US3740501A - Miniature oil-tight push button and selector switch assembly and improved contact unit therefor - Google Patents

Miniature oil-tight push button and selector switch assembly and improved contact unit therefor Download PDF

Info

Publication number
US3740501A
US3740501A US00140152A US3740501DA US3740501A US 3740501 A US3740501 A US 3740501A US 00140152 A US00140152 A US 00140152A US 3740501D A US3740501D A US 3740501DA US 3740501 A US3740501 A US 3740501A
Authority
US
United States
Prior art keywords
contact
switch
stem
contacts
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00140152A
Other languages
English (en)
Inventor
R Kiessling
R Rothweiler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schneider Electric USA Inc
Original Assignee
Square D Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Square D Co filed Critical Square D Co
Application granted granted Critical
Publication of US3740501A publication Critical patent/US3740501A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H19/00Switches operated by an operating part which is rotatable about a longitudinal axis thereof and which is acted upon directly by a solid body external to the switch, e.g. by a hand
    • H01H19/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H11/00Apparatus or processes specially adapted for the manufacture of electric switches
    • H01H11/0006Apparatus or processes specially adapted for the manufacture of electric switches for converting electric switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H13/00Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
    • H01H13/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H11/00Apparatus or processes specially adapted for the manufacture of electric switches
    • H01H11/0006Apparatus or processes specially adapted for the manufacture of electric switches for converting electric switches
    • H01H11/0012Apparatus or processes specially adapted for the manufacture of electric switches for converting electric switches for converting normally open to normally closed switches and vice versa
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H11/00Apparatus or processes specially adapted for the manufacture of electric switches
    • H01H11/0006Apparatus or processes specially adapted for the manufacture of electric switches for converting electric switches
    • H01H11/0018Apparatus or processes specially adapted for the manufacture of electric switches for converting electric switches for allowing different operating parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H13/00Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
    • H01H13/02Details
    • H01H13/023Light-emitting indicators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H13/00Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
    • H01H13/02Details
    • H01H13/04Cases; Covers
    • H01H13/06Dustproof, splashproof, drip-proof, waterproof or flameproof casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H15/00Switches having rectilinearly-movable operating part or parts adapted for actuation in opposite directions, e.g. slide switch
    • H01H15/02Details
    • H01H15/06Movable parts; Contacts mounted thereon
    • H01H15/10Operating parts
    • H01H15/102Operating parts comprising cam devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H19/00Switches operated by an operating part which is rotatable about a longitudinal axis thereof and which is acted upon directly by a solid body external to the switch, e.g. by a hand
    • H01H19/02Details
    • H01H19/025Light-emitting indicators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H19/00Switches operated by an operating part which is rotatable about a longitudinal axis thereof and which is acted upon directly by a solid body external to the switch, e.g. by a hand
    • H01H19/54Switches operated by an operating part which is rotatable about a longitudinal axis thereof and which is acted upon directly by a solid body external to the switch, e.g. by a hand the operating part having at least five or an unspecified number of operative positions
    • H01H19/60Angularly-movable actuating part carrying no contacts
    • H01H19/62Contacts actuated by radial cams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H11/00Apparatus or processes specially adapted for the manufacture of electric switches
    • H01H11/0006Apparatus or processes specially adapted for the manufacture of electric switches for converting electric switches
    • H01H2011/0043Apparatus or processes specially adapted for the manufacture of electric switches for converting electric switches for modifying the number or type of operating positions, e.g. momentary and stable
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H11/00Apparatus or processes specially adapted for the manufacture of electric switches
    • H01H2011/0093Standardization, e.g. limiting the factory stock by limiting the number of unique, i.e. different components

