US3743148A - Wafer breaker - Google Patents
Wafer breaker Download PDFInfo
- Publication number
- US3743148A US3743148A US00121886A US3743148DA US3743148A US 3743148 A US3743148 A US 3743148A US 00121886 A US00121886 A US 00121886A US 3743148D A US3743148D A US 3743148DA US 3743148 A US3743148 A US 3743148A
- Authority
- US
- United States
- Prior art keywords
- wafer
- platen
- scribe lines
- curved surface
- axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67092—Apparatus for mechanical treatment
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T225/00—Severing by tearing or breaking
- Y10T225/10—Methods
- Y10T225/12—With preliminary weakening
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T225/00—Severing by tearing or breaking
- Y10T225/30—Breaking or tearing apparatus
- Y10T225/307—Combined with preliminary weakener or with nonbreaking cutter
- Y10T225/321—Preliminary weakener
- Y10T225/325—With means to apply moment of force to weakened work
Definitions
- One of the methods that is commonly used is to manufacture a wafer of relatively large size, individual areas of the wafer including the separate integrated circuits being defined by scribe lines cut into one surface of the wafer in a grid pattern comprising sets of parallel lines at right angles to each other.
- Such scribe lines are usually no more than scratches having a depth of approximately 0.001 of an inch and a width as narrow as can be provided by appropriate cutting means such as a diamond scribe or a laser.
- Wafers from which semiconductor chips are cut to provide integrated circuit components or semiconductor dies come in various sizes in various thicknesses. In general, however, it is necessary to break the wafer into individual chips of much smaller size. Frequently, individual chips or dies constituting a complete integrated circuit are no more than 0.025 to 0.050 of an inch in transverse dimension, with a thickness of perhaps 0.010 or 0.012 of an inch. Under these circumstances, it will be appreciated that it is extremely difficult to break the wafer along the scribe lines without cracking the chips or dies in areas which render them useless. In general, it has been found that conventional wafer breaking equipment results in a loss factor of from percent to 50 percent of the possible dies which could be secured from one wafer.
- this apparatus causes one peripheral edge of the wafer to be first fed beneath the roller, with the roller successively imposing pressure on individual scribe lines as the wafer progresses from one peripheral edge thereof to the other beneath the roller.
- the table is removed, replaced in a position 90 to its previous position, and the sequence of operation is repeated so as to break the wafer in the opposite direction.
- this apparatus depends for its operation upon placement of the enclosed wafer upon the resilient support which is deformed by the downward pressure exerted by the roller.
- the axis of the roller must, of course, be parallel to the scribe lines, and the wafer is broken along each scribe in turn as the roller passes thereover.
- U.S. Pat. No. 3,149,765 teaches an apparatus in which a scribed wafer is arranged in a feed channel provided with a push rod which successively advances the wafer by predetermined increments to bring a strip of the wafer defined by a pair of scribe lines into position so that the entire strip may be individually broken from the main body of the wafer.
- the strips so broken away are then pushed out of the way by a second push rod and main body of the wafer is again advanced and the operation repeated.
- each chip in each individual strip is then caused to register with an appropriate opening in a rotatable platen where it is broken from the strip and carried away foe further processing.
- U.S. Pat. Nos. 3,206,088 and 3,396,452 both teach the concept of placement of an appropriately scribed and packaged wafer on a deformable base and the application of pressure to the top side of the wafer by pressure devices of various kinds, including cylindrical rollers, or a breaking tool having a polygonal cross section so as to apply pressure to the wafer in the vicinity of each scribe line, causing it to be deformed into the deformable base member and broken along the scribe line.
- the latter U.S. Pat. No. (3,396,452) adds the refinement of converting the relatively fiat deformable base member taught by the previous patents into a cylindrical deformable support rotating in unison with a pressure roller and between which the enclosed wafer is fed. Again, breaking of the wafer depends upon deformation of the cylindrical deformable roller in the vicinity of each succeeding scribe line commencing with a scribe line next adjacent the outer periphery of the wafer.
- Another object of the invention is the provision of a wafer breaking device which utilizes a non-resilient platen upon which the wafer to be broken is supported, and the imposition thereon of variable pressure by a non-resilient member which progressively conforms its configuration and the configuration of the wafer to the configuration of the platen.
- wafer breaking devices of the prior art Another characteristic noted of wafer breaking devices of the prior art is that most of such devices are not portable. Accordingly, another and important object of the invention is to provide a wafer breaking apparatus which weighs approximately 50 pounds, and which is completely portable and may be operated either pneumatically, hydraulically, electrically, mechanically, or electromechanically.
- the wafer breaking device of the invention comprises a platen having a curved surface, in one aspect of the invention the curve being curvilinear, and on which the unbroken wafer is adapted to be supported.
- the platen is movable between a first loading position and a breaking position by any suitable means such as the ram in an air cylinder.
- a flat section of a tensioned band Opposed to the platen, and adapted to initially abut against the flat surface of the unbroken wafer, is a flat section of a tensioned band, preferably steel but formable from other materials, and which is adapted to conform itself to the curvature of the underlying platen as the platen advances from its loading position to the wafer breaking position.
- the steel band may be tensioned by any suitable means such as air cylinders having appropriate rams connected to opposite ends of the steel band, with tension being applied to the band by admitting air under pressure behind a piston in each air cylinder. Obviously, other means of tensioning the band may be utilized. Since the initial contact of the unbroken wafer with the tensioned band constitutes a flat surface-to-surface contact, it will be apparent that application of pressure by the non-resilient underlying platen will cause fracture of the wafer along a scribe line lying in a median plane of the wafer, thus initially breaking the wafer into two separate and equal halves.
- the wafer is initially broken into individual strips collectively arranged to conform to the curvature of the underlying platen and the superposed tensioned band.
