US3743275A - Data processing equipment - Google Patents
Data processing equipment Download PDFInfo
- Publication number
- US3743275A US3743275A US00144083A US3743275DA US3743275A US 3743275 A US3743275 A US 3743275A US 00144083 A US00144083 A US 00144083A US 3743275D A US3743275D A US 3743275DA US 3743275 A US3743275 A US 3743275A
- Authority
- US
- United States
- Prior art keywords
- card
- roll
- cards
- drive
- feed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000463 material Substances 0.000 claims description 6
- 230000013011 mating Effects 0.000 claims description 4
- 238000001514 detection method Methods 0.000 claims description 3
- 230000000694 effects Effects 0.000 claims description 2
- 230000003750 conditioning effect Effects 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 235000012431 wafers Nutrition 0.000 description 2
- 229920005372 Plexiglas® Polymers 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000003562 lightweight material Substances 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000012858 resilient material Substances 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K13/00—Conveying record carriers from one station to another, e.g. from stack to punching mechanism
- G06K13/02—Conveying record carriers from one station to another, e.g. from stack to punching mechanism the record carrier having longitudinal dimension comparable with transverse dimension, e.g. punched card
- G06K13/08—Feeding or discharging cards
- G06K13/10—Feeding or discharging cards from magazine to conveying arrangement
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K7/00—Methods or arrangements for sensing record carriers, e.g. for reading patterns
- G06K7/10—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
Definitions
- ABSTRACT A card feeder for feeding cards from a stack in an input hopper to a reader, punch or other data processing equipment is disclosed.
- Features include a hopper having a canted feed roll structure and a throat roll for moving cards against a reference edge as they are fed out of the hopper.
- the feed roll structure comprises a plurality of flexible wafer-like segments each independentlyyieldable on their drive shaft. All of the sections have a high coefficient of friction on-their card engaging surface.
- the drive roll structure and throat roll are driven by a low inertia motor which is provided with control circuitry for reversing the motor in response to card position when the card leaves the-surface of the drive rollers. This restacks a card which has been dragged by friction out of its position of alignment with the other cards in the stack.
- reader features including a parabolic lens, drive rolls for maintaining cards fed from the hopper in aligned position as they are read and cantilevered idler rollers which are adjustably mounted so that there is a clearance between the rolls when cards are not passing through.
- a card storage means such as the bottom of a magazine
- a card aligning mechanism including a canted flexible drive roll structure for engaging the end card in the magazine and moving it outof the magazine at a slight angle towards netic tapes and discs even though cards are better adapted for many smaller scale accounting and other data processing operations and are for the most part more economical to use in those kinds of operations.
- an important object of the invention is the provision of improved sheet feeding and aligning apparatus especially adapted for serially feeding cards from a magazine at high speeds.
- a further object of the invention is the provision of .a card feeding and aligning apparatus which prevents the folding or buckling of the card being fed.
- a still further object of the invention is the provision of means for feeding cards from a magazine which includes means for preventing -a card next to the card being fed from being dragged along by friction and consequently either jamming the feeding apparatus or being fed in overlapping relationship with the card which was intended to be fed or otherwise being mispositioned when it is fed.
- a related object of the invention is the provision of l a motor control circuit for the card feeder apparatus which provides for the return of any card dragged out of position in a stack by friction to its position of alignment with other cards in the stack.
- Still another object of the invention is the provision of a novel arrangement of feed rolls for feeding and aligning cards from a stack in a magazine.
- a still further object of the invention is the provision of a novel mounting means for card feed rolls.
- Yet another object of the invention is the provision of a novel form of card reading device incorporating a simply detachable parabolic light reflecting and distributing reading lens.
- a low inertia transport motor drives the canted roll structure and in response to card position the motor is decelerated before the card leaves the surface of the rolls.
- sensing means are provided to reverse the rolls for a fraction of a revolution as a card leaves the roll surface thereby moving the next card in the stack back away from the throat of the magazine, returning it to its proper position in the stack, thereby relieving throat pressure.
- control of the motor is accomplished by velocity sensing circuitry in combination with a card position sensing means. 7
- the canted rolls are formed of a material having a high coefficient of friction.
- These rolls are preferably formed of a resilient material and may be made up of a plurality of spaced apart segments or be provided with relatively wide and deep slots in their periphery.
- the flexible nature of the material and the separation of the segments makes them sensitive to, the resistance of a card when it strikes a reference surface on side of the magazine and permits sideways yielding as soon as resistance develops.