Definitions

  • Selector switch cams may be double stacked to provide a maximum number of switching programs with a minimum number of parts.
  • the operating means may be illuminated or non-illuminatedand is adaptable for use as a pilot light or a push-.to-test unit.
  • FIG. is a rear viewof a push button stem for use in I cam of FIG. 6;
  • ' -F'IG. 8 is a cross sectional 1 MINIATURE OIL-TIGHT PUSH BUTTON AND SELECTOR SWITCH ASSEMBLY AND IMPROVED CONTACT U-NIT THEREFOR
  • This invention relates to switches, and particularly to aswit ch characterized by having a number of interchangeable parts for selective attachment to certain common parts for adapting the switch, with a minimum total inventory of parts, to perform a large variety of switching arrangements.
  • the switch is adaptable to function with a push button operator and stem or with a selector switch operator and stem.
  • Up to four contact modules can be independently controlled in sequences which can be chosen by selectively connecting various cams to the stem.
  • Selector switch operation provides both momentary and maintained operation for'two or. three position switching while maintainedaction alone can be provided for up to eight positions.
  • Both the push button and selector switch operators may be illuminated and the push button switch assem bly is adaptable for use unit.
  • FIG. 18 is an enlarged cross sectional view taken generally along the line 1818 of FIG. 17, but partially in elevation;
  • FIG. 19 is an exploded perspective view of a lightassembly for use in the illuminated push button switch of FIGS. 16l8;
  • FIG. is a side elevational'view of a selector switch assembly made in accordance with the'p'resent inventionand mounted on a panel; 1
  • FIG. -1 is as'ide'elevational view of a push button switch assembly made in accordance with'the present invention and mounted'on'a'panel;
  • I FIG. 2 is'arear elev'ational view of the push buttonswitchassembly'ofFIG. 1 with contactmodules and a pushbutton cam removed;
  • FIG. 3 is an enlarged cross-sectional -vie wof the push buttonswi'tchassembly 'of FIG. 1 taken along the line 3-3 of.FIG.2;
  • FIG. 4 is. an exploded perspective view ot the push button switch assemblyjof FIG. 1 with contact modules the .push button switchassembly of FIG. 1;
  • FIG. 6' isfan endview of a push button cam for. use
  • FIG. 27 is a rear elevational view of a cam portion for FIG. 21 is a partially cut-away rear elevational view of the selector switch assembly of FIG. 20 withcontact modules and a selector switch cam removed;
  • FIG. 22 isan enlarged cross-sectional view of the selector switch assembly of FIG. 20 taken along the line 22-22 of FIG. 21;
  • FIG. 23 is an exploded perspective view of the selecuse in the selector switch'assembly of FIG. 20;
  • FIG. 28 is a rear elevational view of another cam por-
  • FIG. 7 is a side 'elevational view of the push button '8'8 of FIG. 6;
  • FIG. 9 is across sectional view taken'along the line 9+-'9ofFlG-.6 I
  • FIG. 10 is a rearelevational'view of a'contact module 'for'use in the'pushbutton switch assembly' of FIG. 1;
  • FIG.'11 is a frontQelevational view of the contact module of FIG-10;" Y
  • FIG. l2 is anenlargedcross sectional view taken 'alongthe line l2'fI2 of FIG. 11 with a contact opera- FIG. l4-isfanexploded, perspective view the con- FIG;. .15 is a front elevationalviewlabeled and'a pairof fragmentaryviewslabeled B and C showing embodiments offthe contact operator for the. contact module of FIGS. 10 -13;
  • FIG, 16 is aside elevational view, similar to FIG. 1, of an illuminated push button switch assembly with a light module and a single contact module attached;
  • FIG. 1'! is' a rearelevational view of the illuminated push buttonswitchassembly'of FI view takenflalong the "linean enlarged cross sectional view taken --alongthe line 13-13 of FIG. 11;
  • selectorswitch' assembly taken generally alongthe line I FIG. 32; 1 v FIG. 35 is a rearelevational view of areturn spring holder fo'r use in'the momentary selector switch assemstacked cam assembly;
  • FIG. 29 is a diagrammatic representation illustrating camming operation of the selector switch assembly of FIG.20
  • QFIG. 30 is another diagrammatic representation illustrating camm ing operation of the selector switch assembly of FIG. 20;
  • FIG. 31 is a side elev'ational view of the selector.
  • FIG. '32 is a cross-sectionalviewof a momentary selector switch assembly,'made in accordance with the present invention, 32-32 of FIG. 33;
  • FIG; 33 is a cross-sectional view of the momentary taken generally along the line sis-+33 in FIG. '32;
  • FIG. 34 is a rear elevational view of a for use in the momentary selector switch assembly of bly of FIG. 32;
  • FIG. 36 is a side elevational view of the return spring holderof FIG. 35;
  • FIG. 37 is a partially cut-away side .elevational view of a momentary-maintained switch made in accordance with the present invention andwith contact modules, removed; and. p I 1
  • FIG. 38 is a cross-sectional view of an illuminated selector switch assembly similar to FIG, 22.
  • FIG. 1 shows a push button. switch assembly 11 which is mounted on a panel 12 with a push button operator 14 extending forwardly of the panel 12. I i
  • An external oil seal preferably in the form of a ring shaped rubber oil sealing gasket 15, is fitted around a body 16 of the push button switch assembly 11 and positioned to abut the rear surface of the panel 12.
  • an appropriate number of metal spacers 17 may be placed behind, and in abutting relation with, the oil sealing gasket 15.
  • a lock ring 19 holds the push button switch assembly on the panel 12 by threadably engaging external threads 20 (see FIG. 3) located at the forward end of the body 16.
  • a metallic locating ring 21 may be interposed between the lock ring 19 and the panel 12, in a manner well known in the art, to prevent rotation of the push button switch assembly 11 with respect to the panel 12. If desired, the locating ring 21 may be provided with an enlarged portion and thus also function as a legend plate.
  • One or more contact modules 22 may be attached to the body 16 at any or all of the locations which are provided and identified by the Roman numerals I, II, III, IV on the body16, as can be seen in FIG. 2. The construction, functional details and mode of attachment of the contact module 22 will be subsequently disclosed in detail.
  • the push button switch assembly 1 1 is best described with reference to FIGS. 3 and 4 and comprises the push button 14, the body 16, an internal oil seal 24, an actuator means such as a push button stem 25, a return spring 26, which is preferably in the form of a helical compression spring, a retainer 27, and a push button cam 29.
  • the push button 14 may be molcled of any suitable material, such as polycarbonate resin, and may have any suitable desired shape, size or appearance.
  • the body 16 (FIGS. 2-4) is preferably die cast of a zinc alloy, or a similarly suitable material.
  • An internal wall portion 30 defines a substantially cylindrical opening therethrough and a narrow forward portion of the opening defines a rearwardly directed shoulder 30a.
  • a plurality of keyways 31 are formed in the wall portion 30 and are axially aligned with the opening. The keyways 31 terminate in a widened portion toward the rear end portion of the body 16 to expose surfaces 32 for use when the body 16 is incorporated in a selector s witch, as will be described in detail, and surfaces 33 for supporting the retainer 27.
  • a plurality of arcuate grooves 34 are formed in a rear surface 35 of the body 16 and are spaced circumferentially of the cylindrical opening.
  • a plurality of internally threaded openings 36 are drilled in the rear surface 36 of the body 16.
  • each of four threaded openings 36 is paired with a corresponding arcuate groove 34 to accommodate attachment of one of the contact modules 22.
  • a fifth threaded opening, indicated as 36a, is provided to accommodate attachment of a light module in a manner to be later described with reference to FIG. 17.
  • the front end portion of the internal wall portion 30 has a circumferential groove 37 formed therein (FIG. 4).
  • the circumferential groove 37 is adapted to house the internal oil seal 24 and hold it against axial motion during switch operation.
  • the internal oil seal 24 is formed of a resilient material and preferably has a substantially Y-shaped cross section, as is best illustrated in FIG. 3.
  • the push button stem 25 is molded of a suitable material such as polyphenylene oxide and is molded or machined to provide an external thread on a forward end portion 38 for attachment of the push button 14 by engagement with a corresponding internal thread 39 therein (see FIG. 3).
  • a circumferentially enlarged portion 40 of the push button stem 25 interacts with the shoulder 30a of the body 16 to serve as a forward stop for the push button stem 25 and has an outwardly facing circumferential surface which serves as a forward bearing surface 41 to interact with the internal wall portion 30 of the body 16 during switch operation.
  • a plurality of keys 42 are formed on the forward bearing surface 41.
  • the keys 42 are preferably equal in number to and aligned with the keyways 31 in the body 16 and are held therein to prevent rotational motion of the push button stem 25 during its longitudinal motion within the body 16.
  • the rear of the portion 40 forms a forward spring seat 44 (see FIG. 3).
  • the central portion of the push button stem 25 is preferably of circular cross section and has a widened forward portion defining a rearwardly directed shoulder 45 adjacent a rear bearing surface 46 on the central portion of the push button stem 25.
  • the push button stem 25 preferably tapers inwardly toward a rear end portion which functions as a cam carrier portion 47 and is best illustrated in FIG. 5.
  • the cam carrier portion 47 has a cross section which is substantially in the form of a square having foreshortened corners. In the preferred embodiment, two opposite corners, indicated at 49, are foreshortened equally.
  • a third corner 50 is shortened by an amount greater than the corners 49 and a fourth corner 51 has a forward portion 51a which is shortened by substantially the same amount as the corners 49 and a rear portion 51b which is shortened by substantially the same amount as the corner 50.
  • a rearwardly directed shoulder 51c is thus formed in the corner 51.
  • the retainer 27 is die cast, preferably from a material similar to that of the body 16, in the form of a ring with an outer dimension enabling it to cover the rear end portion of the cylindrical opening through the body 16.
  • a tab 52 on the retainer 27 is adapted to fit within a complementary recess 54 formed in the rear surface 35 of the body 16 (see FIG. 2).
  • the inner portion of the retainer 27 is preferably elongated in a direction corresponding to the longitudinal axis of the body 16 to provide an annular bearing surface 55 for interacting with the rear bearing surface 46 on the push button stem 25.
  • a circumferential groove may be provided in the forwardly facing surface of the retainer 27 to serve as a rear spring seat 56.
  • the push button cam 29 is illustrated in FIGS. 6-9 and is molded of a suitable material, such as fluorocarbon filled acetal resin, and has an appropriate external shape for performance of the desired switching program. It should be understood that a plurality of different externally shaped earns 29 may be provided.
  • each cam 29 must be able to perform two switching programs and must accordingly have two, and only two, distinct mounting positions. Therefore, the internal form of the cam 29 is made to cooperate with the cam carrier portion 47 of the push button stem 25 to provide the two required distinct mounting orientations.
  • the cam 29 has an opening 57 extending longitudinally therethrough and formed substantially in the shape of the cam carrier portion 47 of the push button stem 25.
  • Two opposite corners 59 of the cam 29 have a size and shape which allows them to be fitted over the respective corners 49 on the cam carrier portion 47.