- FIG. 1 is a vertical cross-sectional view of one embodiment of the invention, portions of the structure being in elevation for clarity.
- FIG. 2 is a plan view of the device the top plate being removed to disclose the underlying structure.
- FIG. 3 is a vertical cross-sectional view generally taken in the plane indicated by the line 3-3 in FIG. 2, portions of the structure being shown in elevation for clarity.
- FIG. 4 is a fragmentary vertical sectional view illustrating the feed and rotating apparatus for the wafer.
- FIG. 5 is a plan view of the feed mechanism illustrated in FIG. 4.
- FIG. 6 is a front elevational view of the wafer feed and rotating mechanism.
- FIG. 7 is a fragmentary sectional view taken in the plane indicated by the line 7-7 of FIG. 1.
- FIG. 8 is a schematic view of the control circuit for a pneumatically operated wafer breaking device.
- FIG. 9 is a plan view illustrating the scribed face of a wafer, the scribe lines being spaced apart a considerable distance for purposes of clarity.
- FIG. 10 is a plan view illustrating the wafer of FIG. 9 mounted in a flexible wafer carrier adapted to be used in conjunction with the apparatus illustrated in FIGS. 13.
- FIG. 11 is a schematic view in perspective illustrating the effect on the wafer of forcing it to conform to the curvilinear surface of the platen on which it is supported.
- FIG. 12 is a schematic perspective view of the same wafer rotated to 90 and caused to conform to the curvilinear surface of the platen in accordance with this invention.
- FIG. 13 is a schematic view in cross section indicating the relationship between the non-resilient underlying curvilinear platen, the unbroken scribed wafer contained in its carrier, and the superposed tensioned flat section of the steel band illustrated in FIG. 1.
- FIG. 14 illustrates schematically the first break that is made along a scribe line in the wafer lying in a median plane so as to divide the wafer into two equal and opposed halves.
- FIG. 15 is a schematic view in cross section illustrating the breaking simultaneously of two separate strips from the two opposed halves upon progressive conformation of the tensioned steel band to the curvature of the underlying platen.
- FIG. 16 is a view similar to FIG. 15 and illustrates the manner in which the next two strips are simultaneously broken from opposed major wafer sections upon continued conformation of the tensioned steel band to the curvature of the underlying platen.
- FIG. 17 is a diagrammatic view illustrating the curvilinear platen, the wafer and the tensioned steel band in relation to a system of XYZ axes.
- FIG. 18 is a diagrammatic view illustrating the curvilinear platen in relation to the tensioned steel band superposed thereover and the directions in which the platen moves and the direction in which tension is applied to the steel band.
- the wafer breaking apparatus of the invention will be described as a pneumatically operated device, as opposed to any of the other several ways in which it may be operated, namely, hydraulic, electrical, electromechanical and mechanical.
- the pneumatically operated embodiment of the invention is designated generally by the numeral 2 and includes a housing formed by top wall 3, bottom wall 4, rear wall 6, and front wall 7. Approximately midway between the top and bottom walls, there is provided a transversely extending horizontal intermediate wall 8, the ends of which are provided with outwardly extending sections 9 and 12 inclined to the intermediate wall 8 at approximately 45 and secured thereto by appropriate screws. As indicated best in FIG. I, the front and back walls in general follow the outline provided by the laterally extending upwardly inclined intermediate wall extensions 9 and 12.
- the section of the housing above the intermediate wall 8 may be categorized as the wafer breaking section, while the section of the housing below the intermediate wall 8 may be categorized as the power section.
- the end edges or sides of the housing are closed by side plates 13 and 14 associated with the wafer breaking section of that housing, and side plates 16 and 17 associated with the power section of the housing.
- the front and rear walls follow the configuration of the side walls so as to form a completely enclosed two-chamber housing in one chamber of which is effected the cracking or breaking of the wafer and in which is included a minimum of control or power components, thus maintaining this section of the housing relatively free from contaminants, while the power section of the housing is isolated from the wafer breaking section, and contains most of the control and operating components.
- a pair of pneumatic cylinders Suitably mounted on the intermediate wall 8, here shown as being specifically mounted on the upwardly inclined extensions 9 and 12 of such intermediate wall, are a pair of pneumatic cylinders, each preferably being of the type that accommodates a nose-type mounting secured to the associated transverse wall section by an appropriate nut 21, having an extensible shaft 22 connected interiorly of the cylinder to an appropriate air driven piston 23.
- Each air cylinder is provided with a port 24 in the usual manner which admits air under pressure above the piston, tending to drive the piston into its lower or retracted position.
- the volume of the cylinder behind the piston is vented to the outside air through appropriate exhaust ports 26 formed either in the end wall as shown or in a side wall of the cylinder.
- each air cylinder is provided with clevis 27, in which is pivotally mounted a bracket 28 in the nature of a U-shaped clamp having transversely extending apertures therethrough and within which opposite ends 29 of a tensioned steel band 29 may be caught.
- the steel band 29 passes over a pair of laterally spaced rollers 31 journaled on an appropriate axle 32 extending horizontally between the front and back walls of the housing.
- Each of the rollers is provided with a central body section 33 defined by upstanding flanges 34 adjacent opposite ends of the rollers. It will thus be seen that as the band 29 passes over the rollers and is supported on the body section 33 thereof, the upstanding flanges provide a guide and a limit for the edges of the band, preventing displacement of the steel band in a fore and aft direction.
- the steel band is provided with an aperture 36 (FIG. 2) adjacent one edge thereof and the steel band is preferably fabricated from stainless steel having a thickness of approximately 0.010 of an inch.
- the width of the bank in the embodiment illustrated is preferably approximately 3% inches. It is important to note that the working section 36 of the band in the attitude illustrated in FIG. 1 is horizontal across the housing, and tangent to the upper periphery of the two spaced rollers 31. It is important that irrespective of the attitude of the working section 36, that the end portions of the steel band connected to clevises 27 extend tangentially from each of the associated rollers. In this manner, there is never imposed on the shafts 22 a transverse loading which .would have the tendency to wear seals and bearings.