- a driven roll at the throat of themagazine having a relatively low coefficient of friction.
- the throat roller is also preferably canted and is driven at the same speed' as the canted flexible rolls.
- a series of card advancing devices consisting of driven rolls, pick up the cards after they are moved against the reference'surface and as they are fed from the magazine.
- These rolls are preferably provided with matching cantilevered pinch or counter rolls which are provided with a novel adjusting means so that they can be precisely adjusted to allow clearance between the rolls when cards are not passing through.
- This series of rolls advances the card to the reading station before it has completely left the magazine and while the throat roller is still in contact with the underside of the card.
- the segmented rolls and the throat roll are reversed so that the next card in the deck is returned to its alignedposition with the other cards. Because of the low frictional characteristics of the throat roller that roller slips relative to the card being advanced and-does not retard movement of that card even though its direction of rotation is counter to the direction of card movement.
- the light source for the card reader comprises a parabolic lens held in place by spring clips so that the lens can be readily removable without tools. This feature greatly facilitates clearing card jams should they occur because of the use of damaged cards and simplifies access to the light source and to other parts of the unit.
- the light source comprises a conventional electric bulb which can be replaced by slipping out the lens and replacing the bulb. The lens is put back in position after replacement of the bulb by merely snapping it back in place.
- FIG. 1 is a schematic view of a card reading and feeding apparatus incorporating the features of the present invention
- FIG. 2 is a schematic diagram of the control circuitry of the invention
- FIG. 2a is an illustrative view showing wave forms at various points in the circuit of FIG. 2;
- FIG. 3 is an elevational view showing a card feeding and reading apparatus formed in accordance with the invention.
- FIG. 4 is a plan section taken along lines 4-4 of FIG.
- FIG. 5 is a sectional view taken along lines 5-5 of FIG. 3;
- FIG. 6 is an elevational view of the reader taken on line 66 of FIG. 3.
- the apparatus generally comprises a magazine or hopper 10 adapted to house a vertical stack of cards C.
- the cards rest on feed rollers 11 (only one of which is seen in FIG. 1) mounted on shaft 12.
- the cards are fed from the bottom of the stack by rollers 11 through a throat 13.
- a driven roller 14 supports the cards at the throat and assists in the feed.
- the cards are fed serially from the magazine to a reader diagramatically shown at 15. Reader 15 senses the presence of data on the card which in well known fashion is present in the form of coded perforations in a plurality of side by side columns.
- the cards are conveyed by means of driven belt conveyors generally identified by the reference character 16 to a plurality of storage magazines 17, there being two such magazines shown for purposes of illustration in FIG. 1.
- Means not shown and forming no part of the present invention are provided for selectively delivering each card to one or the other of the magazines l7.
- FIGS. 3 and 4 Attention is now directed to FIGS. 3 and 4 for a more detailed description of the magazine and of the feed means associated therewith.
- the various parts of the apparatus disclosed are mounted on a vertically extending plate 19 best shown in FIGS. 3 and 4 which in turn is mounted on a base not shown.
- the magazine generally indicated by the number 10
- Magazine 10 is mounted on a block and bearing assembly member 20 which is secured to the plate 19 by any suitable means.
- Magazine 10 preferably comprises a U-shaped channellike extrusion 21, the three sides of which support and guide a stack of cards C.
- a few cards are shown in the bottom' of the magazine in FIG. 3. Card position within the magazine is shown in broken lines in FIG. 4.
- Rail assembly 22 Secured to the rear wall 21a of the magazine is a rail assembly 22.
- Rail assembly 22 comprises a pair of rails extending lengthwise of and bolted to the rear wall of the magazine at the bottom. Rail assembly 22, the magazine channel 21 and the block and bearing member 20 may all be fastened together by machine bolts not shown.
- a pair of shafts identified by numbers 24 and 25 respectively are journaled in the block and bearing assembly member 20.
- a motor 26 which will be described in detail hereinafter drives shaft 24.
- Shaft 25 is driven in synchronism with shaft 24 by means of a belt 27.
- An idler roll 28 bears against the underside of the belt in order to maintain the desired amount of tension on it.
- the first rotatable feed means comprises drive rolls or capstans 30 which are secured to the shaft 24.