  • the other two corners 60 have substantially the same dimensions as the corners 59 over most of their lengths but terminate at opposite end portions in inwardly projecting ledges 61 which foreshorten the corners 60 by an amount corresponding to the foreshortening of the third corner 50 and of the rear portion 51b on the fourth corner 51 on the cam carrier portion 47 of the push button stem 25.
  • the cam 29 can be seated on the cam carrier portion 47 with either end face 62 in a forward direction.
  • the push button cam 29 can be seated on the cam carrier portion 47 in only one position.
  • one of the ledges 61 will be located at the forward end face and the other ledge 61 will be at the rear.
  • the ledges 61 must be fitted over the more greatly foreshortened corners 50 and 51 of the cam carrier portion 47. If the corner 60 having the forward facing ledge 61 is placed over the cam carrier corner 51, the passage of the ledge 61 will be blocked by the shoulder 5lc'so that the cam I cannot be seated.
  • the corner 60 having the forward facing ledge 61 must be positioned over the cam carrier comer 50. This enables the cam 29 to be fully and properly seated since the foreshortened rear portion 51b of the fourth corner 51 of the cam carrier portion 47 will accommodate the rear facing ledge 61.
  • cam-29 is removed and rotated 180 around an axis through the corners 59 in FIG. 6, the positions of the ledges 61 are reversed so that the push button cam 29 can be seated, in the same manner as hereinbefore described, in its second orientation.
  • Cooperating detent means may be provided in the form of bosses 63a on the cam carrier portion 47 of the push button stem adapted to interfere with corresponding shoulders 63b on the push button cam 29. This interference fit holds the cam 29 in place during operation of the push button switch assembly 11 and provides snap-action mounting and removal for the cam.
  • the intemal oil seal 24 must first be titted into the circumfer- I ential groove 37 provided for that purpose in the body 16.
  • the push button stem 25 can then be inserted into the rear of the cylindrical opening in the body 16 so the internalwall portion 30 of the body 16.
  • an indexing mark 64 (FIGS. 2 and 5) which may be in a form such as the arrow shown, is preferably provided on the push button stem 25.
  • proper orientation of the push button stem 25 is achieved by positioning the indexing mark 64 halfway between Roman numerals I and II (see FIG. 2) on the rear surface 35 of the body 16.
  • the return spring 26 is then placed within the body 16 and around the push button stem 25 so that its forward end portion is seated within the forward spring seat 44.
  • the retainer 27 is placed over the cylindrical opening at the rear surface 35 of the body 16 with the rear spring seat 56 oriented in a forward direction and the tab 52 aligned with and received in the recess 54.
  • rear spring seat engages the rear end of the return spring 26 urging it forward into a partially compressed configuration.
  • the retainer 27 is then staked in position or affixed to the body 16 by other suitable means.
  • a desired one of the push button earns 29 is then placed on the cam carrier portion 47 of the push button stem 25 and the push button 14 is connected to the push button stem 25 by engaging the internal threads 39 in the push button 14 with the threads on the forward end portion 38 of the stem. It should be noted, however, that, if the push button 14 is large in size, it may be necessary to connect the push button 14 after installation of the push button switch assembly 11 on the panel 12.
  • an identification mark (FIG. 6) is formed on the ledge 61 at the end face 62 of the push button cam 29, indicating the switching program performed by the cam when seated with that end face 62 facing rearwardly of the push button assembly 11. Since the indexing mark 64 on the push button stem 25 is positioned at the fourth corner 51, align- 1116111: of the identification mark 65 on the push button cam 29 with the indexing mark 64 on the push button stem properly orients the parts to facilitate rapid and easy cam seating.
  • Rearward motion of the push button stem 25 causes the forward spring seat 44 to move toward the rear spring seat 56 thereby further compressing the return spring 26 so that, upon releaseof the push button 14, the push button stem 25 and the attached cam 29 and push button 14 are biased toward the forward end of the push button assembly 11.
  • a preferred contact module 22 having a base 66 and a cover 67 molded of suitable materials such as polycarbonate resin.
  • the forward end portion 69 of the base 66 has an arcuate projecting tongue 70 molded thereon.
  • the tongue 70 is formed to fit within one of the arcuate grooves 34 on the rear surface 35 of the body 16.
  • the extended edge 71 of the forward end portion 69 is molded or drilled to provide an opening -72 thereso that the shank portion 76 is within the lip 75 and free to move longitudinally within the opening 72 without being removable.
  • the screw 74 becomes a captive screw.
  • the opening 72 is located on the extended edge 71 A in a position which will permit alignment and threaded attachment of the screw 74 in the corresponding opening 36 in the body portion 16 when the tongue 70 is in the groove 34.
  • the combination of tongue in groove and threaded attachment locks the contact module 22 onto the body 16 and keeps it aligned for proper switch operation.
  • the base 66 and cover 67 have a pluralityof internal chambers formed therein.
  • the base 66 see FIG. 12
  • the contact module 22 (FIG. 14) includes a pair of contact assemblies 85, an indicator 86, a contact operator 87 and a torsion spring 89.
  • Each contact assembly has a terminal portion 90 and a contact spring portion 91 and, since the contact assemblies 85 are identical, only one willbe described.
  • the terminal portion 90 is preferably stamped from an electrically conductive material such as brass with a rear end portion preferably formed in the shape ofa push-on type solderless terminal. Otherdesired terminal types may, of course, be utilized in a manner well known in the art.
  • the contact spring portion 91 is preferably stamped from an electrically conductive material, such as beryllium copper, and formed, as best shown in FIG. 13, to have a substantially planar rear end portion 92 with a pair of openings 94 therein (FIG. 14) corresponding to a pair of alignment studs 95 (FIG. 13) provided on the terminal portion 90.
  • an electrically conductive material such as beryllium copper
  • a central portion. 96'of the contact spring portion 91 isoffset in a direction away from the terminal portion 90 and is aligned in a plane substantially parallel to that of the rear end portion 92.
  • a boss 97, protruding away from the terminal portion 90, is formed in the central portion 96 for interaction with the contact operator 87.
  • the forward end portion of the contact spring portion 91 is further offset away from the terminal portion 90 and bowed to define a contact 99, which may be silvered and bifurcated to improve its electrical characteristics and minimize contact damage.
  • the contact operator 87 is preferably molded of an insulating material, such as a thermoplastic resin, and has a central portion 100 which widens toward one end portion to terminate in projecting leg portions 101 which have parallel guide surfaces 102 externally thereof.
  • the guide surfaces 102 interact with corresponding surfaces 104 (FIG. 12) in the torsion spring chamber 79 of the base 66 to maintain lateral alignment of the contact'operator 87 during operation of the contact module 22.
  • An indicator stop portion 105 in the form of a web is preferably formed between the leg portions 101 for interaction with the indicator 86.
  • the contact operator 87 widens from the central portion 100 toward the other end portion thereby defining contact spring camming surfaces 106 which interact with the respective bosses 97 on the contact spring portions 91 of the contact assembly 85 to effect movement of the contact spring portion 96 during operation of the contact module 22 thereby to open. and close the contacts.99.
  • Early or late opening and closing of the contacts 99 may be provided by forming the contact operator 87 with the camming surfaces 106 shifted toward or away from the central portion 100.
  • late closing contact operator 87a can be formed by shifting the camming surfaces toward the central portion 100, as shown by the camming surface 106a in FIG. 15B.
  • a late opening, early closing contact operator 87b can be formed by shifting the camming surfaces away from the central portion 100, as shown by the camming surface 106b in FIG. 15C.
  • the time differential between operation of an early or late opening contact module and a standard contact module is dependent upon the distance between the relative positions of the camming surfaces 106.
  • Each camming surface 106 terminates with a shoulder 107 which interacts with an inner surface of the contact chamber 77 of the base 66 to provide a stop for the contact operator 87.
  • a projecting nose portion 109 is formed at the end portion opposite the leg portions 101 and is provided with a cam surface 110 thereon. The shape of the cam surface 110 allows movement of the contact operator 87 along a longitudinal axis thereof upon interaction with a camming surface moving substantially perpendicular to the line of motion of the contact operator 87.
  • the indicator 86 (see FIG. 14) is formed of a suitable material, such as a fluorocarbon-fiber filled acetal, and has a projecting nose 11 1 at one end portion.
  • the other end portion 112 has suitable indicia such as a contact condition indicating mark 114 hot stamped or otherwise visibly displayed thereon.
  • each contact assembly 85 is positioned with the terminal portion 90 held within a terminal holding chamber 81 in the cover 67.
  • Each terminal portion 90 extends through a narrow opening 115 in the cover 67 for holding the contact assembly 85 while allowing external electrical connection of the terminal portion 90.
  • the indicator 86 is placed in indicator chamber 80 of the cover 67 with the projecting nose 111 facing in a generally forward direction and the end portion 112 facing generally rear so that the contact indicating 7 contacts 99.
  • indicia such as a standard contact symbol 117, as shown in FIG. 10, may be hot stamped or otherwise displayed at the opening 116.
  • the contact indicating mark 114 is then preferably in the form of a diagonal line visible through the opening 116 whenever the contacts 99 are closed,'forming the standard electrical symbol designating a pair of closed contacts.
  • the contact indicating mark is moved out of alignment with the opening 116 and therefore not visible so that the standard electrical symbol for a pair of open contacts is seen. In this manner, a readily understandable means for indicating the electrical condition of the contacts 99 is provided which may easily be seen by looking at the cover 67 of the contact module 22.
  • the contact operator 87 is then positioned between the contact assemblies 85 adjacent the bosses 97 on the contact spring portions 91. With the central portion 100 between the bosses 97, the projecting nose portion 109 of thecontact operator 87 extends through an aperture 119 (FIG. 12) in a side wall portion of the base 66. The width of the central portion 100 is sufficiently small to enable the contacts 99 to remain in abutment.
  • the torsion spring 89 is held within the torsion spring chamber 79 in the base 66.
  • One leg 120 of the torsion spring 89 has an end portion 121 which is bent convexly outward toabut the indicator stop portion 105 of the contact operator 87 and the projecting nose 111 of the indicator 86. This biases the projecting nose 111 toward a position between the leg portions 101 and toward the rear of the indicator stop portion 105 of the contact operator 87.
