US3746903A - Photo-multiplier structure - Google Patents
Photo-multiplier structure Download PDFInfo
- Publication number
- US3746903A US3746903A US00772523A US3746903DA US3746903A US 3746903 A US3746903 A US 3746903A US 00772523 A US00772523 A US 00772523A US 3746903D A US3746903D A US 3746903DA US 3746903 A US3746903 A US 3746903A
- Authority
- US
- United States
- Prior art keywords
- multiplier
- curve
- electron
- gun
- closed curve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000007787 solid Substances 0.000 claims description 2
- 238000010894 electron beam technology Methods 0.000 abstract description 13
- 230000035945 sensitivity Effects 0.000 abstract description 2
- 239000011521 glass Substances 0.000 description 11
- 230000002093 peripheral effect Effects 0.000 description 11
- 239000004020 conductor Substances 0.000 description 8
- 230000003993 interaction Effects 0.000 description 3
- 229910001111 Fine metal Inorganic materials 0.000 description 1
- 241001620634 Roger Species 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001235 sensitizing effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J31/00—Cathode ray tubes; Electron beam tubes
- H01J31/08—Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
- H01J31/26—Image pick-up tubes having an input of visible light and electric output
- H01J31/48—Tubes with amplification of output effected by electron multiplier arrangements within the vacuum space
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J29/00—Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
- H01J29/02—Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J29/00—Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
- H01J29/02—Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
- H01J29/026—Mounting or supporting arrangements for charge storage screens not deposited on the frontplate
Definitions
- ABSTRACT Photo multiplier structure for a television camera-type storage vacuum tube, wherein a channel type electron multiplier is employed which is sensitiz ed principally only in a central area thereof which corresponds to the 547 wa wa 1. m 3. 7 6 N6 1mm 1 W W m m L Mr.
- This invention relates to the storage tube art, and more particularly to storage tubes of the type wherein photo multiplication is accomplished by means of a channel-type electron multiplier interposed between the photo cathode and the storage target. Disclosures of channel-type electron multipliers of the general type to which the present invention is applied are found in US. Pat. No. 3,327,151, issued June 20, 1967, to .1. Adams and B.W.
- the conventional channel-type electron multiplier is a glass disc which is perforated over the entire area thereof, the walls of the perforations being treated so that primary electrons from the photo cathode will produce a secondary electron emission ratio greater than unity as they pass through the perforations.
- the flat, parallel front and rear surfaces are conventionally coated over their entire areas with evaporated conductive layers to which an accelerating potential is applied.
- the conventional channel-type electron multiplier disc is fully sensitized for electron multiplication over substantially its entire area.
- the storage target conventionally employed in a television camera-type vacuum tube is disc-shaped, having a functional area approximating that of the electron multiplier disc, the target being arranged closely adjacent and parallel to the electron multiplier, and coaxial therewith.
- the scan pattern for the electron beam is rectangular in shape, covering only a central portion of the storage target, and accordingly only a similar central rectangular portion of the channel-type electron multiplier.
- the objective is to take an electrical output off of the target that is proportional to the stored potential on the target at the point of impact of the electron beam.
- the grid will draw some current from peripheral portions of the multiplier outside of the scanned area, which produces an error voltage from the target and consequent tube noise. Additionally, this error voltage results in an undesirably high DC current from the target grid which tends to overdrive the preamplifier. The net result is that sensitivity and resolution of the system are reduced.
- the area of cooperation between the channel-type electron multiplier and the storage target is limited to an area corresponding substantially to the scan area of the electron beam, so as to substantially eliminate the production of error voltages in the peripheral region of the storage target outside of the scan area, and to reduce the DC current from the storage grid to substantially only that current resulting from the electron beam scan area so as to avoid overdriving of the preamplifier.
- peripheral interaction between the electron multiplier and the storage target outside of the scan area is substantially completely eliminated by utilizing a channel-type electron multiplier having a cross-sectional area of channels which corresponds substantially only to the scanning area of the electron beam.
- the peripheral interaction between the electron multiplier and the target is substantially completely eliminated by sensitizing only an area of the channel-type electron multiplier which substantially corresponds to the electron beam scan area.