- a power cylinder 41 having a threaded nose section 42 extending through an appropriate aperture 43 in the intermediate wall 8 and being detachably secured thereto by appropriate nut 44 as shown.
- the power cylinder 41 in the embodiment illustrated is preferably a pneumatic double-acting type in which air under pressure may be admitted selectively to opposite sides of a piston 46 appropriately connected to a shaft 47 the outer end 48 of which extends above the intermediate wall 8 into the wafer breaking section of the housing and is equipped with a threaded end portion 49 engaging a complementarily threaded interior bore formed in the mounting sleeve 51 locked to the threaded section of the shaft by a nut 52.
- the upper end of the mounting section 51 is provided with a reduced-in-diameter stub shaft portion 53 which at its union with the larger diameter mounting portion 51 provides a shoulder 54 on which is detachably supported a platen designated generally by the numeral 56.
- the platen 56 in the embodiment illustrated is provided with vertical end walls 57 extending parallel and spaced from the adjacent front and back walls of the housing.
- the platen is preferably in the form of a solid non-deformable steel block having a curvilinear surface 58, chrome plated for extreme smoothness and hardness for reasons which will hereinafter be explained. It is important that the platen 56 not rotate on the stub shaft 53. To prevent such rotation, the stub shaft 53 may, of course, be formed with a cross section that would prevent such rotation, and the shaft 48 of the air cylinder may be appropriately keyed so that it does not rotate. However, in the interest of fabricating an economical unit, it is advantageous that the doubleacting cylinder 41 not be of such special construction as to increase its cost.
- stop blocks 59 and 59' are mounted securely to the back wall 6 of the housing by appropriate means such as screws, and the associated end wall 57 of the platen is associated with the faces of such stop blocks so as to absorb any rotary moment that might be imposed on the platen.
- each of the spools 31 is provided with the upstanding flanges 34. It is equally important that there be no longitudinal displacement of the band in relation to the underlying platen while permitting the flexure of the band to conform to the curvature of the curvilinear surface 58 thereof.
- the platen is providedwith an upstanding pin 61 adjacent one end of the platen and positioned so as to protrude snugly through the aperture 36 (FIG. 2).
- the main power cylinder 41 constitutes a double-acting cylinder manufactured by the Bimba Manufacturing Company, Monee, Ill., and sold under the model No. 503-D.
- Air cylinders 18 and 19 are manufactured by the same company and carry a model N0. 3ll-D. It has been found appropriate through experimentation that a pressure of approximately psi imposed on the upper side of the piston 23 in each of the air cylinders 18 and 19 through their respective inlet ports 24 produces satisfactory results for most wafer sizes and thicknesses. As will hereinafter be explained, such pressure may be increased or decreased through appropriate means.
- the tension imposed on the steel band 29 by cylinders l8 and 19 be closely matched to the pressure exerted by the main power cylinder 41. Accordingly, the effective areas of the pistons in the auxiliary cylinders 18 and 19 are proportioned to equal the effective area of the piston 46 of the main power cylinder 41.
- a semiconductor wafer 62 illustrated in plan in FIG. 9, is provided with a first set of scribe lines 63 extending horizontally as viewed in FIG. 9 and spaced apart any requisite distance.
- a second set of scribe lines 64 is provided extending at right angles to the set of scribe lines 63 and therewith defining a grid pattern of scribe lines on the face 66 of the wafer.
- the back side 67 of the wafer is not scribed, although it is contemplated that where economically expedient, such scribing could be effected.
- the scribed wafer is then placed in a carrier member 68 formed from a base sheet 69 having superposed and adhesively secured thereto an apertured guide sheet 71 as shown in FIG. 10.
- the aperture 72 in the guide sheet is formed so as to be slightly larger in diameter than the unbroken wafer intended to be placed therein.
- the reason for the larger diameter of the guide sheet is to provide sufficient clearance to accommodate an increase in the diameter after it is broken. It will, of course, be understood that the wafer after being broken will require a somewhat larger space in which to be contained than when in unbroken form by virtue of the minute spaces created between the individual dies or chips into which the wafer has been broken. It is customary practice in this art to enclose wafersto be broken in plastic envelopes, one or more surfaces of which are adhesive in nature and stick to one or both surfaces of the wafer so as to retain the separate chips in their same positions after being broken as they were prior to being broken.
- the carrier thus formed with the unbroken wafer in place, and covered with a sheet of lens paper 73, is deposited in a feed assembly designated generally by the numeral 76.
- the feed assembly is supported on the front wall 7 of the cabinet by an appropriate angle bracket 77 in association with a slot 78 formed in the front wall of the cabinet and through which the wafer is inserted into the apparatus.
- the angle bracket 77 supports a guide plate 79, one end of which is appropriately supported on the support bracket, and the other end of which extends perpendicularly away from the front wall of the cabinet.
- the guide plate is provided with a centrally disposed dovetail groove 81 having a stop pin 82 extending from the floor of the groove, the groove being proportioned to slidably receive a complementarily shaped key 83 attached to the bottom surface of the feed slide 84.
- the feed slide is provided with a pair of laterally spaced forwardly projecting arms 86 and 87, the inner edges of which are provided with rabbets 88 forming a recess within which the carrier 68 containing the wafer may be deposited.
- a knob 89 is provided attached to the feed slide so that the feed slide may be pushed through the aperture 78 in the front wall and against the stop blocks 59 and 59' attached to the back wall 6. This position of the feed slide is illustrated in FIGS. 2 and 3, while the outermost position of the feed slide is illustrated in FIGS. 4 and 5.