  • the contact indicating mark 114 is visible through the opening 116 in the cover 67 and thus displays the closed condition of the contacts 99.
  • the contact operator 87 moves in a direction toward the torsion spring 89.
  • the contact spring camming surfaces 106 apply outward forces to the respective bosses 97 on the respective contact spring portions 91 of the contact assembly 85.
  • the interaction of the contact spring'camming surfaces 106 and the bosses 97 cause the contact spring portions 91 to separate, thereby opening the contacts 99.
  • the contact operator 87 drives the projecting nose 111 of the indicator 86 against the biasing force of the torsion spring 89.
  • the resulting rotational motion of the indicator 86 moves the contact indicating mark 1 14 away from the opening 116 to display the open condition of the contacts 99.
  • the contact springportions 91 apply an inward force through the bosses 97 to the contact spring camming surfaces 106. This drives the contact operator 87 in a direction away from the torsion spring-89 to the position in which the central portion 100 of the contact operator 87 is between the bosses 97 and the contacts 99 close.
  • the torsion spring 89 biases the projecting nose 111 of the indicator 86 and causes it to follow the contact operator 87.
  • the resulting rotadicating mark 114 in a position in whichit is visible through the opening 116 and displays the closed condition of the contacts 99.
  • the push button cam 29 preferably has four external camming surfaces 122.
  • Each camming surface 122 has an outer portion 124 coinciding with the outer surface of the push button cam 29 adjacent one end face 62 and slopes inwardly to a recessed portion 125 adjacent the other end face 62.
  • the identity of the rear end portion of the camming surface 122 determines whether the contacts 99 in the corresponding contact module 22 will be normally open or normally closed. Normally closed contacts result when the rear end portion of the camming surface 122 is the recessed portion 125. In this configuration, the nose portion 109 of the contact operator 87 portion 109 of the contact operator 87. The camming surface 122 outwardly biases the contact operator 87 and thereby causes the contact spring camming surfaces 106 to open the contacts 99 in the manner previously described'herein. Release of the push button 14 allows the contacts 99 to reacquire their normally closed configuration.
  • the projecting nose portion 106 of the contact operator 87 is biased into the contact module 22 so that, as hereinbefore indicated, the contacts 99 are normally open. Depressing the push button 14 shifts the recessed portion 125 into align ment with the projecting nose portion 109 and allows the contacts 99 to close. Release of the push button 14 reestablishes the normally open configuration of the contacts 99.
  • each push button cam 29 corresponding to the maximum number of contact modules 22 which may be used.
  • a particular cam 29 from zero to four normally closed contacts may be provided by orienting thatnumber of camming surfaces 122 with the recessed portion 125 as the rear end portion. Oppositely oriented camming surfaces 122 would produce normally open contacts.
  • the identification mark 65 on the push button cam 29 may be a number designating the number of normally closed contacts provided by that particular cam.
  • each push button cam 29 may be mounted on the push button stem 25 in either of two orientations, reversed front to back, those camming surfaces 122 which, in one orientation, produce normally closed contacts would, in the opposite orientation, produce normally open contacts. Those camming surfaces 122 which, in the first orientation, produced normally open contacts would, when reversed, produce normally closed contacts.
  • a push button cam 29 producing four normally closed contacts in one orientation such as that illustrated in FIG. 4, would produce no normally closed contacts in its other orientation.
  • a cam producing three normally closed contacts in one orientation, (not illustrated) would produce one normally closed contact in its other orientation.
  • FIGS. 16-18 An illuminated push button switch assembly III is illustrated in FIGS. 16-18. Its construction is similar to that of the push button switch assembly 11, as can be seen by comparing FIGS. 16 and 18 with FIGS. 1 and 3 respectively. Parts common to both embodiments have been similarly numbered.
  • the push button stem 25 has a longitudinal opening 19), a pair of lamp terminals 131 and a lamp terminal holder 132.
  • the lamp 130 may be of either the incandescent or neon type and is preferably substantially cylindrical in shape having an insulating base 134 and a pair of lamp contacts 135' located on opposite sides of the lamp 130.
  • Each lamp terminal 131 is preferably stamped and formed of a conductive material, such as brass, and has a substantially planar forward portion 136 with an outwardly bent end portion 137 to facilitate insertion of lamp 130.
  • Each forward portion 136 may be provided with an enlarged portion 139 bent to conform to the shape of the lamp contact 135.
  • Each forward portion 136 is outwardly displaced from an attachment portion 140 which has an outwardly bent attachment tang 141 for interaction with the lamp terminal holder 132.
  • Rear end portions 142 of the lamp terminals 131 are inwardly bent to provide respective contact surfaces 144.
  • the lamp terminal holder 132 is molded ofa suitable insulating material, such as polycarbonate resin, and is substantially cylindrical in shape with a tongue 145 extending essentially rearwardly therefrom.
  • An enlarged central portion 146 of the lamp tenninal holder 132 defines a forwardly directed shoulder 147.
  • a pair of alignment notches 149 are preferably formed on opposite sides of the forward end portion of the holder.
  • a pair of longitudinal openings 150 are provided in the lamp terminal holder 132 toaccommodate the attachment portions 140 of the lamp terminals 131 (see FIG. 18).
  • the holder 132 must be oriented to align the alignment notches 149 with corresponding alignment bosses 155 (see FIG. 5) moldedin the narrow portion 127 of the longitudinal opening 126 in the push button stem 25. Interaction of the alignment notches 149 and alignment bosses 155 fixes the orientation of the lamp terminal holder 132 within the push button stem 25 and prevents rotation of the holder 132.
  • the lamp terminals 131 are inserted through the forward end of the opening 126 in the push button stem 25.
  • the rear end portions 142 of the lamp terminals 131 are inserted in the respective openings 150 in the holder 132 until the attachment tangs 141 on the attachment portions 140 are in interlocking relation with the respective shoulders 152 (FIG. 18).
  • the lamp 130 may be inserted through the front of the push button stem 25. In this manner access may be had to the lamp 130 so that it may be inserted, removed or changed while the push button switch assembly is in place on a panel 12 simply by removing the push button 14 to expose the forward end portion 38 of the push button stem 25.
  • the push button 14 must be formed of a transluscent or transparent material.
  • a hollow light module 156 (FIGS. 16-18) having a base 157 and cover 159 (FIG. 16) molded of a suitable insulating material such as polycarbonate resin.
  • the light module 156 has a size which enables it to be mounted on the back surface 35 of the body 16, utilizing the same space required to mount two of the contact modules 22. Accordingly, two tongues (not shown), each similar to the tongue on the base 66 of the contact module 22, are provided on the base 157 of the light module 156 and are positioned for insertion in two adjacent ones of the arcuate grooves 34.
  • the light module 156 is attached to the rear surface 35 of the body 16 at the positions indicated by Roman numerals III and IV (see FIG. 2). Therefore, the threaded opening 36a must be located adjacent the arcuate groove 34 at Roman numeral Ill opposite the threaded opening 36 nearest Roman numeral IV to accommodate a pair of threaded fasteners, such as captive screws 160, received in openings in the base 157 of the light module 156.
  • the combination of tongue in groove and threaded attachment releasably attaches the base 157 to the body 16.
  • the cover 159 is ultrasonically welded, or otherwise suitably attached, to the base 157.
  • a pair of input terminals 161 (FIG. 17) which may be of the push-on solderless type, are provided in the cover 159 for external attachment to a source of electric power.
  • a pair of output terminals 162 (FIG. 18) are provided in the base 157 to supply operating power to the lamp 130.
  • the input terminals 161 may be directly connected to the respective output terminals 162 or may be connected through a resistor or a transformer contained within the module 156 in a manner well known in the art. These means for connecting the terminals 161-162 are contained in a cavity (not shown) within the light module 156.
  • the output terminals 162 are held in alignment with the push button stem 25 and are so positioned that the contact surfaces 144 on the rear end portions 142 of the lamp terminals 131 make a sliding electrical contact with the output terminals 162.
  • the light module 156 and lamp terminals 131 form a power means for the lamp 130.
  • Proper orientation of the lamp terminals 131 in the push bottom stem 25, the push button stem 25 in the body 16, and the light module 156 on the body 16 insure a proper alignment and interaction of the contact surfaces 144 and the output terminals 162.
  • sliding contact is maintained between each contact surface 144 and its corresponding output terminal 162 when the push button 14 is extended or depressed so that the lamp 130 may remain illuminated switch assembly 11I.
  • the light module 156 may be powered through one of the contact modules 22 so that it will be illuminated in only one of the positions of the push button 14.
  • the illuminated push button switch assembly 111 may utilize one normally open and one normally closed contact module 22 to I tion is illustrated in FIGS. 20-23 wherein component 7 parts which are common to'both the selector switch and push button switch'assemblies are given the same identifying numbers used in describing the push button switch assembly l1 .v
  • a selector switch assembly 164 is shown mountedon a panel 12 and is oriented to have a selector switch knob 165 extended forwardly of the panel 12.
  • lock ring 166 holds the selector switch assembly 164 on the panel 12 by threadably engaging the external threads 20 located at the forward end portion'of the body 16.
  • Contact modules 22 may be attached to the body 16 at any or all of the locations indicated by the Roman numerals I, II, III, IV on-the body 16 (see FIG. 21).
  • the selector switch assembly 164 as best shown in FIGS. 22 and 23, comprises the selector switch knob 165, a selector switch knob locking ring 167, the body 16, the internal oil seal 23, a selector switch stem 168,
  • index pin spring'170 which is preferably in the from of a helical compression spring, a stop ring 171, the retainer 27, and a selector forward portion 174 and preferably has a plurality of attachmenttabs 177 formed at a rear end portion thereof.
  • the selector switch knob locking ring 167 may be machine formed of aluminum or other suitable material and has an internally threaded rear end portion 179 for attachment to the external threads 20 at the forward end portion of the body 16.
  • the forward end portion of the selector switch knob locking ring 167 has an internal circumferential groove 180 therein to accommodate securement of the selector switch knob 165 through snap fitting of' the attachment tabs 177-on the selector switch knob 165 into the internal circumferenduring all operations of the illuminated push button polyphenylene oxide, or another suitable material, and
  • the grooves 181 interact with splines 182 formed on an inner surface 184 of the selector switch knob (see FIG. 22) to engage the selector switch knob 165 and stem 168 during operational rotational motion within the body 16.
