US3742721A - Method of regulation of the temperature of the liquefied gas or gaseous mixture in an apparatus for the liquefaction of gaseous fluids - Google Patents

Method of regulation of the temperature of the liquefied gas or gaseous mixture in an apparatus for the liquefaction of gaseous fluids Download PDF

Info

Publication number
US3742721A
US3742721A US00062590A US3742721DA US3742721A US 3742721 A US3742721 A US 3742721A US 00062590 A US00062590 A US 00062590A US 3742721D A US3742721D A US 3742721DA US 3742721 A US3742721 A US 3742721A
Authority
US
United States
Prior art keywords
refrigerant fluid
flow
column
temperature
controlling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00062590A
Other languages
English (en)
Inventor
J Bourguet
J Perret
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technip France SAS
Original Assignee
Technip SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technip SA filed Critical Technip SA
Application granted granted Critical
Publication of US3742721A publication Critical patent/US3742721A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1919Control of temperature characterised by the use of electric means characterised by the type of controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • F25J1/0055Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream originating from an incorporated cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0212Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a single flow MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0245Different modes, i.e. 'runs', of operation; Process control
    • F25J1/0249Controlling refrigerant inventory, i.e. composition or quantity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature

Definitions

  • ABSTRACT In the liquefaction of a gaseous fluid wherein a refrigerant fluid having at least two components is used, at least two conditions parameters of the refrigerant fluid are determined. The determined values are used to control regulating members of the flow rates of the refrigerant fluid at specified operations of the liquefaction process.
  • the present invention relates to a method of regulation of the temperature of the liquefied gas or gaseous mixture in an apparatus for the liquefaction of gaseous fluids, i.e gas or gaseous mixtures, natural gas for example, by means of a refrigerant fluid with a number of constituents, which is condensed by fractions at lower and lower temperatures in order to cool and liquefy the gasor gaseous mixture by exchange, and to a liquefaction apparatus arranged so as to carry this method into effect.
  • gaseous fluids i.e gas or gaseous mixtures, natural gas for example
  • Liquefaction apparatus for gas or gaseous mixtures which operate with a refrigerant fluid having a number of constituents, which is condensed by fractions at lower and lower temperatures in order to cool and liquefy the gas or gaseous mixture .
  • apparatus of this kind which comprises a condensation column for the refrigerant fluid, an exchange column for the cooling and liquefaction of the gas or gaseous mixture, and a-compressor fed with the refrigerant fluid issuing from the exchange column in the gaseous state.
  • the pressure prevailing in the condensation column is relatively high, while the exchange column works at a substantially lower pressure.
  • a refrigerant fluid having a number of constituents implies that the boiling'temperature of the various liquid fractions varies in dependence on the composition of these liquids, so that the temperature required for correctly condensing (or strongly refrigerating the gas which is liquefied (or to be liquefied) is liable either not to be attained, or to be exceeded.
  • the quantity of refrigerant fluid in circulation is relatively small, the presence of leakage may result in a fairly large variation in the composition of this fluid.
  • the invention has for its object to carry out, with the maximum simplicity and a minimum response time, accurate measurement which can be employed for the regulation of the temperature of the liquefied gas or gaseous mixture within a range of temperatures which is as narrow as possible, preferably 1t lC.
  • the method is characterized in that at least some of the condition parameters of the refrigerant fluid arerneasured, at least at the level of the lowest temperature of this fluid, and these measurements are utilized to control the devices which which which is in the liquid state may be considered practically as formed of two constituents as regards the temperature achievable for cooling and liquefying the gas or gaseous mixture the proportion of the other constituent has a negligible effect on this temperature.
  • the result is that the measurement of certain condition parameters of the fluid (i.e the pressure, the temperature and the volume in accordance with thermo-dynamic definition) at the level of the lowest temperature,
  • the method may be applied to a liquefaction appara tus comprising a condensation column for the refrigerant fluid, an exchange column for the cooling and liquefaction of the gas or gaseous mixture and a compressor fed with the refrigerant fluid issuing from the exchange column in the gasous state, the condition parameters of the refrigerant fluid measured at the level of the lowest temperature of this fluid are, for the condensation column, the pressure of the gaseous fraction before condensation and the temperature of the corresponding liquid fraction after condensation and, for the exchange column, the pressure and temperature of the fluid in the gaseous state resulting from the said liquid fraction, the measurement of the pressure in the exchange column being employed to control the speed of the compressor and, in consequence, the flow-rate of the refrigerant fluid taken in the gaseous state after exchange.
  • a chamber containing the liquid and gaseous phases of the fraction at the lowest temperature of the refrigerant fluid is placed into the circuit of the said fraction, and the measurements of at least some of the condition parameters of the fluid in this chamber are utilized.