- the carrier borne wafer With the feed slide inserted as illustrated in FIGS. 2 and 3, the carrier borne wafer is positioned immediately above the curved surface 58 of the platen as illustrated in dash lines in FIG. 1, and as illustrated schematically in FIG. 13.
- the wafer is preferably oriented with respect to the lateral edges 91 and 91 of the carrier so that one set of scribe lines, say the scribe lines 64 as illustrated in FIG. 9, lie parallel to the lateral edges 91 and 91.
- the other set of scribe lines 63 are, of course, perpendicular to the lateral edges 91 and 91' and parallel to lateral edges 92 and 92'.
- the scribe lines 64 lie parallel to a Y axis which is in turn parallel to the lateral edges 91-91 of the carrier.
- the scribe lines 63 lie parallel to the lateral edges 92 and 92' and parallel to an X axis which is in turn parallel to the lateral edges 92 and 92'.
- the scribe lines 64 of the wafer will also lie parallel to the direction of movement of the wafer, and will lie parallel to and extend transversely of the working section 36 of the taut steel band 29. If it is assumed that the curved surface 58 is curvilinear in conformation, then the scribe lines 64 will, of course, lie parallel to the curved surface 58.
- Actuation of the main power cylinder 41 when the wafer is thus positioned will cause the wafer and carrier in which it is supported to be brought into tight flat abutment with the underside of the working portion 36 of the steel band 29. Since a vertical median plane including the axis of the platen and lying perpendicular to the front and back walls will also include the axis Y as illustrated in FIG. 11, it will be apparent that continued upward pressure exerted by the platen will cause the wafer to crack along the first scribe line A coincident with the Y axis as viewed in FIG. 11 and as illustrated schematically in FIGS. 13 and 14.
- This first crack in the wafer along the scribe line A divides the wafer into two equal halves along a median plane defined by the Y axis.
- the wafer is caused to crack at this scribe line by virtue of the tension imposed on the band 36 which lies in tight surface-to-surface abutment with the top surface 66 of the wafer, resulting in a concentrated bend-ing moment being imposed against the underside of the wafer opposite the scribe line A by the upwardly moving platen 56.
- the two opposite halves of the wafer are caught between the underside of the taut steel band and the top surface of the platen so that a restraining force is exerted against upward movement of the wafer by the taut steel band, such restraining force being spread over the entire scribed surface of the two halves of the wafer.
- FIG. 11 illustrates the scribed surface of the wafer after it has been completely broken along the scribe lines 64 parallel to the Y axis.
- FIG. 12 illustrates the scribed surface of the wafer after it has been broken along both sets of scribe lines 63 and 64 lying parallel, respectively, to the X and Y axes. As shown, the mere act of breaking the wafer has caused the individual dies to separate somewhat to fill the recess 72 formed in the carrier 68.
- FIGS. 17 and 18 illustrate diagrammatically the relationship between the taut steel band, the underlying platen, and the carrier-supported wafer interposed therebetween in relation to the X,Y and Z axes.
- the X and Y axes would lie horizontal, the X axis extending from left to right longitudinally of and parallel to the steel band 29, while the Y axis extends in a fore and aft direction perpendicular to the front and rear walls of the cabinet, and transversely of the steel band coincident with a vertical axis through the main drive cylinder 41.
- the Z axis extends vertically as viewed in FIG. 1, perpendicular to the X and Y axes and perpendicular also to the steel band.
- FIG. 18 illustrates schematically the directions in which pressures are applied as between the taut steel band and the movable platen to effect the result described above.
- the platen might be stationary and the taut steel band, resiliently anchored at opposite ends, be forced downwardly by spools spaced on opposite sides of the platen.
- any appropriate means may be used to cause the band to drape itself over the platen.
- the feed slide 84 is withdrawn into the position illustrated in FIG. 4 and the carrier 68, supporting the wafer now broken along one set of scribe lines, must be reoriented with respect to the feed slide so that when it is again advanced to position the wafer above the platen, the scribe lines 63 will be oriented parallel to the Y axis.
- a turning device designated generally by the numeral 96 is provided attached to the lower side of the guide plate 79. This assembly is best shown in FIGS. 34. Referring to FIG. 3, the assembly includes an outer housing 97 having an internal bore 98 and a downwardly depending skirt portion 99.
- the skirt portion is provided with an inverted U-shaped slot 101, the downwardly depending arms of the U-shaped slot being positioned in the skirt 99 circumferentially 90 apart.
- Port means 102 are provided in the wall of the housing as shown, and a plug valve 103 is slidably disposed within the bore 98 of the housing.
- a handle 104 is provided attached to the plug valve, the handle being adapted to work in the U-shaped slot 101 so that the handle may be swung through an arc of 90 to rotate the plug valve through 90 within the housing.
- the plug valve 103 is provided with a transverse passageway 106 which in an elevated position of the plug valve communicates with the port 102. In the depressed position of the plug valve, as illustrated in FIG.
- the transverse passageway 106 is blocked by the inner periphery of bore 98.
- a second passageway 107 is provided extending axially of the plug valve and communicating with the transverse passageway 106.
- the upper end of the passageway 107 communicates with an annular chamber 108 disposed below an apertured cap 109, the apertures 112 in the cap communicating the top surface of the cap with the chamber 108 thereunder.
- the carrier 68 Since the action of elevating the plug valve to bring the passageway 106 into alignment with the port 102 has carried the top surface of the cap 109 upwardly, the carrier 68 has also been carried upwardly until the lateral edges 91-91 and 92-92 clear the rabbeted edges of the feed slide so that the carrier may be rotated through Such rotation is effected by swinging the handle 104 through an arc of 90 as illustrated in broken lines in FIGS. 5 and 6. The handle 104 is then lowered, causing the plug valve to slide downwardly, thus dropping the carrier 68 back into the receptacle formed by the rabbets in the feed slide 84. The wafer is now ready to be reinserted for breaking in the opposite direction.