  • the com bination of the spline in groove alignment and the snap fitting relation of the selector switch knob 165 and locking ring 167 permit ease in alignment and attachment of the selector switch knob 165, as should be readily apparent to those skilled in the art.
  • An enlarged portion 185 of the selector switch stem 168 defines a forward bearing surface 186 which interacts with the shoulder 30a in the body 16 (FIG. 22) and a circumferential outer bearing surface 187 which interacts with the internal wall portion 30 of the body 16 during rotational motion of the selector switchvstem 168.
  • a rearwardly facing side of the enlarged portion 185 serves as acam surface 189 (see FIG. 24)'having a plurality of oblique cam faces 190 alternately rising and falling in ratchet fashion around the cam surface 189 thereby forming peaks 191 with V-shaped depressions 192 therebetween.
  • the cam surface 189 cooperates with the index pins 169 and the index pin spring 170 to form a detent means operating-in a manner'to be hereinafter described.
  • the maximum number of positions which may be provided by a 360 rotation of the selector switch stern 168 is equal to the number of V- shaped depressions 192 formed on the cam surface 189, as will be demonstrated.
  • eight position switching may be provided, as shown in FIG. 25, by spacing eight alternating peaks 191 and eight V- shaped depressions 192 around the cam surface 189.
  • two opposite peaks 191 are eliminated asshown in FIG. 24, leaving substantially planar surfaces 194.
  • This embodiment of the selector switch assembly 164 will be subsequently described with reference to FIG. 37.
  • a central portion 195 of the selector switch stem 168 (FIG. 23) has an axially projecting tongue portion 196 extending rearwardly toward a cam attachment portion 197 of reduced diameter.
  • the cam attachment portion 197 has a pair of concentric substantially cylindrical rings comprising an outer ring 199 (1 16.24) and an inner ring 200 which preferably extends rearwardly of the outer ring 199.
  • a plurality of axially aligned slots 201 are formed in the outer ring 199. In the preferred embodiment, four slots 201 are provided. Three of the slots 201 have substantially equal widths and one slot 201a is narrower than the other slots 201 to aid in alignmentof the cam 172.
  • Each index pin 169 is preferably molded of a suitable material such as fluorocarbon filled acetal resinvand has an outer portion 202 curved to substantially conform in shape to the internal wall portion 30 of the body 16 (FIG. 4).
  • a substantially linear spline 204 is formed on the outer portion 202 and aligned for travel in one of the keyways 31 in the body 16.
  • a forward end portion 205 of each index pin 169 is shaped to fit within one of the V-shaped depressions 192 on the cam surface 189 of the selector switch stem 168 and projects inwardly to provide a biasing surface 206 for receiving the index pin spring 170.
  • the stop ring 171 is preferably stamped from steel and has a plurality of radially protruding ears 207 preferably equal in number to, and adapted to respectively fit in, the enlarged rear portions of the keyways 31 in the internal wall portion 30 of the body 15 (FIG. 4) in abutting relation with the'surfaces 32.
  • a substantially circular central opening 209 in the stop ring 171 has a diameter which will rotatably hold the cam attachment portion 197 of the selector switch stem 168 and has an arcuate recess 210 to accommodate the tongue portion 196 of the selector switch stern 168.
  • various stop rings 171 may be selected to provide desired operation.
  • the width of the recess 210 determines the maximum amount of angular travel of the selector switch stem 168 and, accordingly, the number of positions available in a particular selector switch configuration.
  • the-selector switch stem 168 Since eight positions can be provided in one completerevolution, the-selector switch stem 168 must rotate 45 between positions. Therefore, to provide two positions for the selector switch assembly 164, the arcuate dimension of the recess 210 must be 45 plus an amount equal to the angular width of the tongue portion 196 of the selector switch stem 168. A three position switchrequires a 90 throw and each additional position requiresthat another 45 be added to the size of the recess 210.
  • the maximum size of the recess 210- is needed for an eight position stop ring for which the cylindrical in shape with a central opening 214 dimensioned to effect an interference fit with the inner ring 200 of the cam attachment portion 197 of the selector switch stem 168 and an outer dimension sufficient to effect an interference fit with the outer ring 199 (see FIG. 22).
  • a plurality of bosses 216 are formed on the base portion 211 and are preferably aligned with, and equal in number to, the slots 201 in the outer ring 199 of the cam attachment portion 197 on the selector switch stem 168.
  • three bosses 216 are aligned with, and dimensioned to fit respectively within, the three slots 201 and a fourth and narrower boss 216a is dimensioned to fit within the slot 201a'in the outer ring 199 (see also FIG. 25). Because each boss 216 is too wide to fit within the narrower slot 201a, a one-way fit is provided for the base portion 21 1 of the selector switch cam assembly 172 with respect to the cam attachment portion 197 of the selector switch stem 168.
  • the selector switch stem 168 is first placed into the rear of the opening in the body 16 with the longitudinal grooves 181 forwardly directed.
  • the selector switch stern 168 does not have splines for riding in the keyways 31 in the body 16, as does the push button stem 25 (see FIG. 4), and is therefore free to rotate within the body 16.
  • the two index pins 169 are preferably inserted into the body 16 at locations apart (see FIG. 26) for uniform biasing by the index pin spring 170.
  • the index pins 169 are positioned so that the splines 204 ride respectively in the keyways designated 31a in FIG. 26.
  • the index pin spring 170 is placed in the body 16 and positioned aroundthe selector switch stem 168 with the forward end portion of the index pin spring 170 abutting the biasing surfaces 206 of the index pins 169. i
  • the stop ring 171 is placed in the body 16 behind the index pin spring 170 and urged forwardly until the ears 207 are positioned within the enlarged rear portions of the keyways 31 in the internal wall portion 30 of the body 16 abutting the surfaces 32. The stop ring 171 is then staked or otherwise locked in place.
  • index pin spring 170 The combination of index pins 169 and spring 170 and the cam surface 189 forms a detent means for maintained positions of the selector switch stem 168.
  • selector switch stem 168 When the selector switch stem 168 is rotated, as to change the condition of the contacts operated thereby, one of the cam faces 190 is pressed against one face of the forward portion 205 of each index pin 169.
  • each index pin 169 Interaction of the spline 204 on the outer portion 202 of each index pin 169 and the keyway 31a in the body 16 holds each index pin 169 against lateral motion so that the cam faces 190 drive the index pins 169 in a rearward direction, opposing the biasing force applied by the index pin spring 170.
  • an index pin 169 When an index pin 169 has passed over a peak 191, it is driven in a forwardly direction by the index pin spring 170 and is biased against the next cam face 190, thereby aiding the rotation of the selector switch stem 168 until the index pin 169 is positioned at the base of the next V-shaped depression 192.
  • the positions of the selector switch assembly 164 are dis tinctly defined to facilitate ease and sureness of operation while changing positions and to releasably hold the selector switch stem 168 in each position.
  • the stop ring 171 Since uniformity and reproduceability are generally required in switching programs for contacts operated by a selector switch, the stop ring 171 must be positioned so that the arcuate recess 210 has a fixed, reproduceable position. Also, if a two, three or four position selector switch assembly 164 uses the preferred selector switch stem 168, with the planar surfaces 194 on the cam surface 189, the arcuate recess 210 must be placed so that the index pins 169 do not travel across the planar surfaces 194 while the selector switch stem 168 is rotating between maintained selector switch positions, since the planar surfaces 194 would not permit any distinction between the positions nor provide detent means for retention of the selector switch stem 168 in one of those positions. In the preferred embodiment (see FIG.
  • the stop ring 171 is positioned so that the arcuate recess 210 fits over the tongue portion 196 of of the selector switch stem 168 while the tongue portion 196 is midway between Roman numerals I and II on the rear surface 35 of the body 16 and one end shoulder 217 of the arcuate recess 210 is aligned with Roman numeral II.
  • the retainer 27 is placed over the body 16 at the rear surface 35 with the tab 52 aligned with and held in the recess 54.
  • the retainer 27 is staked in position or affixed by other suitable means.
  • the selector switch cam assembly 172 is then attached to the cam attachment portion 197 of the selector switch stern 168 as previously described.
  • selector switch assembly 164 two, three or four position or, with the alternate embodiment of the selector switch stem, up to eight position maintained switching operation may be provided for the selector switch assembly 164.
  • the cam portion 212 of the selector switch cam assembly 172 must be able to provide many different switching programs for up to four contact modules 22 in the two, three and four position standard modes of operation.
  • Standard switching programs are well known in the art and generally require the use of many different molded cams and necessitate the stocking of a large variety of parts, sometimes as many as one type of cam for each program.
  • the preferred embodiment of the selector switch assembly 164 uses cam portions 212 having two distinct forms illustrated as cam portions 212a and 212b in FIGS. 27 and 28, respectively, to provide the desired switching programs,
  • the selected cam portion 212 may be attached to the base portion 211 by ultrasonic welding or other desired means in any orientation required for a particular program.
  • the cam portion 212a (FIG. 27) has a pair of cam lobes 219 of substantially equal size and the cam portion 212b'(FIG. 28) hasa large cam lobe 220 and a small cam lobe 221.
  • the cam lobes 219, 220 and 221 extend outwardly a sufficient distance to bias the contact operator 87 (FIG. 12) sufficiently to open the contacts 99.
  • Those areas of the cam portion 212 between the The-cam portion 2121) (FIG. 28) provides six open positions and two closed positions.
  • FIGS. 29 and 30 show two different possible orientations in which the cam portion 212a may be utilized on identical selector switch assemblies 164 with the selector switch stem 168 having the same orientation in both figures.
  • the Roman numerals I, II, III and IV represent the positions of four sets. of contacts for the purpose of this illustration.
  • the orientation of the cam portion, 212a shown in FIG. 29, provides for opening the contacts at positions 211,'provides for opening the contacts at positions II and IV while the contacts at positions I and III remain closed.
  • cam portions 212a as illustrated in FIGS. 29 and 30 Let us consider the cam portions 212a as illustrated in FIGS. 29 and 30 to be attached to a selector switch stem in the central position of a three position switching program. If the selector switch stem and attached cam portion 212a in FIG. 29 are shifted one switch position in the direction indicated by the arrow 222, the contacts at I close, the contacts at II open and the condition of the contacts at III and IV remains unchanged. It the cam portion 212a is shifted from the central position one switch position in the direction opposite that indicated by the arrow 222, the condition of the contacts at I and II remains unchanged while the contacts at III open and the contacts at IV close. It should be clear to those skilled in the art that a one position or shift in the position of the cam portion 212a relative to the selector switch stem, as shown in FIG. 30, yields a totally distinct switching program.