  • the temperature and pressure in the same chamber are measured, as are also the pressure of the refrigerant fluid in the gaseous state in the exchange column and the temperature of the liquefied gas or gaseous mixture, and these measurements are employed to control, a valve regulating the flow-rate of the liquid fraction of refrigerant fluid which serves to ensure the formation of the liquid fraction at the lowest temperature, a valve regulating the flow rate of the topping-up constituents having the lowest liquefaction temperatures, the, speed of the compressor and, -in consequence, the flow-rate of refrigerant fluid in the gaseous state taken after exchange, and a valve regulating the flow-rate of the liquid fraction at the lowest temperature of the refrigerant fluid at the inlet of the exchange column.
  • a supplementary condition parameter is introduced, namely the volume of liquid in the chamber which is determined by measuring the level.
  • Liquefaction apparatus comprises; devices regulating the flow-rate of refrigerant fluid at the level of the lowest temperature, the flow-rate of this fluid in the gaseous state taken after exchange, and the flowrate of constituents added by way of gaseous make-up, these devicesare connected to and controlled by measuring devices for measuring the chosen condition parameters of the refrigerant fluid
  • a chamber is provided containing the liquid and gaseous phases of this fraction, which makes it possible to measure at least someof the condition parameters of the refrigerant fluid in this chamber.
  • FIG. 1 is a general view of a liquefaction apparatus with two columns, arranged for a first method of application of the method according to the invention
  • FIG. 2 is a partial view showing the last stage, or the lowest temperature stage, following an alternative form of embodiment
  • FIG. 3 is a partial view showing the last stage of a liquefaction apparatus arranged for another application of the method according to the invention
  • FIG. 4 is a partial view similar to that of FIG. 3, of a liquefaction apparatus arranged for a preferred way .of
  • FIG. 5 is a view similar to FIG. 4, showing an alternative form of embodiment
  • FIG. 6 is a general view of a liquefaction apparatus with a single column arranged in a manner similar to that of FIG. 1, for carrying into effect the method according to the invention.
  • FIG. 1 shows an apparatus for the liquefaction of a gas or gaseous mixture, natural gas for example, by means of a refrigerant fluid having a number of constituents which is condensed by fractions at lower and lower temperatures in a condensation column 1 in order to cool and liquefy by exchange the gas or gaseous mixture in an exchange column 2.
  • the condensation column 1 has three stages and the exchange column 2 has four stages, but the number of stages may 'obviously be greater or less, the preferred number being comprised between two andfour for the condensation column and between three and five for the exchange column.
  • a low-pressure compressor 3 delivers into a highpressure compressor 4 through the intermediary-of a cooler 3a, the vapours of refrigerant fluid coming from the exchange column 2; the compressor 4 also takes the refrigerant fluid vapours coming from the condensation column 1.
  • the compressed refrigerant fluid is directed towards a condenser 5 in which it is cooled and partly condensed.
  • the condenser 5 is cooled by an external fluid, for example air or sea water. 7
  • a mixture of liquid and vapour then leaves the condenser and is separated in a tank 6 located at the level of the first or bottom stage of the condensation column I.
  • the liquid phase is directed on the one hand into an exchanger 7 at thefirst stage of the condensation column l and on the other hand into an exchanger 8 in the first stage of the exchange column 2.
  • the liquid After its passage through the exchanger 7, the liquid is directed towards an injection head 9 which injects it into the condensation column in order to cool the liquid in the exchanger 7 on the one hand, and to partially condense the gas coining from the tank 6 and directed into an exchanger 10 on the other.
  • this is injected by an injection head 11 into this column in order to'cool the liquid in the exchanger 8 on the one hand and to cool the gas to be liquefied passing through an exchanger 12, this gas having been compressed if required, by a compressor 13 before its introduction into the exchange column 2.
  • the same process is repeated at the following stages of the condensation column and the exchange column, the fraction of refrigerant fluid coming from the exchanger 10 being introduced into a tank 14 located at the level of the second stage, in which tank this fraction is separated into two phases, one liquid and the other vapour.
  • the condensation column also comprises at n this stage an exchanger 15 for the liquid, followed by an injection head 17, and an exchanger 18 for the gas to be condensed.
  • the exchange column comprises an exchanger 16 for the liquid, followed by an injection head 19, and an exchanger 20 for the gas to be liquefied.
  • a tank 21, exchangers 22, 25 and an injection head 24 At the third and last stage of the condensation column are provided a tank 21, exchangers 22, 25 and an injection head 24, while at the third stage of the exchange column are provided an exchanger 23 and an injection head 26, together with an exchanger 27 for the gas to be liquefied.
  • the refrigerant fluid which leaves the exchanger 25 is in the liquid state and is directed to the last stage of the-exchange column into an exchanger 28 followed by an injection head 29 in order to ensure the liquefaction and the refrigeration of the gas to be liquefied at the level of the last exchanger 30.