- Rolls 30 are preferably formed of flexible material having a relatively high coefficient of friction on their card engaging peripheries and are grooved with circumferential grooves or are made up of a plurality of relatively thin, spaced apart wafers as can best be seen in FIG. 4. The flexible characteristic of these wafers and the fact that they are spaced apart permits a high degree of sideways or lateral movement of them for reasons which will be explained more fully hereinafter.
- Roll 31 is preferably formed of a relatively lightweight material such as aluminum and is dished out so as to have a minimum cross section thereby minimizing its mass.
- the surface of this roll is polished so as to provide a low coefficient of friction with respect to the cards and with respect to roll 30.
- rolls 30 and 31 are skewed with respect to the path of travel of cards being fed, the path being evident from the phantom line showing of two cards in FIG. 4.
- shafts 24 and 25 are mounted on an angle with respect to the path and a suitable wedge shaped support 32 secures the motor to the plate 19 at the proper angle.
- the cards are supported by rolls 30 and 31, the roll 31 being located at the throat or exit of the hopper.
- the throat clearance is just sufficient for just one card moving from the hopper.
- a vertically adjustable throat knife 34 is provided. Throat knife 34 is secured to the hopper side wall by suitable adjusting screws not shown.
- Plunger 35 controls a micro-switch 36 and is positioned so that it detects the presence or absence of cards in the hopper. Plunger 35 is held depressed so long as cards are present, but is biased slightly in the upward direction so that feeding of the last card in stack releases it for upward movement thereby actuating the micro-switch which in turn operates suitable control circuitry to shut off the feeding mechanism and indicate to the operator that the magazine is empty.
- a plate 38 is located between the rolls 30 and 31 just beneath the plane on which the cards are supported. Plate 38 is secured to the block and bearing assembly 20 by means of suitable machine screws. Plate 38 prevents tipping of a card and possible mutilation of it after it leaves the surface of rolls 30.
- motor 26 Upon generation of a suitable control signal in a manner described hereinafter, motor 26 is actuated and drives rolls 30 and 31.
- the bottom ,card in the stack is fed through the throat l3 and because of the skewed relationship of the segmented rolls 30 and the throat roll 31 the card is urged against the reference edge or surface 23.
- the segments Because of the highly flexible nature of the segments making up the rolls 30 the segments yield as soon as resistance is encountered caused by cards bearing against the reference edge.
- the sideways yielding of the rolls prevents buckling of the card and possible mutilation of it. Due to the flexed condition of the segments, the driving force imparted to the card is thereafter substantially directed in a straight line along the axis of the path of card travel, while holding the card against the reference surface.
- Reader structure 115 is mounted on a block 40 which is also bolted to the plate 19.
- the block 40 supports a phototransistor unit 41 mounted directly above the path of travel of the cards.
- Located at the end of the block is large socket 42 into which a light bulb 43 fits.
- a read ing lens 44 is mounted directly beneath the phototransistor unit 41.
- reading lens 44 is a solid transparent member preferably formed of a plastic material such as polymethylmethacrylate, commonly sold under the trademark Plexiglas.
- the shape of reader lens 44 can best be seen in FIG. 6 wherein it is shown that it is provided with a parabolic surface 45 so that light from bulb 43 is directed uniformly across the path of travel of the cards, one such card being shown in phantom lines at 46.
- reader lens 44 is held in place by means such as spring clips 48a and48b.
- spring clips 48a and48b As can best be seen in FIG. 4 a pair of spring clips 48a are secured to the photo-transistor housing 41. Spring clips 48a are bent slightly at their ends so that these ends fit under a pair of projections 49 extending from the sides of the lens, A clip 48b is secured to the block and is provided with an inturned end which fits within a small notch in the lens when the lens is in position. Due to the resilience of the spring clip, lens 45 may be removed by moving the projections against the spring clip until the notch is disengaged from the end of clip 48b. By virtue of this arrangement, lamps can be replaced and card jams cleared without the need of tools and without replacement of a new lens 45. I
- card drive rolls 50 are formed integrally with the shafts on which they are mounted, such shafts being designated by numbers 51 and 51a. Both shafts are journaled in suitable bearings 52 mounted in downwardly extending arms in the reader block 40. Shaft 51 is driven independently of shafts 24 and by a separate motor not shown, via a belt 53a. A belt and pulley arrangement including pulleys 54 and belt 55 drivingly interconnect the shafts 51 and 5111 so that they are synchronously driven.