  • cam portion 212b can be made to produce another two switching programs. Also, if either cam portion 212 is shifted by multiples of 90 from a particular orientation, the switching programs are correspondingly shifted to different sets of contacts. It should be noted here that although the foregoing discussion has been in the context of a three position selector switch, the same relationships also apply to two, four or more position switches.
  • selector switch 'cam assemblies 172 yielding substantially all generally used combinations of switching programs can be produced by stacking two cam portions 212 in various orientations relative to the base portion 211 as is shown in FIG. 31.
  • each cam portion 212 may be individually oriented relative to the base portion 211.
  • the selector switch cam assembly 172 is dimensioned so that the cam portion 212 (the forward cam portion 212] in the case of the double stacked cam assembly 172a) is operatively aligned with the projecting nose portion 109 of the contact operator 87 in the contact module 22. Therefore, the operative dimensions of the contact module 22 must be altered to enable the rear cam portion 2l2r to operate the contact operator 82. It can be clearly seen, with reference to FIGS. 12 and 14, that the contact operator 87 is symmetrical about a longitudinal axis through the indicator stop portion 105 except for the nonsymmetrical projecting nose portion 109.
  • contact operator 87 is rotated l around the longitudinal axis, its operation is not altered except that the projection nose portion 109 is shifted rearwardly to the position shown by a dashed line in FIG. 12 and indicated as 1109a.
  • This orientation of the contact operator 87 within a contact module 22 aligns the projecting nose 109a with the rear cam portion 212r (FIG. 31) for operative interaction therewith.
  • substantially any desired switching program may be provided by only three different parts, the cam portions 212a and 2l2b and the base portion 211.
  • the selector switch assembly of the present invention may be adapted for use as a momentary switch, a configuration in which the selector switch stem 168 has a rest position and a position on one'or both sides of the rest position from which spring return means returns the selector switch stem 168 to the rest position upon release of the selector switch knob 165.
  • the momentary selector switch assembly 164m shown in FIGS. 32 and 33, is substantially similar to the maintained selector switch assembly 164 of FIGS. 22 and 23 except that certain additions and deletions of parts of parts have been made.
  • the index pins 169 and index pin spring 170 are not used in the momentary selector switch assembly 164m. No detent means is required as no switch position must be maintained. Instead, a return spring 224 and return spring support 225 are used to return the selector switch stem 168 to its rest position during operation.
  • the return spring 224 is shown in FIG. 34 and is preferably a wound stainless steel torsion spring having outwardly turned feet 226 at its end portions.
  • the return spring support 225 (FIGS. 35 and 36) is preferably stamped and formed from strip steel and has a pair of annular leg portions 227 spaced axially apart and connected by a generally planar bight portion 229. Each leg portion 227 preferably has an inwardly turned tang 230 along one side portion thereof opposite the tang 230 on the other leg portion-227. Aligned slots 231 are preferably provided through both leg portions 227 centrally of the bight portion 229. I
  • the return spring 224 is inserted between the leg portions 227 of the return'spring support 225 with each foot 226 of the return spring 224 engaging one of the tangs 230 on the return spring support 225 as shown in FIG. 32.
  • the return spring 224 is under tension in this position to assure that the feet 226 will be properly positioned and held against the tangs 230.
  • a momentary selector switch stop ring 171m is provided with an upstanding tab 232 (see FIG. 32).
  • the stop ring 171m (for the purposes of this example, a three position stop ring) is placed in the body 16 and around the selector switch stem 168 with the tab 232 rearwardly directed.
  • the stop ring 171m is aligned in the same manner as previously described in relation to the stop ring 171 for the'maintained selector switch.
  • the selector switch stern 168 is oriented so that the tongue portion 196 is in the rest position and the return spring 224 and return spring support 225 are placed over the selector switch stem 168 with the tongue portion 196 through the aligned slots 231. Now the tab 232 Thus a three position momentary selector switch assembly 164m is formed.
  • the knob 165 and, correspondingly, the selector switch stem 168 are rotated in either direction, the return spring support 225 also rotates, due to the engagement of the tongue portion 196 in the aligned slots 23]. This causes a corresponding motion of the return spring 224.
  • the retainer tab 234 engages its corresponding return spring foot 226 and holds it against rotation.
  • the tension of the return spring 224 is increased, since the tang 230 adjacent the stop ring retainer tab 232 pulls its corresponding foot 226 and causes it to rotate with the return spring support 225 and selector switch stem 168.
  • the return spring 224 applies sufficient force to pull the return spring support 225, and with it the selector switch stem 168, back to the rest position.
  • 'a two position selector switch may be formed with a rest position and a single momentary position only to one side thereof by using a two position momentary stop ring 171m. Because return action is only desired in one direction, either the stop ring tab 232 or the retainer tab 234 may be omitted, depending on the side of the rest position to be used.
  • both detent means and spring return means must be included.
  • the detent means must function only in the maintained position and the spring return means must function only in the momentary position.
  • the index pins 169 and index pin spring 170 are used as detent means for the maintained position and the return spring 224 and return spring support 225 are used as spring return means for the momentary position.
  • the index pins 169 are positioned within the body 16 so that when the selector switch stem 168 is in its rest position, the-index pins 169 are at one edge of the planar surfaces 194. When the selector switch stem 168 is rotated into the momentary position, the index pins 169 slide across the corresponding planar surfaces 194 so that the detent means is inoperative and does not interfere with the action of the return spring 224. When the selector switch stem 168 is rotated into the maintainedposition, the index pins 169 and index pin spring 170 interact with the cam surface 189 so that the detent means operates as hereinbefore described.
  • FIG. 38 An illuminated selector switch assembly 1641 is illustrated in FIG. 38 and may be of the maintained, momentary or-momentary-maintained variety.
  • the lamp 130 is held by a pair of lamp terminals 131 which are locked within the selector switch stem 168 by the lamp terminal holder 132.
  • the rear end portions 142 of the lamp terminals 131 are in electrical contact with the output terminals 162 of the light module 156.
  • the selector switch stem 168 is provided with a substantially cylindrically longitudinal opening 235 (see FIG. 22).
  • a rear portion 236 of the longitudinal opening 235 has a narrow section 237' defining a rearwardly directed shoulder 239 to accommodate assembly of the lamp assembly in amanner similar to that described for the illuminated push-button assembly 11I.
  • the formation of the longitudinal opening 235 must enable the lamp terminals 131 to rotate relative to theselector switch stern 168 so that the lamp terminals 131 will be in a fixed position for constant electrical'contact with the output terminals 162.Therefore, the alignment. bosses 155 which were used in the push button stem 25 (see FIG. )'have not beenadded to the selector switch stem 168.
  • the lamp assembly When the illuminated selector switch assembly 164I is put together, the lamp assembly is positioned so that when the light module 156 is attached to the body 16, the rear end portions 142 of the lamp terminals 131 are in electrical contact with the output terminals 162 of the light module 156.
  • the selector switch When the selector switch is operated, causing the'selector switch 168- to be rotated within the body 16, the lightmodule 156 holds the lamp assembly against rotation so that the selector switch may be illuminated in any or all of its positions.
  • a switch assembly which has both push-button and selector switch modes of operation, may be illuminated or non-illuminated and can provide a large variety of switching programs.
  • the selector switch mode of operation provides momentary,
  • the switch assembly can be made very small and all wiring connections and contact condition indicators are directed toward the rear, a plurality of assemblies may be contained in a smaller space than is the case with many prior art devices. However, it should be noted that the switch assembly of the present invention is adaptable for use as a larger scale unit.
  • a switch assembly comprising a switch housing having forward and rear end portions, contact means secured to the rear end portion of said switch housing, said contact means including a pair of separable contacts and contact indicator, means movable to one indicating position as a result of opening of said contacts to indicate an open condition of said contacts and movable to another indicating position as a result of closing of said contacts to indicate a closed condition of said contacts, switch operating means in said switch houstact means includes a contact module containing said pair of contacts and said'contact indicator means.
  • a switch assembly as in claim 5 wherein said contact module includes spring means for biasing said contact indicator means into said one position, and means on said contact operator means for biasing said contact indicator means into said other position when said contact operator means is in said second position.
  • said contact means comprises a contact housing having forward and rear end portions and inner and outer side walls, each of said side walls having an aperture therethrough, the rear end portion of the contact housing having a pair of openings therein, said pair of contacts being disposed in said contact housing and normally biased into the closed condition, a pair of terminals held respectively in said pair of openings and connected respectively to said pair of contacts, said contact indicator means being disposed in said contact housing and visible through the aperture in said outer side wall, a biasing spring disposed in said contact housing and biasing said contact indicator means toward one of its indicating positions, and a contact operator disposed in said contact housing between said contacts and having a pair of opposite end portions, a camming nose at one of said end portions extending through the aperture in said inner side wall, contact camming surfaces proximate to said contacts, and means at the other of said end portions for moving said contact indicator means to the other of its indicating positions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Push-Button Switches (AREA)
  • Rotary Switch, Piano Key Switch, And Lever Switch (AREA)
  • Switch Cases, Indication, And Locking (AREA)
  • Switches With Compound Operations (AREA)
US00140152A 1971-05-04 1971-05-04 Miniature oil-tight push button and selector switch assembly and improved contact unit therefor Expired - Lifetime US3740501A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14015271A 1971-05-04 1971-05-04