  • the liquefied gas passing out of the exchange column 2 is directed, through a valve 31 which enables its pressure to be brought to a pressure in the vicinity of atmospheric pressure, towards storage tanks (not shown);
  • Two valves 32, 33 are provided respectively between the exchanger 22 and the injection head 24 so as to regulate the flow-rate of liquid serving to ensure the production of the refrigerant fluid at the lowest temperature in the condensation column 1, and between theexchanger 28 and the injection head 29 in order to regulate the flow-rate of this latter liquid injected into the exchange column 2 after refrigeration in the exchanger 28.
  • a valve system which is a plural-channel valve having elements 340 and 34b, permits the regulation of the flow-rate of make-up of constituents of the refrigerant fluid, added in the gaseous state to the fluid taken after exchange and introduced into the compressor 3.
  • These constituents are the two gases which have the lowest liquefaction temperatures, that is to say in principle nitrogen (valve 34a) and methane (valve 34b).
  • the topping-up elements are obtained from a suitable source (not shown) which supplies either gases in the pure state or mixtures which are rich in nitrogen or methane. In the case of liquefaction of natural gas, these mixtures are obtained from extractions made from the natural gas itself during the course of liquefaction.
  • the ' gas leaving the exchange column 2 depends mainly on the temperature of the refrigerant fluid in the liquid state which is directed towards the injection head 29.
  • the most critical point of the installation is therefore located at this level; if the temperature of the refrigerant fluid is not sufflciently low, the liquefied gas under pressure passing out of'the exchanger 30 will not be sufficiently refrigerated and, after expansion by the action of the valve 31, it will cause relatively large formations of vapor which it will be necessary to evacuate; if the temperature of the refrigerant fluid is too low, the vapour pressure of the liquefied gas passing out of the valve 31 will be too low and lower than atmospheric pressure, which is liable to cause leakages of air into the storage tanks if a pressurebalancing device by the intake of supplementary gas is not provided.
  • the frigories supplied by the refrigerant fluid at its lowest temperature are extremely costly, since it is known that the cost of frigories increases as the temperature diminishes.
  • a variation of 1C. at the usual working temperatures of the apparatus results in an increase in the cost price of cooling of the order'of l percent.
  • the temperature of the refrigerant fluid at the level of the lowest temperature is therefore an essential factor of the economic efficiency of the installation, which factor should be maintained within a relativelynarrow range, preferably less than 1C.
  • this temperature is very sensitive to the composition of the refrigerant fluid at this level, so that the variations of percentage of constituents due to leakages or to accidental opening of blow-off or service valves, may result in large variations of temperature within the space of a few minutes. It is therefore essential to rapidly compensate for these leakages by additions of nitrogen or methane for example, so as to maintain the composition of the refrigerant fluid practically constant at the level of the lowest temperature.
  • the refrigerant liquid at its lowest temperature is theoretically a mixture of a number of constituents, it may be considered in practice as formed by two constituents as regards boiling temperatures which can be obtained in the exchange column, the proportion of the other constituents having only a-negligible effect on that temperature.
  • the result is that if the pressure and the temperature of this liquid are regulated before its passage into the exchange column, and if the pressure in the exchange column is also regulated, the temperature of the liquid before its injection gives an instantaneous indication of its composition, which enables the supply of the necessary additions to be initiated.
  • the pressure in the condensation column 1 must be higher than a certain value such thatthe vapours passing out of the tank 21 are wholly condensed in the exchanger 25. This implies the provision of a regulator for ensuring that this pressure remains higher than the said given value.
  • valves 32 and 33 which respectively control the flow-rate of refrigerant fluid serving for the production of the coldest fraction of this fluid and the flow-rate of this fluid before its injection into the exchange column
  • valve 34 intended for the injection of topping-up elements
  • the" speed of the compressor 3 which controls the flowrate of refrigerant fluid in the gaseous state taken at the outlet of the exchange column.
  • the above means of action are each associated and controlled by one of the four measurements of condi tion parameters of the refrigerant fluid at the level of the lowest temperature of this fluid.
  • the condition parameters which comprise 'the temperature, the pressure and the volume, are in the present case the' temperature and the pressure.
  • the four measurements made are: the pressure of gas in the tank 21 at the last stage of the condensation column, the temperature of the coldest refrigerant fluid in the vicinity of the valve 33 before its injection into the exchange column, the temperature of the refrigerant fluid at the last stage of the exchange column after its injection, and the pressure of the refrigerant fluid in the gaseous state in the exchange column.
  • the valve 33 is controlled by the pressure in the tank 21, measured by a pressure gauge 35
  • the valve 32 is controlled by the temperature of the refrigerant fluid before injection, measured by a probe 36
  • the make-up valve 34 is controlled by the temperature of the refrigerant fluid after injection, measured by a probe 37
  • the speed of the compressor 3 is controlled by the pressure of the refrigerant fluid in the gaseous state in the exchange column, measured by a pressure gauge 38.