- each idler roll is rotatably mounted on a shaft 54a which extends through a hole drilled in the block
- the shaft is dimensioned so that it is slightly loose in its hole and is supported by an arm 55a secured in hole 56 also located in the block 40.
- the end of each shaft 54a is threaded and provided with an adjusting nut 57.
- Rolls 50 and counter-rolls 53 hold cards in aligned position as theyadvance the cards through the reader and since nofurther sidewise shifting of a card is permitted once it is engaged by these rolls, the rolls should be spaced far enough from the magazine so that rolls 30 and 31 have accomplished their function of moving the card into alignment with the reference edge before it is picked up by the first set of rolls 5t ⁇ and 53.
- the leading edge of the card is picked up by rollers 50 and 53 before the trailing edge moves out of contact with the surface of rollers 30.
- the card is held against the reference edge by the flexible segments of rolls 30, so that it cannot be inadvertently moved out of alignment before if reaches the reader.
- a card detector phototransistor unit 60 Located at the entrance to the read station in position to detect the leading edge of a card is a card detector phototransistor unit 60.
- Unit 60 houses a light emitting diode and photo-transistor positioned so that light is projected off a light reflective surface 60a onto the photo-transistor except when a card crosses the light path. By virtue of this arrangement the unit detects the presence of the leading edge of a card as that card is at the center line of the first pair of card drive rolls 50. The purpose of this photo-sensitive unit will be explained presently.
- the card After the card has been fed through the read station by the rolls 50 it is picked up by a belt 61 which cooperates with a relatively large pulley 62.
- the card is carried by the belt and pulley around a portion of the circumference of the pulley and then carried upwardly where it then meets another belt 63.
- Belts 61 and 63 then carry the card around a portion of the circumference of another large pulley 64 shown in FIG. 2.
- the card is thereafter delivered to one of a series of magazines 1 7 and selectively diverted to one or another of the magazines not forming part of the invention.
- motor 26 is a moving coil type having a nonferromagnetic rotor and thus a high torque to inertia ratio so that it is capable of substantially immediate changes in speed in response to changes in control signals.
- Suitable motors for the purpose are available on the market from various sources, one such motor being manufactured by Honeywell, Inc. under catalog number X44306-VM. Fast response in the system is also achieved by using parts in the drive system or load having low inertia characteristics.
- a start pulse at a flip-flop 65.
- the start pulse may originate with means such as associated data processing or computer equipment .or an operator actuated control switch if desired.
- Conditioning of the flip-flop 65 to one of its steady state conditions initiates the positive pulse shown in curve B in FIG. 2a.
- the conditioning of flipflop 65 initiates the generation of a ramp voltage by ramp voltage generator 66, the output of the ramp generator being shown by the waveform labelled forward in curve C of FIG. 2a.
- Suming amplifier 67 produces an error signal which is fed to power amplifier 68.
- the error signal is equal to the difference between the ramp voltage and the sum of the IR drop across the motor and the back EMF which sum is directly proportional to changes in motor speed.
- the motor is preferably stopped under control of the card leading edge which is detected by the photo-sensitive device including photocell 60 at the read station. Detection of the card leading edge trips the flip-flop to its other condition, turning off the ramp generator and further triggering a single shot multi-vibrator 69.
- the output of single shot multi-vibrator 69 represented by curve D in FIG. 2a, is a pulse of predetermined duration which controls a step generator 70 whose signal output is of opposite polarity to the ramp generator signal.
- This signal when amplified by the power amplifier 68 drives motor 26 in the reverse direction for a predetermined fraction of a cycle, the duration of the reverse drive being regulated by the duration of a signal of the single shot multivibrator 30.
- the motor rotates the rolls 30 and through about 90 in advancing a card from the stack and about 6 in the reverse direction.
- an extremely compact unit incorporating features providing reliability of operation, speed and compactness is provided.
- the unit is well-adapted for use with the relatively small 96 column cards. Reliability of performance is achieved by simplified design having few moving parts. Elimination of features such as picker knives, oscillating pusher and like card contacting devices results in a reduction of card wear and minimizes malfunctions due to damaged cards.
- Features of the invention further make practical operation at rates of 1,500 cards per minute or more.
- An important feature which contributes high speed reliable operation is the means for reversing the drive rolls at the completion of the feed cycle for feeding each card, thereby relieving pressure in the throat of the magazine.
