28 Standard Oil Dev Co Conveying fluids containing solids
US2678609A (en) * 1948-03-06 1954-05-18 Emsco Mfg Company Lubricating and sealing means
US2869514A (en) * 1956-07-26 1959-01-20 Gluss Norman Air cylinder

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1483143A (en) * 1920-12-23 1924-02-12 Whitlock James Gilbert Dredging pump
US1964932A (en) * 1931-06-01 1934-07-03 Stoesling Ludwig Slush pump
US2330781A (en) * 1941-05-28 1943-09-28 Standard Oil Dev Co Conveying fluids containing solids
US2678609A (en) * 1948-03-06 1954-05-18 Emsco Mfg Company Lubricating and sealing means
US2869514A (en) * 1956-07-26 1959-01-20 Gluss Norman Air cylinder

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3891356A (en) * 1973-11-21 1975-06-24 Armco Steel Corp Fluid guide plunger system
US4087209A (en) * 1975-12-05 1978-05-02 Aluterv Aluminiumipari Tervezo Vallalat Displacement slurry pump
US4205946A (en) * 1976-09-09 1980-06-03 Huso Maurice A Slurry pump system - method for preventing slurry from entering water pumping fluids
US4157057A (en) * 1976-11-18 1979-06-05 Reed Tool Company Single acting piston
US4086029A (en) * 1976-12-06 1978-04-25 United States Steel Corporation Method and apparatus for flushing the plunger of a positive displacement pump
US4419804A (en) * 1980-05-31 1983-12-13 Fichtel & Sachs Ag Method for manufacturing a piston rod unit
US20070009367A1 (en) * 2005-04-21 2007-01-11 Kmt Waterjet Systems, Inc. Close fit cylinder and plunger
US20080193299A1 (en) * 2007-02-12 2008-08-14 Kenneth Doyle Oglesby High pressure slurry plunger pump
US7794215B2 (en) * 2007-02-12 2010-09-14 Regency Technologies Llc High pressure slurry plunger pump with clean fluid valve arrangement
US8056251B1 (en) 2009-09-21 2011-11-15 Regency Technologies Llc Top plate alignment template device
US11447592B2 (en) * 2017-11-07 2022-09-20 Sabic Global Technologies B.V. Piston system and high pressure homogenizer using the piston system

Also Published As

Publication number Publication date
GB1361742A (en) 1974-07-30

Similar Documents

Publication Publication Date Title
US3005412A (en) Automatic pressure compensator for reciprocating pumps
US3816029A (en) Pumping unit for constant pulseless flow
US3749529A (en) Plunger packing wash system
US4500267A (en) Mud pump
US3602613A (en) High pressure pump
US4035109A (en) Pump for fluent, and especially heavy and abrasive materials
US2781775A (en) Limited capacity check valve
US2627320A (en) Lubricating system
US2545506A (en) Pump
US2497300A (en) Floating piston pump
US4789313A (en) Apparatus for and method of pumping output fluids such as abrasive liquids
US4332134A (en) Hydrostatic transmission bleed-off valve
CA1204963A (en) Pump of displacement type
US3209701A (en) Pump
US4304531A (en) High pressure piston pumps
US2220334A (en) Deep well pump
US2411606A (en) Power transmission pump
US2797972A (en) Internally pressurized piston and seal units
US3368458A (en) Hydraulic motor
US3192717A (en) Hydraulically operated reciprocating apparatus
US1550767A (en) Pump
US1697682A (en) Piston pump for corrosive liquids
US2749845A (en) Pump
US2925047A (en) Rotary hydraulic pump
US2473864A (en) Heavy oil and sand pump

Legal Events

Date Code Title Description
AS Assignment

Owner name: NATIONAL OILWELL, A GENERAL PARTNERSHIP OF DE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:NATIONAL SUPPLY COMPANY, INC., A CORP. OF DE;REEL/FRAME:004747/0423

Effective date: 19870403

Owner name: NATIONAL SUPPLY COMPANY, INC., A CORP. OF DE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:ARMCO INC;REEL/FRAME:004728/0498

Effective date: 19870327