- the port 102 is connected to a source of vacuum through an appropriate tubing (not shown) which extends into the housing at the nearest convenient point for connection to an appropriate fitting 113 carried on the back wall 6 of the housing.
- the apparatus thus described in operated by a pneumatic circuit illustrated schematically in FIG. 8.
- air under pressure is admitted from a convenient and appropriate source through a fitting l 16 on the back wall 6 of the housing, connected by an appropriate tubing 117 to the inlet ports of a pair of miniature pressure regulators 1 l8 and 119.
- the pressure regulators are adjustable and may be set to a selected output pressure by appropriate control knobs 121 (FIG. 1) the selected pressure being indicated on an appropriate gauge 122 extending through an aperture formed in the front wall 7 of the housing.
- the pressure regulators may conveniently be of the type manufactured by the C. A. Norgren Company, Littleton, CoL, and sold under the model No. R06-200-RGK-AU1.
- the pressure regulator 119 is similarly provided with a gauge 123 correspondingly positioned in the front wall 7 of the housing, but adjacent the opposite edge 16 thereof.
- the outlet port 126 of the pressure regulator 118 is connected by an appropriate tubing 127 to the inlet port 24 of the air cylinder 18, and by an appropriate branch line 127' to the inlet port 24 of air cylinder 19. It will thus be seen that manipulation of the control knob 121 for pressure regulator 118 controls the pressure imposed on the pistons within air cylinders 18 and 19, and therefore controls the tension applied to the steel band 29. This pressure is constantly applied, there being no interruption necessary or desired so long as the device is connected to a source of air.
- the output side of the pressure regulator 119 is connected through an appropriate tubing 128 to spring pressed valves 129 and 131.
- Both of these valves are spring pressed in a normally closed attitude, the valve 129 having a push button 132 accessible from the front of the housing as illustrated in FIG. 1, while the valve 131 is operated automatically by movement of the platen 56 to its upper extremity, the platen carrying a short lever 133 adapted to engage the plunger 134 of valve 131.
- the position of the valve 131 within the housing is adjustable by a knob 136 which clamps the valve to an appropriate bracket 137 fastened to the back wall of the housing.
- a four-way valve 141 having a main inlet port 142 connected to the outlet port of pressure regulator 119.
- the main input port 142 is flanked by appropriate exhaust ports indicated schematically in FIGS. 1 and 8 by the short arrows.
- Ports A and B, constituting the working ports of the valve, are connected respectively to ports 143 and 144 as shown.
- Opposite ends of the four-way valve are provided with pilot fittings 146 and 147, the pilot fitting 147 being connected I to the output port of valve 129.
- the pilot fitting 146 is connected by an appropriate tubing 148 to the output port of valve 131 as shown.
- the fitting 116 is connected to an appropriate source of air under pressure, and pressure regulators 118 and 119 adjusted to the desired pressure level.
- the pressure regulator 119 is connected to the four-way valve through the inlet port 142 and therefore controls the pressure of air passing through this valve into the main drive cylinder 41.
- Valve 129 is thus opened to admit air under pressure to the pilot fitting 147, which causes the valve spool within the valve housing to shift to the left as viewed in FIG.
- lever 133 When the platen has reached its upper extremity, lever 133 (FIG. 3) engages plunger 134 of valve 131, causing high-pressure air to pass through this valve, through tubing 148 and into the pilot fitting 146 of the main four-way valve.
- the valve spool is thus shifted to the right, connecting port B thereof to one of the exhaust ports, and connecting port A to the source of high-pressure air so that air under pressure is now admitted to port 144 into the air cylinder 41 above the piston, driving the piston downwardly to shift the platen into a wafer loading position.
- the wafer turning mechanism 96 is actuated to rotate the wafer 90 so as to reorient it for breaking along scribe lines extending in the opposite direction to the scribe lines broken in the first operation.
- the feed slide is pushed in, the push button 132 is again depressed, and the apparatus is automatically recycled so as to break the wafer in the other direction.
- non-resilient metal band means opposed to said platen initially tangentially related to the curved surface thereof and progressively conformable thereto by relative movement therebetween perpendicular to the surface of said wafer whereby a flat scribed wafer disposed between the curved surface of the platen and said means conformable thereto is broken along said scribe lines.
- said means opposed to said platen constitutes a flexible band, and the linear dimension of said curved surface extends transverse of said flexible band.
- a. means having a curved surface adapted to initially engage in line contact the side of a wafer remote from said scribe lines, said line engagement extendingsubstantially parallel to said scribe lines;
- said means in surface contact with the scribed surface of the wafer comprising a non-resilient metal band progressively conformable to said curved surface by movement perpendicular thereto whereby said wafer is caused by said band to conform to said curved surface to thereby break said wafer into portions defined by said scribe lines.
- said means having a curved surface constitutes a platen movable from a flat wafer loading position through successive wafer breaking positions in which said wafer is made to conform to said platen and back to said flat wafer loading position.
- said means having a curved surface constitutes a platen having a convex curvilinear surface thereon
- said means adapted to engage the flat scribed surface of the wafer in surface contact constitutes a flexible band spaced from said platen an amount sufficient to permit interposition of said wafer therebetween, and means for effecting wrapping of said band about the convex curvilinear surface of said platen.
- control means are provided selectively operable to effect progressive conformability of said means in surface contact with the scribed surface of the wafer to said curved surface, and means disposed between said curved surface means and said band means to retain said band means from slipping in relation to said curved surface means.
- said means having a curved surface constitutes a platen
- said means conformable to the curved surface of said platen constitutes a flexible band
- said apparatus includes a housing divided into a wafer-breaking section and a power section, said platen and said band being enclosed within said wafer-breaking section of the housing.