  • the topping-up valve 34 may be a valve with several channels or it may be constituted by two valves, one controlling the injection of nitrogen or a mixture'rich in nitrogen, and the other the injection of methane, or of a mixture rich in methane. [n this latter case, the two valves in fact play the part of a single valve which varies the composition of the make-up elements in the vicinity of the desired value.
  • FIG.2 shows an alternative form in which the means of action are associated with the measurements of temperature and pressure indicated above in a different order, namely: valve 32 temperature probe 37; valve 33 temperature probe 36; make-up valve 34 pressure-gauge 35; speed of compressor 3 pressure gauge 38. Irrespective of the combination chosen, the speed of the compressor is associated with the pressure in the exchange column, measured by the pressure gauge 38. The result is that the number of combinaaccount of the flow-rate of gas to be liquefied, the flowrate of the coldest refrigerant fluid is varied before its injection into the exchange column, as a function of the flow-rate of liquefied gas, in order to maintain the final temperature of thisliquefled gas constant.
  • a tank 40 containing the liquid and gaseous phases of this fluid.
  • the refrigerant fluid passing out of the exchanger 25 is sent into the tank 40, in which the liquid and vapour phases are in equilibrium at the boiling temperature of the fluid and under the high pressure of the condensation column.
  • the refrigerant fluid is practically equivalent at this level to a mixture of two constituents, generally nitrogen and methane, and the mere knowledge of the pressure and temperature existing in the tank 40 is sufficient to define the proportions of nitrogen and methane in this mixture.
  • the liquid phase of the tank 40 is directed to an exchanger 41 provided in the condensation columnQas in the previous examples shown in FIGS.1 and 2. Since the refrigeration actions carried out on the coldest refrigerant fluid depend essentially on the exchangers, they are practically constant for given exchangers, so that the boiling temperature of the fluid practically defines that of the refrigerant fluid before its injection into the exchange column.
  • the make-up valve 34 is controlled by the pressure in the tank 40, measured by a pressure-gauge 42
  • the valve 32 is controlled by the temperature of the refrigerant fluid before its passage into the tank 40, measured by a probe 43
  • the valve 33 is controlled by the temperature of the liquefied gas passing out of the exchange column, this temperature being measured by a probe 44
  • the speed of the compressor 3 is again controlled by the pressure in the exchange column, measured by the pressure-gauge 38.
  • the make-up or topping-up valve may be controlled by the temperature probe 43, while the valve 32 can be controlled by the pressuregauge 42.
  • a valve 45 regulates the flow-rate of refrigerant fluid in the liquid state passing out of the exchanger 25 and sent into the tank 40.
  • the liquid phase contained in this tank is sent directly to the exchanger 28 of the exchange column, the valve 45 causing a drop in pressure .such that the tank 40 becomes at a pressure less than that existing in the condensation column, corresponding to the boiling pressure at the desired temperature of the coldest refrigerant fluid.
  • the gaseous phase of the tank 40 is coupled to the evacuation system of the ap' paratus by means of a valve 46 which may be termed the negative make-up valve, since it makes it possible to obtain a reduction of the percentage of nitrogem by evacuating the excess.
  • valves 32, 33 and 34 (not shown)
  • valve 45 which regulates the flow of refrigerant fluid passing out of the exchanger 25 and introduced into the tank 40
  • evacuation valve 46 which regulates the flow of refrigerant fluid passing out of the exchanger 25 and introduced into the tank 40
  • speed of the compressor 3 (not shown).
  • the parameters corresponding to these means of action are as follows: the pressure in the tank 21, measured by the pressure-gauge 35 and associated with the valve 32; the pressure in the tank 40, measured by the pressure-gauge 42 and associated with the evacuation I valve 46; the temperature in the tank 40, measured by a probe 47 and associated with the valve 45; the volume of liquid in the tank 40, measured by a level measurer 48 and associated with the make-up valve 44 (not shown); the temperature of the liquefied gas passing the pressure existing in the condensation column, by
  • the pressure 7 in the tank 21 is associated with the valve 45, the pressure and the temperature in the tank 40 are associated with the valve 46 and the valve 32 respectively; the level in the tank 40 is associated, as previously, with the make-up valve and the temperature of the liquefied gas is again associated with the valve 33 and the pressure in the exchange column with the speed of the compressor.
  • an increase of pressure in the tank 40 causes the opening of the valve 46, while a fall in level in this tank causes the injection of additions of nitrogen and methane in the form of a mixture having a composition identical with that of the coldest refrigerant fluid.
  • the temperature of the refrigerant fluid injected at the last stage of the condensation column by the injection head 24 depends essentially on the temperature of the liquid in the tank 21. This latter temperature can be regulated by controlling the flow-rate of refrigerant fluid injected by the injection head 17 at the level of the intermediate stage of the condensation column.
  • the flow-rate of refrigerant liquid sent to the injection head 26 in the exchange column must be sufflcient to cool to the maximum extent the gas to be liquified, since cooling by this liquid is less expensive by the coldest refrigerant fluid.
  • a measurement of the level of liquid in the tank 21 may be provided to control the flow-rate of refrigerant liquid injected by the injection head 26 into the exchange column.