- FIG. 1 is a side elevational view, partly in section, of a storage tube constructed in accordance with the present invention
- FIG. 2 is an enlarged sectional detail view of a portion of FIG. 1, illustrating one form of the invention wherein the channel-type electron multiplier employed therein has a cross-sectional area of channels only which corresponds substantially to the scanning area of the beam from the electron gun of the tube;
- FIG. 3 is a plan view further illustrating the electron multiplier shown in FIG. 2;
- FIG. 4 is a plan view of a second form of electron multiplier according to the present invention, wherein the multiplier is sensitized only in an area corresponding substantially to the scanning area of the beam from the electron gun of the tube.
- a storage tube is indicated generally as 10, and includes an evacuated glass envelope 12.
- An electron gun is generally designated 14, and includes a tubular shell 16 having a suppressor grid 18 at its forward end as shown in FIG. 2.
- the electron gun 14 produces a scanning beam 20 of electrons.
- a support ring 22 is connected to the forward end of the envelope l2, and includes a generally flat, circular portion 24 projecting radially outwardly as a flange from the forward end of envelope 12, and a tubular target support portion 26 upon which the storage target 28 is supported.
- Storage target 28 is a laminar structure composed of a fine metal screen 30 on the rearward side thereof which is scanned by the beam 20 of electrons, and a dielectric sheet 32 on the forward side thereof upon which an image is electrically stored.
- the photo multiplier is generally designated'34, and is disposed forwardly of the storage target 28.
- Photo multiplier 34 includes a glass face plate 36 having an evaporated photo cathode 38 disposed on its rearward face, with a conductor ring 40 in electrical contact with the periphery of the photo cathode 38.
- a channel-type electron multiplier 42 Disposed between the photo cathode 38 and the storage target 28 is a channel-type electron multiplier 42 having a perforate, disc'shaped glass body 44.
- the glass body 44 has evaporated electrodes 46 and 48 on its forward and rearward surfaces, respectively, through which the perforations extend.
- Conductor rings 50 and 52 are in contact with peripheral portions of the respective evaporated electrodes 46 and 48.
- the face plate 36 and electron multiplier 42 are supported in properly spaced, parallel relationship with respect to the storage target 28 by a series of ceramic rings 54, 56 and 58.
- the electron multiplier 42 illustrated in detail in FIGS. 2 and 3 is made according to a first form of the invention wherein the multiplier has a cross-sectional area of channels which corresponds in shape and size substantially to the scanning area of the electron beam 20.
- the perforations 60 which extend through the glass body 44 and evaporated electrodes 46 and 48 of the multiplier, are limited to a rectangular area 62 as shown in FIG. 3. Accordingly, the peripheral portion 64 of multiplier 42 that is located outside of the perforated rectangular area 62 is imperforate.
- the only part of the electron multiplier 42 which is capable of functioning as a mutliplier, or in other words is sensitized, is the rectangular, perforate area 62 which corresponds substantially to the scan area of the electron beam 20. Consequently, there is no material interaction between the peripheral portion 64 of the electron multiplier disc and the storage target 28, whereby undersired error voltages are substantially completely eliminated from the peripheral portion of the storage target 28 outside of the scanned area.
- the evaporated electrodes 46 and 48 of the multiplier may fully cover both of the flat surfaces of the disc-shaped glass body 44, except for the perforations in the rectangular area 62, although all that is required for operation of this form of the invention is that the evaporated electrodes 46 and 48 be disposed in the rectangular area 62, and that conductive paths extend outwardly therefrom to the respective conductor rings 50 and 52.
- the electron multiplier 42a has a disc-shaped glass body 44a which is perforated over its entire area, but is provided with front and rear evaporated electrodes which are substantially coextensive with the area that is scanned by the electron beam 20.
- the front electrode 46a which is seen in the plan view of FIG. 4 will be rectangular, and have an area which corresponds substantially only to the scanning area of the electron beam.
- the rear electrode will be rectangular and coextensive with the front electrode 460; accordingly, the rear electrode is not seen in the plan view of FIG. 4, as it is directly underneath the front electrode 460.
- the mutliplier 42a is only sensitized in an area substantially corresponding to the scanning area of the electron beam, whereby peripheral error voltages are greatly minimized, or substantially completely eliminated.