- said means having a curved surface comprises a platen
- said means adapted to conform to said curved surface comprises a flexible band
- said apparatus includes a frame on which said platen and said band are supported, and means are provided on said frame connected to said platen and said band and selectively operate to effect movement thereof to conform said band to said curved surface.
- a. platen means having a curvilinear surface formed by lines parallel to the Y axis in a three dimensional XYZ system of axes and adapted to support thereon a wafer having scribe lines parallel to at least said Y axis;
- tensioned strap means spaced from said curvilinear surface and initially abuttable against the flat scribed surface of a wafer disposed between said curvilinear surface and said tensioned strap means, said tensioned strap means starting at said Y axis being progressively conformable to portions of said curvilinear surface lying on opposite sides of said Y axis to apply pressure progressively to the side of said wafer opposite said curved surface starting from said Y axis and progressing circumferentially thereabout whereby said wafer is progressively broken first along one of said scribe lines coincident with said Y axis and then successively along pairs of said scribe lines formed by scribe lines correspondingly spaced on opposite sides of said Y axis.
- a. platen means having a curved surface adapted to initially support thereon a flat scribed wafer
- said means opposed to said platen means comprising a taut band resiliently anchored at each end, said platen means being movable against said band in opposition to said resilient anchoring means.
- a. platen means having a curved surface adapted to initially support thereon a flat scribed wafer
- said means opposed to said platen means constituting a flexible band, means provided to tension said band, and means provided to move said platen in opposition to said band to effect cinching of said band about the curved surface of said platen means.
- a. platen means having a curved surface adapted to initially support thereon a flat scribed wafer
- said means opposed to said platen means constituting a band, said platen means being movable relative to said band, and pneumatic circuit means ineluding a pair of air cylinders provided to impose tension on said band in opposition to movement of said platen means thereagainst.
- a. platen means having a curved surface adapted to initially support thereon a fiat scribed wafer; and b. means opposed to said platen initially tangentially related to the curved surface thereof and progressively conformable thereto by relative movement therebetween perpendicular to the surface of said wafer whereby a fiat scribed wafer disposed between the curved surface of the platen and said means conformable thereto is broken along said scribe lines;
- said means opposed to said platen means comprising a flexible band, and control means provided to effect progressive conformability of said band to the curved surface of said platen means so as to cinch a wafer interposed therebetween into conformity with the curvature of said platen means, said control means including an air cylinder operable to effect movement of said platen means, a pair of air cylinders attached to opposite ends of said flexible band to impose tension thereon, pressure regulator means for controlling the pressure in said air cylinders, valve means for controlling release of air under pressure to the air cylinder controlling movement of said platen means, and valve means actuated by said platen means upon completion of a predetermined excursion and effective to reverse the cycle to return the platen means to a wafer loading position and release tension on said flexible band.
- a. means having a curved surface adapted to engage in line contact the side of a wafer remote from said scribe lines, said line engagement extending substantially parallel to said scribe lines;
- said means in surface contact with the scribed surface of the wafer being progressively conformable to said curved surface by movement perpendicular thereto whereby said wafer is caused to conform to said curved surface to thereby break said wafer into portions defined by said scribe lines;
- said means having a curved surface adapted to engage said wafer in line contact comprising a platen having a curvilinear surface thereon, said means adapted to engage the flat scribed surface of a wafer in surface contact comprising a taut flexible band disposed adjacent said curved surface of the platen whereby wrapping of said band about said platen effects breaking of said wafer first along a median scribe line and thence progressively simultaneously along scribe lines correspondingly spaced on opposite sides of said median scribe line.
- a. means having a curved surface adapted to engage in line contact the side of a wafer remote from said scribe lines, said line engagement extending substantially parallel to said scribe lines;
- said means in surface contact with the scribed surface of the wafer being progressively conformable to said curved surface by movement perpendicular thereto whereby said wafer is caused to conform to said curved surface to thereby break said wafer into portions defined by said scribe lines;
- a pneumatic circuit including a plurality of selectively operable air cylinders, a pair of said air cylinders being connected to said flexible band and another of said cylinders being connected to said platen, and valve means for actuating said cylinder connected to said platen to effect movement of said platen in opposition to said band.
- a. means having a curved surface adapted to engage in line contact the side of a wafer remote 'from said scribe lines, said line engagement extending substantially parallel to said scribe lines;
- said means in surface contact with the scribed surface of the wafer being progressively conformable to said curved surface by movement perpendicular thereto whereby said wafer is caused to conform to said curved surface to thereby break said wafer into portions defined by said scribe lines;
- said apparatus including a housing having a waferbreaking section and a power section, and wafer support means are provided associated with said wafer-breaking section of the housing operable to support said wafer in said wafer-breaking section between said means having a curved surface and said means conformable thereto.
- a. platen means having a curvilinear surface formed by lines parallel to the Y axis in a three dimensional XYZ system of axes and adapted to support thereon a wafer having scribe lines parallel to at least said Y axis;
- a. platen means having a curvilinear surface formed by lines parallel to the Y axis in a three dimensional XYZ system of axes and adapted to support thereon a wafer having scribe lines parallel to at to said platen means.
- platen means having a curvilinear surface formed and connectefi to platen means and Strap by lines parallel to the Y axis in a three dimensional means to tension said strap and effect movement XYZ System of axes and adapted to Support thereof to progressively conform the strap means thereon a wafer having scribe lines parallel to at least said Y axis;
- a. platen means having a curvilinear surface formed
- strap means spaced from said curvilinear surface and initially abuttable against the flat scribed surface of a wafer disposed between said curvilinear surface and said strap means, said strap means by lines parallel to the Y axis in a three dimensional XYZ system of axes and adapted to support thereon a wafer having scribe lines parallel to at least said Y axis;
- each cylinder acts in opposition to the other cylinders.