  • additional quantities of constituents of the refrigerant fluid having liquefaction temperatures immediately above that of the most volatile constituent,(generally nitrogen) may be added in the form of a mixture practically identical to that of the liquid (generally methane and ethane).
  • a probe measuring the temperature in the circuit of the gas to be liquefied after the exchanger 27, or a flow measuring device provided on the circuit of refrigerant liquid going to the exchange column, enables this injection of topping-up quantities to be controlled.
  • Arrangements may be provided in the lower stages of the installation in order to utilize the cooling effect available in the two columns with the maximum efficiency. By this means, there is also ensured a superheating of the evacuated vapours of refrigerant fluid, making it possible to prevent the entry of liquid particles into the compressors.
  • FIG.6 illustrates the application of the invention to a densation temperature of the coldest refrigerant fluid 5 liquefaction apparatus having a single column 50, in 10 which are simultaneously effected the condensation of the refrigerant fluid by successive fractions and the cooling and liquefaction of the gas to be liquefied.
  • a compressor 51 takes the vapours of refrigerant fluid passing out of the column 50 and directs them to l a condenser 52.
  • the partially condensed fluid is separated in a tank 53, and then the liquid and gaseous phases are sent into respective exchangers at the lower stage of the column 50.
  • the same arrangements are carried out at the following 2 stages. Valves regulate he flow-rate of refrigerant fluid injected into the column at the different stages.
  • the temperature of the refrigerant fluid in the tank 57, mea- 3 sured by a probe 60, is associated with the valve 61 which regulates the flow-rate of refrigerant fluid before injection into the last stage but one of the column.
  • the level in the tank 57 measured by means of a level measurer 62 is associated with the make-up valve 63; the 3 temperature of the liquefied gas, measured by a probe 64, is associated with a valve 65 which regulates the flow of the coldest refrigerant fluid before its injection into the column; and the pressure in the column, measured by a pressure-gauge 66, is associated with the 4 speed of the compressor 51.
  • the regulation of the temperature of the liquefied gas is ensured by simple measurements having a practically instantaneous response time. These measurements are only effected on condition or state parameters: pressure, temperature, volume, which are readily measured by conventional, accurate and inexpensive devices.
  • the controls of the means of action, valves and compressor speed can be effected in any appropriate manner, by manual or automatic methods, and advantageously by servo-controls. The problem of leakage is solved with optimum effectiveness since the injection of topping-up quantities is effected almost instantaneously.
  • the number of stages of the liquefaction apparatus may be variable, and the constituents of the refrigerant fluid may be differently chosen as a function of the nature of the gases to be liquefied.
  • a'pparatus uses a refrigerant fluid of at least various components that'are fractionally condensed at lower and lower temperatures, for cooling down and liquefying,
  • the gas or mixture of the gases to ob tain minimum deviation from a predetermined temperature of the liquefied gases at their lowest temperature level comprising the steps of:
  • liquefying apparatus which includes a condensing column (1) for the refrigerant fluid, an exchange column'(2) for the cooling and liquefying of the gas or mixture of gases, and a compressor (3) that collects the gaseous refrigerant fluid issuing from the exchange column (2) wherein the step of measuring the refrigerant fluid state parameters comprises measuring in the condensing column, the pressure (35) of the gaseous fraction before condensation and the temperature (36) of the corresponding liquid fraction after condensation;
  • the step of controlling the flow of refrigerant fluid comprises controlling (32) the flow of liquid fraction of the refrigerant fluid that is used to condense said gaseous fraction in the condensing column based on measurement of temperature (36) of the corresponding liquid fraction after condensation of the lowest temperature; controlling (33)-the inlet flow to the exchange column of the liquid fraction of the refrigerant fluid at its lowest temperature based on the pressure measurement (35) of the fluid gaseous fraction before condensation;
  • the step of measuring at least one of the state parameters comprises: separating the lowest temperature fraction of the refrigerant fluid in a chamber (40) that contains the liquid and gaseous phases of said fraction; and measuring the state parameters of the fluid in said chamber.
  • the measuring steps comprise measuring the temperature (43) and pressure (42) in said chamber (40); measuring the pressure (38) of the refrigerant fluid in the gaseous state in the exchanger column (2); measuring the temperature (44) of the gas or of the liquefied gaseous mixture; controlling (45) the flow of the liquid refrigerant fraction used for the formation of the liquid fraction at the lowest temperature; controlling (34) the make-up flow of the components of the refrigerant fluid that have the lowest temperatures of liquefaction; controlling the compressor speed (3) and consequently the flow rate of refrigerant fluid collected in gaseous state, after exchange; and controlling (33) the flow of the liquid fraction at the lowest temperature of the refrigerant fluid at the inlet of the exchange column 2).
  • Process according to claim 5 comprising the step of sub-cooling, in the condensing column, the liquid fraction contained in said chamber (40) before introducing it into the exchange column (2).