- Apparatus for feeding sheets from a stack comprising a first rotatable feed means including at least one drive roll, the periphery of the drive roll having a coefficient of friction which is greater than the sheets and being in contact with the face of the sheet at one end of the stack to feed successive sheets from the stack, means providing a reference surface extending along one side of the path of travel of the sheets fed from the stack, said drive roll being mounted at an angle relative to said reference surface such that rotation of the roll moves each sheet which is out of edge-to-edge contact with the reference surface into registration with said reference surface, said drive roll being yieldable laterally when the edge of the sheet is in registration with the reference surface, and and auxiliary roll spaced from said drive roll along the path of sheet travel, said auxiliary roll having a lower coefficient of friction than the drive roll and being driven synchronously with said drive roll.
- the drive means comprises a motor having a low inertia characteristic, and control circuit means for said motor for momentarily reversing the direction of rotation of the drive roll when the card being fed leaves the surface of the drive roll whereby the next card in stack is returned to its position of alignment with other cards in the stack.
- Apparatus according to claim 4 further including second card drive roll means comprising second card drive rolls, counter rolls adjacent said second card drive rolls, said second card drive rolls and the counter rolls forming a nip into which cards are fed by said first rotatable feed means, the nip being located relatively to the first rotatable feed means so that cards enter the nip following movement into registration with'said reference surface but prior to movement out of contact with the periphery of the first named drive roll.
- Apparatus for feeding data-carrying cards to a reader or like device comprising a magazine having a throat through which cards are fed one at a time means forming, a reference edge disposed along one side of the path of travel of cards being fed through the throat, and feed means comprising at least one roll formed of a flexible material and having its periphery engageable with a surface'of a card adjacent the throat and being rotatable to drive the card through the throat, a second roll positioned at the throat and being engageable with the surface of the card, the surface of said second roll having a low coefficient of friction relative to the first roll, said rolls being mounted on parallel axes which are skewed with respect to the path of travel of cards being fed out of the magazine.
- Apparatus for feeding data-carrying cards comprising a storage means for a stack of cards, said storage means having an opening through which the cards can pass one at a time, card feed means for feeding cards from the storage means comprising a first rotatable card feed roll, the periphery of the roll being in contact with an end card in the stack for feeding cards through the opening, another card feed means comprising second card feed roll and mating roll, said second card feed means being spaced from the storage means and in the path of card travel for advancing cards at a given speed when they are fed from the storage means, a card drive motor for rotating first said feed roll in a first direction to feed cards from the storage means and control circuit means for said card drive motor for limiting the tangential velocity of the first feed roll to the tangential velocity of said second card feed roll, said control circuit means further causing said motor to drive the first feed roll in the reverse direction for a fixed time interval after the card is moved out of contact with the first feed roll.
- Apparatus for feeding data-carrying cards or the like from a stack means forming a throat through which cards can pass, said throat being dimensioned to provide clearance for only one card at a time, a card drive structure including at least one drive roll located so that its periphery is in contact with an end card in the stack which is at said throat, a drive motor having a relatively high ratio of torque to inertia for driving said roll in a direction which effects movement of the contacted card away from the stack, control means for the motor including circuitry operative after the card leaves the surface of the drive roll to rotate said roll in the reverse direction for a predetermined amount.
- control means comprises a card detecting device for sensing card position, and means responsive to the detection of a card by said sensing device for reversing the polarity of motor current for a predetermined interval, thereby effecting reversal of the motor and the card drive roll.
- Apparatus according to claim 9 further including another card feed means comprising movable card advancing devices engageable with cards as they exit from the magazine for feeding cards as they exit from the magazine at a constant speed, and wherein said control means further comprises motor speed responsive circuitry for limiting the velocity of the drive roll to the speed of the card advancing devices.
- said motor speed responsive circuit comprises a differential amplifier, a feedback loop for feeding to said amplifier a voltage proportional to the motor speed and further including means for feeding to the amplifier a reference voltage, and a power amplifier connected to the output of the differential amplifier for driving the motor.
- Apparatus according to claim 11 wherein the means for establishing a reference voltage constitutes a ramp generator.