- conductive paths 66 may extend radially outwardly from opposite sides of the rectangle 46a, terminating in peripheral contact strips 68 which engage the conductor ring 50.
- the conductors 66 and contact strips 68 may consist of evaporated coatings on the front surface of the glass body 440.
- conductor strips 70 may extend radially outwardly from opposite sides of the rectangular electrode on the rear surface of the glass body 44a, ending in peripheral contact strips 72, the conductors 70 and contact strips 72 preferably being offset from the respective conductors 66 and contact strips 68, whereby the only area of the multiplier 42a which has full, opposed electrode surfaces is the rectangular area 46a. Accordingly, the electron multiplier 42a is only effectively sensitized in the rectangular area corresponding to the scanning area of the electron beam.
- an electron discharge device comprising: an evacuated substantially cylindrical envelope having a circular end face; a photocathode bonded to the interior surface of said end face; an electron multiplier positioned inside said envelope and fixed relative thereto, said multiplier having a circular disc shape with one flat surface parallel and adjacent to said photocathode, and another flat surface parallel to said one surface; an electron gun positioned inside said envelope and fixed relative thereto; first means for transmitting signals to said gun to cause said gun to produce a flow of electrons only inside of a closed curve at a predetermined distance from said gun, said multiplier including a dielectric body having holes extending completely through said body and interrupting both of said flat surfaces, said holes having surfaces which will support secondary emission at a ratio greater than unity; a planar target parallel to and adjacent to said other flat surface, said target having a first surface intercepting the electrons emanating from said gun, said first surface having a rectangular area thereon bounded by said curve, said curve projection being normal to said target, said first means being adapted to cause said
- said body has an evaporated electrode bonded to each side thereof, said electrodes having holes therethrough in registration with said body holes, each of said electrodes being bounded by a curve identical to said closed curve, said closed curve on said target having an axis of symmetry normal to said first surface through the center of said closed curve, both of said electrode boundaries having the same said axis of symmetry as that of said closed curve, each of said electrodes having connecting portions electrically connected thereto and extending outside of the respective curves, said connecting portions be spaced sufficiently that no line normal to said body surfaces intersects both of said portions, said portions being T-shaped, the cross of each T being arcuate and contiguous to the circular edge of said body, the vertical of the Ts being symmetrical with one corresponding side and end of the rectangle.
- said body thereby having a border around said rectangular areas which is made of a solid dielectric, said border having I a minimum width which is substantially larger than the space between said holes.
Landscapes
- Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)
- Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)
- Microwave Tubes (AREA)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US77252368A | 1968-11-01 | 1968-11-01 | |
| US77252468A | 1968-11-01 | 1968-11-01 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3746903A true US3746903A (en) | 1973-07-17 |
Family
ID=27118616
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US00772523A Expired - Lifetime US3746903A (en) | 1968-11-01 | 1968-11-01 | Photo-multiplier structure |
| US772524A Expired - Lifetime US3676726A (en) | 1968-11-01 | 1968-11-01 | Storage tube construction |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US772524A Expired - Lifetime US3676726A (en) | 1968-11-01 | 1968-11-01 | Storage tube construction |
Country Status (5)
| Country | Link |
|---|---|
| US (2) | US3746903A (enrdf_load_stackoverflow) |
| DE (1) | DE1954224A1 (enrdf_load_stackoverflow) |
| FR (1) | FR2022376A1 (enrdf_load_stackoverflow) |
| GB (1) | GB1267096A (enrdf_load_stackoverflow) |