  • Process according to claim 4 comprising the step of controlling (45) the inlet flow to said chamber (40) of the lowest temperature liquid fraction in such a way as to cause a pressure drop in said chamber in relation to the pressure in the condensing column; and measuring the temperature (47), pressure (42),
  • controlling the flow of refrigerant fluid comprise controlling (32) the flow of the liquid fraction of the refrigerant fluid that is used to ensure the formation of the lowest temperature liquid fraction in the condensing column; controlling (45) the inlet flow into the chamber (40) of this last fraction; controlling (34) the make-up flow of the components of the refrigerant fluid that have the lowest temperatures of liquefaction; controlling the speed of the compressor (3) and consequently the flow of refrigerant fluid collected in the gaseous state after the exchange; and controlling (32) the inlet flow into the exchange column (2) of the liquid fraction at the lowest temperature of the refrigerant fluid.
  • Process according to claim 7, comprising the'step of controlling (45) the flow of the gaseous phase of the refrigerant fluid to the chamber (40); and wherein the measuring and control steps include measuring (35) the pressure of the gaseous fraction of the refrigerant fluid which is transformed in the condensing column (1) to the liquid fraction with the lowest temperature controlling (32) the flow of the liquid fraction of the lowest temperature, as a function of said measured pressure; controlling (45) the flow of the refrigerant fluid in the gaseous state that leaves the chamber;
  • the measurement step includes measuring the flow of the refrigerant that is sent to the exchange column (2) and controlling addition of flow of the two components of the refrigerant fluid that have liquefaction temperatures just above that of its most volatile component as make-up flow to the refrigerant fluid, said addition being added at a level just above that of the refrigerant fluid with the lowest temperature.
  • Process according to claim 2 comprising the step of adding a make-up of heavy end components to the refrigerant fluid to increase the condensation temperature of the refrigerant fluid with the highest temperature to a value approaching the temperature of the fluid outside the condensing column.
  • Process according to claim 4 comprising the step of controlling the pressure in the chamber (40), by
  • control steps comprise controlling (65) the flow of refrigerant fluid based on a measured state parameter;
  • Process according to claim 14, characterized wherein the step of measuring at least some of the state parameters comprise the further step of separating a low temperature fraction of the refrigerant fluid in a chamber (57) which contains the liquid and gaseous phases of the fraction;
  • control of the make-up flow (63) is based on measurements providing data representative of volume (62) in said chamber;
  • liquid refrigerant fraction flow (61) is based on temperature measurement (60) representative of temperature of the gaseous fraction in said chamber (57).
  • FIG. 1 35, 36, 38; FIG. 6: 55, 58, 60, 64, 66
  • flow control means (3, 34) to control the flow rate of refrigerant that is collected after exchange, and to control the flow rate of make-up of those components of the refrigerant fluid which have the lowest liquefaction temperatures, disposed in the path of said flow of said refrigerant fluid, and governed under control of selected ones of said mea-' suring means and responsive to selected ones of said parameters.
  • Apparatus according to claim 19 comprising a condensing column (1) condensing therein fractionally the refrigerant fluid to lower and lower temperatures; an exchange column (2) cooling therein and liquefying, by heat exchange, the gas, or mixture of gases;
  • said flow control means comprise 'a compressor (3) having applied thereto the refrigerant fluid in the gaseous state derived from said ex change column (2).
  • Apparatus according to claim 20 further comprising a chamber (FIG. 3: 40) connected in the flow circuit containing the gaseous and liquid phases of the lowest temperature fraction of the refrigerant fluid;
  • measuring means being connected to said chamber to measure at least some of the state parameters of said refrigerant fraction in the chamber (40).
  • the flow control means comprises a valve means (45) in the circuit of the lowest temperature fraction of the refrigerant fluid and controlling flow to said chamber;
  • a second valve means (46) communicating with the gaseous phase of said refrigerant fluid in said chamber and connected to vent, the second valve means (46) controlling the pressure in said chamber and consequently the pressure within the condensing column.
  • a heat exchange circuit FIG. 3: 41
  • Apparatus according to claim 19, comprising a combined condensing and heat exchange column (FIG. 6: 50); I
  • said expansion valve means being located in said columnfor' effecting cooling simultaneously of the liquid fractions in said first conduit and said gas, or mixture of gases in said second conduit path, in said column;
  • measuring means measuring the pressure in said column and the temperature of one of the fluids the measured parameters controlling the flow of refrigerant fluid to the expansion valve means in the column.
  • said flow control means further comprises a compressor (51) having applied thereto refrigerant fluid derived from said column (50); the speed of said compressor. being controlled by the pressure sensing means (66) sensing pressure within said column.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation By Low-Temperature Treatments (AREA)
US00062590A 1970-01-08 1970-08-10 Method of regulation of the temperature of the liquefied gas or gaseous mixture in an apparatus for the liquefaction of gaseous fluids Expired - Lifetime US3742721A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR707000526A FR2074594B1 (fr) 1970-01-08 1970-01-08