Publications (1)

Publication Number Publication Date
US3740501A true US3740501A (en) 1973-06-19

Family

ID=22489978

Family Applications (1)

Application Number Title Priority Date Filing Date
US00140152A Expired - Lifetime US3740501A (en) 1971-05-04 1971-05-04 Miniature oil-tight push button and selector switch assembly and improved contact unit therefor

Country Status (8)

Country Link
US (1) US3740501A (it)
JP (1) JPS5648926B1 (it)
CA (1) CA983982A (it)
DE (1) DE2221889A1 (it)
FR (1) FR2135278B1 (it)
GB (3) GB1359773A (it)
IT (1) IT958782B (it)
ZA (1) ZA722967B (it)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3805004A (en) * 1972-06-01 1974-04-16 Alps Electric Co Ltd Self-illuminating switch
US3927290A (en) * 1974-11-14 1975-12-16 Teletype Corp Selectively illuminated pushbutton switch
US3944760A (en) * 1974-04-08 1976-03-16 Cts Corporation Switch assembly having slider actuator insulating plate inserted between normally closed contacts
US4178493A (en) * 1978-01-05 1979-12-11 Siemens Aktiengesellschaft Pushbutton switch with collar
US4379973A (en) * 1981-05-20 1983-04-12 C & K Components, Inc. Universal logic switch
US4583151A (en) * 1984-10-22 1986-04-15 Allen-Bradley Company Illuminated display
US4758701A (en) * 1984-03-14 1988-07-19 Allen-Bradley Company Indicator light assembly for control panel
US5543594A (en) * 1994-01-05 1996-08-06 Romero-Herrera; Ricardo Electrical push button switch with built-in lamp
US5844185A (en) * 1996-06-25 1998-12-01 Shih; Yingtien A. Momentary switch
US20030111330A1 (en) * 2001-03-12 2003-06-19 Cole Joseph W. Push-button type electrical switch having secondary conductive pathway to ground
US6590176B2 (en) 2001-03-12 2003-07-08 Joseph W. Cole Push-button type electrical switch
US20040118669A1 (en) * 2001-03-12 2004-06-24 Mou Oliver C. Gaming machine illuminated push-button switch
US20040140189A1 (en) * 2001-05-15 2004-07-22 Roland Ruegenberg Operating device for an electric switch comprising a push-button
US20040173445A1 (en) * 2001-03-12 2004-09-09 Cole Joseph W. Method and apparatus for removing and replacing bulb of push-button type electrical switch
WO2011090844A1 (en) * 2010-01-21 2011-07-28 Illinois Tool Works Inc. Light ring for appliance control adjustable for console thickness
US20120111706A1 (en) * 2010-11-08 2012-05-10 Wms Gaming Inc. Push button assembly
USD736722S1 (en) * 2014-02-12 2015-08-18 Ching-Hsiung Chu Touch switch
USD813829S1 (en) * 2017-07-28 2018-03-27 12Vtechnology Llc Waterproof switch assembly