| NL (1) | NL6916491A (enrdf_load_stackoverflow) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8559825B2 (en) | 2010-12-19 | 2013-10-15 | M. Hassan Hassan | Digital communication method and system |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB803512A (en) * | 1955-10-05 | 1958-10-29 | Emi Ltd | Improvements in or relating to electronic storage devices |
| US3039017A (en) * | 1960-04-12 | 1962-06-12 | Clinton E Brown | Image intensifier apparatus |
| US3062962A (en) * | 1956-11-30 | 1962-11-06 | Nat Res Dev | Photo-electron image multiplier |
| US3213308A (en) * | 1961-11-29 | 1965-10-19 | Westinghouse Electric Corp | Ultraviolet radiation detector |
| US3327151A (en) * | 1963-08-19 | 1967-06-20 | Philips Corp | Light amplifier employing an electron multiplying electrode which supports a photocathode |
| US3355616A (en) * | 1965-06-02 | 1967-11-28 | Klaus J Hecker | Scanning type image transducer television tube |
-
1968
- 1968-11-01 US US00772523A patent/US3746903A/en not_active Expired - Lifetime
- 1968-11-01 US US772524A patent/US3676726A/en not_active Expired - Lifetime
-
1969
- 1969-10-28 DE DE19691954224 patent/DE1954224A1/de active Pending
- 1969-10-30 GB GB1267096D patent/GB1267096A/en not_active Expired
- 1969-10-31 NL NL6916491A patent/NL6916491A/xx unknown
- 1969-10-31 FR FR6937447A patent/FR2022376A1/fr not_active Withdrawn
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB803512A (en) * | 1955-10-05 | 1958-10-29 | Emi Ltd | Improvements in or relating to electronic storage devices |
| US3062962A (en) * | 1956-11-30 | 1962-11-06 | Nat Res Dev | Photo-electron image multiplier |
| US3039017A (en) * | 1960-04-12 | 1962-06-12 | Clinton E Brown | Image intensifier apparatus |
| US3213308A (en) * | 1961-11-29 | 1965-10-19 | Westinghouse Electric Corp | Ultraviolet radiation detector |
| US3327151A (en) * | 1963-08-19 | 1967-06-20 | Philips Corp | Light amplifier employing an electron multiplying electrode which supports a photocathode |
| US3355616A (en) * | 1965-06-02 | 1967-11-28 | Klaus J Hecker | Scanning type image transducer television tube |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8559825B2 (en) | 2010-12-19 | 2013-10-15 | M. Hassan Hassan | Digital communication method and system |
Also Published As
| Publication number | Publication date |
|---|---|
| DE1954224A1 (de) | 1970-05-27 |
| NL6916491A (enrdf_load_stackoverflow) | 1970-05-06 |
| FR2022376A1 (enrdf_load_stackoverflow) | 1970-07-31 |
| US3676726A (en) | 1972-07-11 |
| GB1267096A (enrdf_load_stackoverflow) | 1972-03-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4568853A (en) | Electron multiplier structure | |
| US2254617A (en) | Electron discharge device | |
| US2747131A (en) | Electronic system sensitive to invisible images | |
| US3114044A (en) | Electron multiplier isolating electrode structure | |
| US3673457A (en) | High gain storage target | |
| US3660668A (en) | Image intensifier employing channel multiplier plate | |
| US4236096A (en) | Plasma image display device | |
| US2230134A (en) | Image analyzing tube | |
| US2598919A (en) | Barrier grid storage tube | |
| US4511822A (en) | Image display tube having a channel plate electron multiplier | |
| US3746903A (en) | Photo-multiplier structure | |
| US4034255A (en) | Vane structure for a flat image display device | |
| US3303373A (en) | Target assembly comprising insulating target, field and collector meshes | |
| US3295010A (en) | Image dissector with field mesh near photocathode | |
| US2248977A (en) | Electro-optical device | |
| US2262123A (en) | Television image pickup system | |
| US3030514A (en) | Image intensifier | |
| US2272232A (en) | Electron beam tube | |
| US3189781A (en) | Image tube utilizing transmissive dynode-type target | |
| US2324505A (en) | Television transmitting tube and electrode structure | |
| US4731559A (en) | Electron multiplier plate with controlled multiplication | |
| US3136916A (en) | Image orthicon tube having specially coated decelerating field electrode | |
| US2498082A (en) | Gun structure for cathode-ray tubes | |
| US2834900A (en) | Grid structure | |
| US3204142A (en) | Pickup tube having photoconductive target |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: ITT CORPORATION Free format text: CHANGE OF NAME;ASSIGNOR:INTERNATIONAL TELEPHONE AND TELEGRAPH CORPORATION;REEL/FRAME:004389/0606 Effective date: 19831122 |