- a. platen means having a curvilinear surface formed by lines parallel to the Y axis in a three dimensional XYZ system of axes and adapted to support thereon a wafer having scribe lines parallel to at
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Dicing (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
- Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
- Processing Of Stones Or Stones Resemblance Materials (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12188671A | 1971-03-08 | 1971-03-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3743148A true US3743148A (en) | 1973-07-03 |
Family
ID=22399370
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00121886A Expired - Lifetime US3743148A (en) | 1971-03-08 | 1971-03-08 | Wafer breaker |
Country Status (6)
Country | Link |
---|---|
US (1) | US3743148A (enrdf_load_stackoverflow) |
JP (1) | JPS5232553B1 (enrdf_load_stackoverflow) |
CA (1) | CA958492A (enrdf_load_stackoverflow) |
DE (1) | DE2205354C3 (enrdf_load_stackoverflow) |
FR (1) | FR2128717B1 (enrdf_load_stackoverflow) |
GB (1) | GB1388928A (enrdf_load_stackoverflow) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4285451A (en) * | 1979-12-10 | 1981-08-25 | Ppg Industries, Inc. | Method of and apparatus for severing edges of a glass sheet |
US4865241A (en) * | 1981-11-25 | 1989-09-12 | U.S. Philips Corporation | Method and apparatus for subdividing into pieces a ceramic plate |
US5104023A (en) * | 1987-05-01 | 1992-04-14 | Sumitomo Electric Industries, Ltd. | Apparatus for fabrication semiconductor device |
US5171717A (en) * | 1990-05-25 | 1992-12-15 | International Business Machines Corporation | Method for batch cleaving semiconductor wafers and coating cleaved facets |
US5785225A (en) * | 1991-12-06 | 1998-07-28 | Loomis Industries, Inc. | Frangible semiconductor wafer dicing apparatus which employs scribing and breaking |
US5792566A (en) * | 1996-07-02 | 1998-08-11 | American Xtal Technology | Single crystal wafers |
US20060143908A1 (en) * | 2004-12-22 | 2006-07-06 | Pierre-Luc Duchesne | An automated dicing tool for semiconductor substrate materials |
US20060292829A1 (en) * | 2005-06-23 | 2006-12-28 | Advanced Semiconductor Engineering, Inc. | Apparatus and method of wafer dicing |
CN1994713B (zh) * | 2006-01-06 | 2010-05-12 | 日月光半导体制造股份有限公司 | 晶粒分离装置及其分离晶粒的方法 |
US20140191236A1 (en) * | 2004-06-04 | 2014-07-10 | The Board Of Trustees Of The University Of Iiiinois | Methods and Devices for Fabricating and Assembling Printable Semiconductor Elements |
US9515025B2 (en) | 2004-06-04 | 2016-12-06 | The Board Of Trustees Of The University Of Illinois | Stretchable form of single crystal silicon for high performance electronics on rubber substrates |
US20170069524A1 (en) * | 2015-09-03 | 2017-03-09 | Disco Corporation | Chuck table |
US20180323105A1 (en) * | 2017-05-02 | 2018-11-08 | Psemi Corporation | Simultaneous Break and Expansion System for Integrated Circuit Wafers |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3182873A (en) * | 1961-09-11 | 1965-05-11 | Motorola Inc | Method for dicing semiconductor material |
US3396452A (en) * | 1965-06-02 | 1968-08-13 | Nippon Electric Co | Method and apparatus for breaking a semiconductor wafer into elementary pieces |
US3493155A (en) * | 1969-05-05 | 1970-02-03 | Nasa | Apparatus and method for separating a semiconductor wafer |
US3507426A (en) * | 1968-02-23 | 1970-04-21 | Rca Corp | Method of dicing semiconductor wafers |
US3562057A (en) * | 1967-05-16 | 1971-02-09 | Texas Instruments Inc | Method for separating substrates |
US3615047A (en) * | 1969-06-30 | 1971-10-26 | Bell Telephone Labor Inc | Apparatus and method for separating scribed plates of brittle material |
-
1971
- 1971-03-08 US US00121886A patent/US3743148A/en not_active Expired - Lifetime
- 1971-10-15 JP JP46081552A patent/JPS5232553B1/ja active Pending
-
1972
- 1972-01-04 CA CA131,621A patent/CA958492A/en not_active Expired
- 1972-02-04 DE DE2205354A patent/DE2205354C3/de not_active Expired
- 1972-03-08 GB GB1083072A patent/GB1388928A/en not_active Expired
- 1972-03-08 FR FR7207965A patent/FR2128717B1/fr not_active Expired
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3182873A (en) * | 1961-09-11 | 1965-05-11 | Motorola Inc | Method for dicing semiconductor material |
US3396452A (en) * | 1965-06-02 | 1968-08-13 | Nippon Electric Co | Method and apparatus for breaking a semiconductor wafer into elementary pieces |
US3562057A (en) * | 1967-05-16 | 1971-02-09 | Texas Instruments Inc | Method for separating substrates |
US3507426A (en) * | 1968-02-23 | 1970-04-21 | Rca Corp | Method of dicing semiconductor wafers |
US3493155A (en) * | 1969-05-05 | 1970-02-03 | Nasa | Apparatus and method for separating a semiconductor wafer |
US3615047A (en) * | 1969-06-30 | 1971-10-26 | Bell Telephone Labor Inc | Apparatus and method for separating scribed plates of brittle material |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4285451A (en) * | 1979-12-10 | 1981-08-25 | Ppg Industries, Inc. | Method of and apparatus for severing edges of a glass sheet |
US4865241A (en) * | 1981-11-25 | 1989-09-12 | U.S. Philips Corporation | Method and apparatus for subdividing into pieces a ceramic plate |