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58192137U (ja) * 1982-06-16 1983-12-21 石川島芝浦機械株式会社 トラクタの乗降用取手
JPS61500993A (ja) * 1983-12-21 1986-05-15 アレン・ブラドリイ カンパニ 改良された押釦スイッチおよびパイロット・ライト
ES8703711A1 (es) * 1985-07-31 1987-03-01 Eunea Electrotecnica Un sistema modular unico para fabricacion de pequeno mate- rial electrico
US5575390A (en) * 1988-11-15 1996-11-19 Rehrig Pacific Company Nestable and stackable tray for cans or the like

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2786904A (en) * 1954-05-13 1957-03-26 Gen Railway Signal Co Control switch for railway traffic controlling systems
US3231706A (en) * 1961-07-24 1966-01-25 Cutler Hammer Inc Illuminated pushbutton switches having tanden lamp impedance devices
US3251956A (en) * 1963-04-09 1966-05-17 Gemco Electric Co Electric switch
US3271530A (en) * 1965-01-12 1966-09-06 Bell Telephone Labor Inc Pushbutton switch with latching, lockout and indicator lamp structure
US3303313A (en) * 1964-12-08 1967-02-07 Seiko Denki Seisakusho Kk Rotary switch having selective angular controlling limits means
US3437775A (en) * 1966-12-27 1969-04-08 Cutler Hammer Inc Illuminated pushbutton switch and method of assembling same
US3598948A (en) * 1970-04-24 1971-08-10 Gen Electric Miniature square oiltight pushbutton switch

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2991343A (en) * 1958-07-07 1961-07-04 Fed Pacific Electric Co Selective switches

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2786904A (en) * 1954-05-13 1957-03-26 Gen Railway Signal Co Control switch for railway traffic controlling systems
US3231706A (en) * 1961-07-24 1966-01-25 Cutler Hammer Inc Illuminated pushbutton switches having tanden lamp impedance devices
US3251956A (en) * 1963-04-09 1966-05-17 Gemco Electric Co Electric switch
US3303313A (en) * 1964-12-08 1967-02-07 Seiko Denki Seisakusho Kk Rotary switch having selective angular controlling limits means
US3271530A (en) * 1965-01-12 1966-09-06 Bell Telephone Labor Inc Pushbutton switch with latching, lockout and indicator lamp structure
US3437775A (en) * 1966-12-27 1969-04-08 Cutler Hammer Inc Illuminated pushbutton switch and method of assembling same
US3598948A (en) * 1970-04-24 1971-08-10 Gen Electric Miniature square oiltight pushbutton switch

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Gemco Electric Company, Catalog, July 1965, p. 14, *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3805004A (en) * 1972-06-01 1974-04-16 Alps Electric Co Ltd Self-illuminating switch
US3944760A (en) * 1974-04-08 1976-03-16 Cts Corporation Switch assembly having slider actuator insulating plate inserted between normally closed contacts
US3927290A (en) * 1974-11-14 1975-12-16 Teletype Corp Selectively illuminated pushbutton switch
US4178493A (en) * 1978-01-05 1979-12-11 Siemens Aktiengesellschaft Pushbutton switch with collar
US4379973A (en) * 1981-05-20 1983-04-12 C & K Components, Inc. Universal logic switch
US4758701A (en) * 1984-03-14 1988-07-19 Allen-Bradley Company Indicator light assembly for control panel
US4583151A (en) * 1984-10-22 1986-04-15 Allen-Bradley Company Illuminated display
US5543594A (en) * 1994-01-05 1996-08-06 Romero-Herrera; Ricardo Electrical push button switch with built-in lamp
US5844185A (en) * 1996-06-25 1998-12-01 Shih; Yingtien A. Momentary switch
US6590176B2 (en) 2001-03-12 2003-07-08 Joseph W. Cole Push-button type electrical switch
US20030111330A1 (en) * 2001-03-12 2003-06-19 Cole Joseph W. Push-button type electrical switch having secondary conductive pathway to ground
US20040118669A1 (en) * 2001-03-12 2004-06-24 Mou Oliver C. Gaming machine illuminated push-button switch
US20040173445A1 (en) * 2001-03-12 2004-09-09 Cole Joseph W. Method and apparatus for removing and replacing bulb of push-button type electrical switch
US6870114B2 (en) 2001-03-12 2005-03-22 Joseph W. Cole Method and apparatus for removing and replacing bulb of push-button type electrical switch
US6987233B2 (en) * 2001-03-12 2006-01-17 Magtech Usa, Inc. Push-button type electrical switch having secondary conductive pathway to ground
US20040140189A1 (en) * 2001-05-15 2004-07-22 Roland Ruegenberg Operating device for an electric switch comprising a push-button
US6900403B2 (en) * 2001-05-15 2005-05-31 Methode Electronics Inc. Operating device for an electric switch comprising a push-button
WO2011090844A1 (en) * 2010-01-21 2011-07-28 Illinois Tool Works Inc. Light ring for appliance control adjustable for console thickness
US8783927B2 (en) 2010-01-21 2014-07-22 Illinois Tool Works Inc. Light ring for appliance control adjustable for console thickness
US20120111706A1 (en) * 2010-11-08 2012-05-10 Wms Gaming Inc. Push button assembly
USD736722S1 (en) * 2014-02-12 2015-08-18 Ching-Hsiung Chu Touch switch
USD813829S1 (en) * 2017-07-28 2018-03-27 12Vtechnology Llc Waterproof switch assembly

Also Published As

Publication number Publication date
CA983982A (en) 1976-02-17
JPS5648926B1 (it) 1981-11-18
IT958782B (it) 1973-10-30
ZA722967B (en) 1973-02-28
DE2221889A1 (de) 1972-11-23
GB1359772A (en) 1974-07-10
FR2135278A1 (it) 1972-12-15
AU4185972A (en) 1974-04-26
GB1359771A (en) 1974-07-10
FR2135278B1 (it) 1975-07-18
GB1359773A (en) 1974-07-10

Similar Documents

Publication Publication Date Title
US3740501A (en) Miniature oil-tight push button and selector switch assembly and improved contact unit therefor
US3927290A (en) Selectively illuminated pushbutton switch
US3251956A (en) Electric switch
US3883705A (en) Cam operated, pivoted contact switch assembly having split housing and safety cover
GB1429680A (en) Electrical switch assemblies
US3681552A (en) Pushbutton electrical switch unit
US4227056A (en) Key lock rotary selector switch
US4242545A (en) Mechanical switch
US3780245A (en) Rotary switch with enlarged shaft journaled in and removable through switch cover
US4175221A (en) Convertible selector switch
GB1369897A (en) Push-button switch
US3809831A (en) Program timer assembly with improved cam disc face circumferential grooves for abrupt radial displacement
US3805004A (en) Self-illuminating switch
US3394403A (en) Lighted pushbutton assembly
US4024367A (en) Rocker switch with slidable indicator
US4242544A (en) Multiple-switch arrangement
US3534184A (en) Rotary switch equipped with shiftable shaft for lifting wiper arms
US4623763A (en) Rotary multi-contact switch
US3691323A (en) Combination lighting switch mechanism
US3584174A (en) Push-button switch apparatus having cam actuated switch contacts and selective illumination means
US3596015A (en) Programmer for electric household appliances
GB2089129A (en) A push-button switch
US3267244A (en) Pushbutton operated switch having relatively rotatable cylindrical members with one having an elongated conductor thereon
US4137438A (en) Lever switch
US4835348A (en) Electrical switch device