Publications (1)

Publication Number Publication Date
US3742721A true US3742721A (en) 1973-07-03

Family

ID=9048749

Family Applications (1)

Application Number Title Priority Date Filing Date
US00062590A Expired - Lifetime US3742721A (en) 1970-01-08 1970-08-10 Method of regulation of the temperature of the liquefied gas or gaseous mixture in an apparatus for the liquefaction of gaseous fluids

Country Status (8)

Country Link
US (1) US3742721A (fr)
AR (1) AR196289A1 (fr)
CA (1) CA938881A (fr)
DE (1) DE2036222A1 (fr)
FR (1) FR2074594B1 (fr)
GB (1) GB1317657A (fr)
NL (1) NL7011067A (fr)
SU (1) SU455554A3 (fr)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3898857A (en) * 1972-09-22 1975-08-12 Teal Soc Process for regulating the quantity of cold delivered by a refrigerating installation
US4784677A (en) * 1987-07-16 1988-11-15 The Boc Group, Inc. Process and apparatus for controlling argon column feedstreams
US4970867A (en) * 1989-08-21 1990-11-20 Air Products And Chemicals, Inc. Liquefaction of natural gas using process-loaded expanders
US5139548A (en) * 1991-07-31 1992-08-18 Air Products And Chemicals, Inc. Gas liquefaction process control system
EP0893665A2 (fr) * 1997-07-24 1999-01-27 Air Products And Chemicals, Inc. Procédé et dispositif pour le contrÔle de la production et de la température dans une installation de liquéfaction de gaz natural avec réfrigérant mélangé
WO2004068049A1 (fr) * 2003-01-31 2004-08-12 Shell Internationale Research Maatschappij B.V. Obtention de gaz naturel liquefie par liquefaction d'un produit de base gazeux riche en methane
FR2890761A1 (fr) * 2005-09-12 2007-03-16 Air Liquide Methode pour la fourniture d'un melange de gaz
US20090025422A1 (en) * 2007-07-25 2009-01-29 Air Products And Chemicals, Inc. Controlling Liquefaction of Natural Gas
WO2011000900A3 (fr) * 2009-07-03 2011-04-14 Shell Internationale Research Maatschappij B.V. Procédé et appareil de production d'un flux hydrocarboné refroidi
CN102265104A (zh) * 2008-09-19 2011-11-30 国际壳牌研究有限公司 冷却烃物流的方法及其设备
US20120047943A1 (en) * 2009-03-31 2012-03-01 Keppel Offshore & Marine Technology Centre Pte Ltd Process for Natural Gas Liquefaction
US20140183027A1 (en) * 2011-05-09 2014-07-03 Fluor Technologies Corporation Internal heat exchanger for distillation column
DK178396B1 (da) * 2007-07-12 2016-02-01 Shell Int Research Fremgangsmåde og apparat til afkøling af en carbonhydridstrøm

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4809154A (en) * 1986-07-10 1989-02-28 Air Products And Chemicals, Inc. Automated control system for a multicomponent refrigeration system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2581558A (en) * 1947-10-20 1952-01-08 Petrocarbon Ltd Plural stage cooling machine
US2772543A (en) * 1953-03-24 1956-12-04 Berry Frank Multiple hydraulic compressor in a refrigeration system
US3010289A (en) * 1959-04-14 1961-11-28 Carrier Corp Refrigeration system with variable speed compressor
US3300991A (en) * 1964-07-07 1967-01-31 Union Carbide Corp Thermal reset liquid level control system for the liquefaction of low boiling gases
US3364685A (en) * 1965-03-31 1968-01-23 Cie Francaise D Etudes Et De C Method and apparatus for the cooling and low temperature liquefaction of gaseous mixtures
US3593535A (en) * 1965-06-29 1971-07-20 Air Prod & Chem Liquefaction of natural gas employing multiple-component refrigerants

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2581558A (en) * 1947-10-20 1952-01-08 Petrocarbon Ltd Plural stage cooling machine
US2772543A (en) * 1953-03-24 1956-12-04 Berry Frank Multiple hydraulic compressor in a refrigeration system
US3010289A (en) * 1959-04-14 1961-11-28 Carrier Corp Refrigeration system with variable speed compressor
US3300991A (en) * 1964-07-07 1967-01-31 Union Carbide Corp Thermal reset liquid level control system for the liquefaction of low boiling gases
US3364685A (en) * 1965-03-31 1968-01-23 Cie Francaise D Etudes Et De C Method and apparatus for the cooling and low temperature liquefaction of gaseous mixtures
US3593535A (en) * 1965-06-29 1971-07-20 Air Prod & Chem Liquefaction of natural gas employing multiple-component refrigerants