- Apparatus for feeding data-carrying cards comprising a magazine for storing a stack of cards, said magazine having an opening at the bottom through which the cards can pass one at a time, a drive structure for feeding cards from the magazines comprising individually yieldable rotatable drive segments, the periphery of each segment being in contact with the bottom card in the stack for feeding cards through the opening, a reference surface extending along one side of the path, the segments being mounted on an axis which is skewed with respect to the path of travel out of the magazine at an angle such that rotation of the roll urges a side edge of each sheet diagonally into contact with the reference surface, another card feed means comprising card feed rolls and mating idler rolls spaced from the magazine in the path of card travel for advancing cards at a given speed when they are fed from the magazine, a card drive motor for rotating said segments in a first direction to feed cards from the magazine, and control circuit means for said card drive motor for limiting the tangential velocity of the segments to the tangential velocity of said card feed rolls
- Apparatus according to claim 13 further including a cantilevered shaft mounting each of said idler rollers, a support for the shafts, an. upstanding arm for mounting each of said shafts, said arm providing for limited rocking movement of the shaft in a vertical plane to thereby change the position of the idler roll relative to the drive roll and adjustable means bearing against said support for controlling the position of said idler roll.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Electromagnetism (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Sheets, Magazines, And Separation Thereof (AREA)
- Delivering By Means Of Belts And Rollers (AREA)
- Conveying Record Carriers (AREA)
Abstract
Description
Claims (14)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14408371A | 1971-05-17 | 1971-05-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3743275A true US3743275A (en) | 1973-07-03 |
Family
ID=22506965
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00144083A Expired - Lifetime US3743275A (en) | 1971-05-17 | 1971-05-17 | Data processing equipment |
Country Status (5)
Country | Link |
---|---|
US (1) | US3743275A (en) |
CA (1) | CA935198A (en) |
DE (1) | DE2136226A1 (en) |
FR (1) | FR2103137A5 (en) |
GB (2) | GB1366151A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3907283A (en) * | 1972-12-01 | 1975-09-23 | Rank Xerox Ltd | Sensing sheets on a support surface |
EP0045364A1 (en) * | 1980-08-02 | 1982-02-10 | Kleindienst GmbH | Transporting and aligning device for separating documents |
US4519601A (en) * | 1982-12-02 | 1985-05-28 | Tokyo Shibaura Denki Kabushiki Kaisha | Sheet feeding apparatus |
US5967504A (en) * | 1997-08-15 | 1999-10-19 | Data Pac Mailing Systems Corp. | Envelope feeder |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4329124A1 (en) * | 1993-08-30 | 1995-03-02 | Heidelberger Druckmasch Ag | Apparatus for supplying sheets in a feeder of a printing machine |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1019158A (en) * | 1909-08-02 | 1912-03-05 | Columbia Postal Supply Company | Mail-marking machine. |
US3272500A (en) * | 1960-01-25 | 1966-09-13 | Nederlanden Staat | Device for guiding postal articles, forms or the like |
US3350091A (en) * | 1965-07-09 | 1967-10-31 | Honeywell Inc | Record transport device |
US3598396A (en) * | 1969-06-10 | 1971-08-10 | Ibm | Record card handling device with multiple feed paths |
-
1971
- 1971-05-17 US US00144083A patent/US3743275A/en not_active Expired - Lifetime
- 1971-07-09 CA CA117881A patent/CA935198A/en not_active Expired
- 1971-07-19 GB GB3382471A patent/GB1366151A/en not_active Expired
- 1971-07-19 GB GB5979773A patent/GB1366152A/en not_active Expired
- 1971-07-20 FR FR7126594A patent/FR2103137A5/fr not_active Expired
- 1971-07-20 DE DE19712136226 patent/DE2136226A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1019158A (en) * | 1909-08-02 | 1912-03-05 | Columbia Postal Supply Company | Mail-marking machine. |
US3272500A (en) * | 1960-01-25 | 1966-09-13 | Nederlanden Staat | Device for guiding postal articles, forms or the like |