US5104023A (en) * | 1987-05-01 | 1992-04-14 | Sumitomo Electric Industries, Ltd. | Apparatus for fabrication semiconductor device |
US5171717A (en) * | 1990-05-25 | 1992-12-15 | International Business Machines Corporation | Method for batch cleaving semiconductor wafers and coating cleaved facets |
US5785225A (en) * | 1991-12-06 | 1998-07-28 | Loomis Industries, Inc. | Frangible semiconductor wafer dicing apparatus which employs scribing and breaking |
US5792566A (en) * | 1996-07-02 | 1998-08-11 | American Xtal Technology | Single crystal wafers |
US11456258B2 (en) | 2004-06-04 | 2022-09-27 | The Board Of Trustees Of The University Of Illinois | Stretchable form of single crystal silicon for high performance electronics on rubber substrates |
US12074213B2 (en) | 2004-06-04 | 2024-08-27 | The Board Of Trustees Of The University Of Illinois | Methods and devices for fabricating and assembling printable semiconductor elements |
US9768086B2 (en) | 2004-06-04 | 2017-09-19 | The Board Of Trustees Of The University Of Illinois | Methods and devices for fabricating and assembling printable semiconductor elements |
US11088268B2 (en) | 2004-06-04 | 2021-08-10 | The Board Of Trustees Of The University Of Illinois | Methods and devices for fabricating and assembling printable semiconductor elements |
US10374072B2 (en) | 2004-06-04 | 2019-08-06 | The Board Of Trustees Of The University Of Illinois | Methods and devices for fabricating and assembling printable semiconductor elements |
US20140191236A1 (en) * | 2004-06-04 | 2014-07-10 | The Board Of Trustees Of The University Of Iiiinois | Methods and Devices for Fabricating and Assembling Printable Semiconductor Elements |
US9450043B2 (en) * | 2004-06-04 | 2016-09-20 | The Board Of Trustees Of The University Of Illinois | Methods and devices for fabricating and assembling printable semiconductor elements |
US9515025B2 (en) | 2004-06-04 | 2016-12-06 | The Board Of Trustees Of The University Of Illinois | Stretchable form of single crystal silicon for high performance electronics on rubber substrates |
US10204864B2 (en) | 2004-06-04 | 2019-02-12 | The Board Of Trustees Of The University Of Illinois | Stretchable form of single crystal silicon for high performance electronics on rubber substrates |
US9761444B2 (en) | 2004-06-04 | 2017-09-12 | The Board Of Trustees Of The University Of Illinois | Methods and devices for fabricating and assembling printable semiconductor elements |
US20060143908A1 (en) * | 2004-12-22 | 2006-07-06 | Pierre-Luc Duchesne | An automated dicing tool for semiconductor substrate materials |
US7559446B2 (en) | 2004-12-22 | 2009-07-14 | International Business Machines Corporation | Automated dicing tool for semiconductor substrate materials |
US7504319B2 (en) * | 2005-06-23 | 2009-03-17 | Advanced Semiconductor Engineering, Inc. | Apparatus and method of wafer dicing |
US20060292829A1 (en) * | 2005-06-23 | 2006-12-28 | Advanced Semiconductor Engineering, Inc. | Apparatus and method of wafer dicing |
CN1994713B (zh) * | 2006-01-06 | 2010-05-12 | 日月光半导体制造股份有限公司 | 晶粒分离装置及其分离晶粒的方法 |
US10090186B2 (en) * | 2015-09-03 | 2018-10-02 | Disco Corporation | Chuck table |
US20170069524A1 (en) * | 2015-09-03 | 2017-03-09 | Disco Corporation | Chuck table |
US20180323105A1 (en) * | 2017-05-02 | 2018-11-08 | Psemi Corporation | Simultaneous Break and Expansion System for Integrated Circuit Wafers |
Also Published As
Publication number | Publication date |
---|---|
DE2205354A1 (enrdf_load_stackoverflow) | 1972-09-21 |
FR2128717A1 (enrdf_load_stackoverflow) | 1972-10-20 |
DE2205354B2 (de) | 1979-06-28 |
JPS5232553B1 (enrdf_load_stackoverflow) | 1977-08-22 |
DE2205354C3 (de) | 1980-02-28 |
GB1388928A (en) | 1975-03-26 |
FR2128717B1 (enrdf_load_stackoverflow) | 1976-10-29 |
CA958492A (en) | 1974-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3743148A (en) | Wafer breaker | |
US2413999A (en) | Stripping machine | |
US5103702A (en) | Method of cutting slats for a venetian blind | |
US2364011A (en) | Punching machine | |
GB1213214A (en) | Method and apparatus for die cutting blanks from stacks of sheet materials | |
CA1215560A (en) | Device to prepare the dies of a platen press | |
US3555949A (en) | Die cutting presses | |
US4131042A (en) | Apparatus for cutting and removing dry film photoresist from printed wire boards | |
US3862583A (en) | Bandsaw machines provided with an improved material holding vise | |
US2342437A (en) | Clamp for metal stretching presses | |
US3880029A (en) | Method for ganged scoring of glass | |
US3884061A (en) | Vacuum parts holder | |
US6554030B2 (en) | Progressive punch | |
GB1194557A (en) | Method and apparatus for Die-Cutting Blanks from a Pile of Sheet Material | |
US1841820A (en) | Method of sheet metal stamping | |
US3707104A (en) | T-edge cutter | |
US20030010172A1 (en) | Slitting shears | |
US3296907A (en) | Tape cutting apparatus | |
US20170326619A1 (en) | Press for producing fine cut parts | |
JP2906000B2 (ja) | 真空包装装置 | |
US2195537A (en) | Apparatus for forming cutting dies | |
US3614883A (en) | Device for pressing pieces of sheet metal | |
GB2055667A (en) | Guillotines | |
SU741849A1 (ru) | Устройство дл одновременной загибки краев деталей кожгалантерейных изделий | |
US3352087A (en) | Packaging machine |