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3898857A (en) * 1972-09-22 1975-08-12 Teal Soc Process for regulating the quantity of cold delivered by a refrigerating installation
US4784677A (en) * 1987-07-16 1988-11-15 The Boc Group, Inc. Process and apparatus for controlling argon column feedstreams
US4970867A (en) * 1989-08-21 1990-11-20 Air Products And Chemicals, Inc. Liquefaction of natural gas using process-loaded expanders
US5139548A (en) * 1991-07-31 1992-08-18 Air Products And Chemicals, Inc. Gas liquefaction process control system
EP0893665A2 (fr) * 1997-07-24 1999-01-27 Air Products And Chemicals, Inc. Procédé et dispositif pour le contrÔle de la production et de la température dans une installation de liquéfaction de gaz natural avec réfrigérant mélangé
EP0893665A3 (fr) * 1997-07-24 1999-06-09 Air Products And Chemicals, Inc. Procédé et dispositif pour le contrÔle de la production et de la température dans une installation de liquéfaction de gaz natural avec réfrigérant mélangé
US7266975B2 (en) 2003-01-31 2007-09-11 Shell Oil Company Process of Liquefying a gaseous, methane-rich feed to obtain liquefied natural gas
US20040255615A1 (en) * 2003-01-31 2004-12-23 Willem Hupkes Process of liquefying a gaseous, methane-rich feed to obtain liquefied natural gas
EA007356B1 (ru) * 2003-01-31 2006-10-27 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Способ сжижения газообразного богатого метаном сырья для получения сжиженного природного газа
WO2004068049A1 (fr) * 2003-01-31 2004-08-12 Shell Internationale Research Maatschappij B.V. Obtention de gaz naturel liquefie par liquefaction d'un produit de base gazeux riche en methane
FR2890761A1 (fr) * 2005-09-12 2007-03-16 Air Liquide Methode pour la fourniture d'un melange de gaz
US10012432B2 (en) 2007-07-12 2018-07-03 Shell Oil Company Method and apparatus for cooling a hydrocarbon stream
DK178396B1 (da) * 2007-07-12 2016-02-01 Shell Int Research Fremgangsmåde og apparat til afkøling af en carbonhydridstrøm
WO2009013605A3 (fr) * 2007-07-25 2011-04-21 Air Products And Chemicals, Inc. Contrôle de la liquéfaction de gaz naturel
US9671161B2 (en) 2007-07-25 2017-06-06 Air Products And Chemicals, Inc. Controlling liquefaction of natural gas
US20090025422A1 (en) * 2007-07-25 2009-01-29 Air Products And Chemicals, Inc. Controlling Liquefaction of Natural Gas
CN102265104A (zh) * 2008-09-19 2011-11-30 国际壳牌研究有限公司 冷却烃物流的方法及其设备
CN102265104B (zh) * 2008-09-19 2013-11-06 国际壳牌研究有限公司 冷却烃物流的方法及其设备
US20120047943A1 (en) * 2009-03-31 2012-03-01 Keppel Offshore & Marine Technology Centre Pte Ltd Process for Natural Gas Liquefaction
US9657246B2 (en) * 2009-03-31 2017-05-23 Keppel Offshore & Marine Technology Centre Pte Ltd Process for natural gas liquefaction
WO2011000900A3 (fr) * 2009-07-03 2011-04-14 Shell Internationale Research Maatschappij B.V. Procédé et appareil de production d'un flux hydrocarboné refroidi
US20140183027A1 (en) * 2011-05-09 2014-07-03 Fluor Technologies Corporation Internal heat exchanger for distillation column

Also Published As

Publication number Publication date
FR2074594A1 (fr) 1971-10-08
SU455554A3 (ru) 1974-12-30
NL7011067A (fr) 1971-07-12
CA938881A (en) 1973-12-25
FR2074594B1 (fr) 1973-02-02
AR196289A1 (es) 1973-12-18
GB1317657A (en) 1973-05-23
DE2036222A1 (de) 1971-07-22

Similar Documents

Publication Publication Date Title
US3742721A (en) Method of regulation of the temperature of the liquefied gas or gaseous mixture in an apparatus for the liquefaction of gaseous fluids
US2082189A (en) Method of liquefying and storing fuel gases
US6827142B2 (en) Process and apparatus for achieving precision temperature control
US3478529A (en) Purification of refrigerant
GB1515326A (en) Method and plant for liquefying a gas with low boiling temperature
US2280383A (en) Method and apparatus for extracting an auxiliary product of rectification
US2541569A (en) Liquefying and regasifying natural gases
US2360468A (en) Separation of oxygen from air by liquefaction
US2541409A (en) Gas fractionating apparatus and method
US4575386A (en) Method of liquefying a gas and liquefier for carrying out the method
US3485053A (en) Process for the production of a gas with a variable output by controlling the degree of refrigeration in the liquefaction of stored gas
US2938360A (en) Anhydrous ammonia storage tank
US1539450A (en) Method of separating the constituents of gaseous mixtures
US2650480A (en) Low-temperature absorption refrigeration
US3882689A (en) Flashing liquid refrigerant and accumulating unvaporized portions at different levels of a single vessel
US3285719A (en) Ofw xx
US2545462A (en) System for separation of argon from air
US3914949A (en) Method and apparatus for liquefying gases
GB1230419A (fr)
US2206115A (en) Air conditioning apparatus
GB1475420A (en) Method and system for cooling a gas so as to liquefy at least one component thereof
US2620637A (en) Air fractionating cycle and apparatus
US2160077A (en) Production of liquid air, and the production of oxygen therefrom, and the liquefaction and separation of other gases
US1530461A (en) Recovery of helium
US3910063A (en) Cooling system