US3350091A (en) * | 1965-07-09 | 1967-10-31 | Honeywell Inc | Record transport device |
US3598396A (en) * | 1969-06-10 | 1971-08-10 | Ibm | Record card handling device with multiple feed paths |
Non-Patent Citations (1)
Title |
---|
IBM Bulletin (in 271 59) by Berreth, et al; Vol. 12, No. 7, Dec. 1969. * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3907283A (en) * | 1972-12-01 | 1975-09-23 | Rank Xerox Ltd | Sensing sheets on a support surface |
EP0045364A1 (en) * | 1980-08-02 | 1982-02-10 | Kleindienst GmbH | Transporting and aligning device for separating documents |
US4519601A (en) * | 1982-12-02 | 1985-05-28 | Tokyo Shibaura Denki Kabushiki Kaisha | Sheet feeding apparatus |
US5967504A (en) * | 1997-08-15 | 1999-10-19 | Data Pac Mailing Systems Corp. | Envelope feeder |
Also Published As
Publication number | Publication date |
---|---|
GB1366152A (en) | 1974-09-11 |
GB1366151A (en) | 1974-09-11 |
DE2136226A1 (en) | 1972-11-30 |
CA935198A (en) | 1973-10-09 |
FR2103137A5 (en) | 1972-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3761079A (en) | Document feeding mechanism | |
US3561756A (en) | Card handling system | |
US3680853A (en) | Record card reader, feeder and transport device | |
US5135115A (en) | Document sorter and stacker, particularly for document processors | |
US3493728A (en) | Card feed mechanism for a high-speed card reader | |
US4015839A (en) | Card feeding station | |
EP0096722B1 (en) | A sheet feeding apparatus | |
US3618936A (en) | Jam detection system for sorting apparatus | |
GB2038292A (en) | Mail sorting apparatus | |
US3416791A (en) | Document inverting apparatus | |
US3791516A (en) | Batch ticket reader | |
US3921969A (en) | Lead screw document transport | |
US3103355A (en) | Hinged gate document feeder | |
US3734490A (en) | Document feeding mechanism | |
US3521880A (en) | Processing station with document handling and aligning means | |
US4017068A (en) | Card transport apparatus | |
US2921736A (en) | Photoelectric reader for punched cards | |
EP0038901A2 (en) | Document feed apparatus | |
US3847382A (en) | Card handling apparatus | |
US3743275A (en) | Data processing equipment | |
US3729188A (en) | Document stacker apparatus | |
US3941375A (en) | Paper transporter | |
US4555104A (en) | Overlapping document feed apparatus | |
FR2700529B1 (en) | Mail processing machine having a mechanical roller jogger. | |
US3840751A (en) | Device for sensing coded performations |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: DECISION DATA COMPUTER CORPORATION A CORP OF PA Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:FIRST NATIONAL BANK OF CHICAGO,THE AS AGENT;REEL/FRAME:004357/0536 Effective date: 19841212 |
|
AS | Assignment |
Owner name: FIRST NATIONAL BANK, THE,MASSACHUSETTS Free format text: SECURITY INTEREST;ASSIGNOR:DECISION INDUSTRIES CORPORATION;REEL/FRAME:004912/0347 Effective date: 19880429 Owner name: FIRST NATIONAL BANK, THE, 100 FEDERAL ST., BOSTON, Free format text: SECURITY INTEREST;ASSIGNOR:DECISION INDUSTRIES CORPORATION;REEL/FRAME:004912/0347 Effective date: 19880429 |
|
AS | Assignment |
Owner name: DECISION DATA INC., A PA CORP., PENNSYLVANIA Free format text: LICENSE;ASSIGNOR:FIRST NATIONAL BANK OF BOSTON, THE, AS AGENT;REEL/FRAME:005036/0347 Effective date: 19880901 Owner name: FIRST NATIONAL BANK OF BOSTON, THE, MASSACHUSETTS Free format text: SECURITY INTEREST;ASSIGNOR:DECISION DATA INC.;REEL/FRAME:005036/0336 Effective date: 19880901 |
|
AS | Assignment |
Owner name: DECISION DATA INC., PENNSYLVANIA Free format text: LICENSE;ASSIGNOR:FIRST NATIONAL BANK OF BOSTON, THE;REEL/FRAME:005270/0937 Effective date: 19880915 |
|
AS | Assignment |
Owner name: DECISION DATA HOLDINGS LTD., PENNSYLVANIA Free format text: CHANGE OF NAME;ASSIGNOR:DECISION DATA, INC.;REEL/FRAME:006673/0834 Effective date: 19920521 |
|
AS | Assignment |
Owner name: PROPERTIES HOLDING CORPORATION, DELAWARE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DECISION DATA INC.;REEL/FRAME:006847/0551 Effective date: 19930127 Owner name: IIS INC., MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PROPERTIES HOLDING CORPORATION;REEL/FRAME:006847/0545 Effective date: 19930209 Owner name: DECISION DATA INC., PENNSYLVANIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DECISION DATA HOLDINGS LTD.;REEL/FRAME:006845/0625 Effective date: 19930122 |