US3739393A - Apparatus and method for generation of drops using bending waves - Google Patents
Apparatus and method for generation of drops using bending waves Download PDFInfo
- Publication number
- US3739393A US3739393A US00189297A US3739393DA US3739393A US 3739393 A US3739393 A US 3739393A US 00189297 A US00189297 A US 00189297A US 3739393D A US3739393D A US 3739393DA US 3739393 A US3739393 A US 3739393A
- Authority
- US
- United States
- Prior art keywords
- drops
- orifices
- streams
- fluid
- plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005452 bending Methods 0.000 title claims abstract description 34
- 238000000034 method Methods 0.000 title claims abstract description 21
- 239000012530 fluid Substances 0.000 claims abstract description 60
- 230000001902 propagating effect Effects 0.000 claims abstract description 6
- 238000013016 damping Methods 0.000 claims description 12
- 238000007600 charging Methods 0.000 claims description 11
- 230000004936 stimulating effect Effects 0.000 claims description 11
- 238000000576 coating method Methods 0.000 claims description 8
- 239000011248 coating agent Substances 0.000 claims description 5
- 238000005266 casting Methods 0.000 claims description 3
- 230000005684 electric field Effects 0.000 claims description 3
- 238000004891 communication Methods 0.000 claims description 2
- 239000004020 conductor Substances 0.000 claims description 2
- 230000006872 improvement Effects 0.000 claims description 2
- 230000001939 inductive effect Effects 0.000 claims description 2
- 238000005304 joining Methods 0.000 claims description 2
- 230000000737 periodic effect Effects 0.000 claims description 2
- 238000007789 sealing Methods 0.000 claims description 2
- 230000000638 stimulation Effects 0.000 abstract description 22
- 238000007639 printing Methods 0.000 abstract description 13
- 230000001976 improved effect Effects 0.000 abstract description 4
- 239000000463 material Substances 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 230000000875 corresponding effect Effects 0.000 description 4
- 238000000151 deposition Methods 0.000 description 3
- 230000033458 reproduction Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 235000009508 confectionery Nutrition 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- DMFGNRRURHSENX-UHFFFAOYSA-N beryllium copper Chemical compound [Be].[Cu] DMFGNRRURHSENX-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007786 electrostatic charging Methods 0.000 description 1
- 230000005686 electrostatic field Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 235000019988 mead Nutrition 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229920003225 polyurethane elastomer Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000002990 reinforced plastic Substances 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 238000010615 ring circuit Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/015—Ink jet characterised by the jet generation process
- B41J2/02—Ink jet characterised by the jet generation process generating a continuous ink jet
- B41J2/03—Ink jet characterised by the jet generation process generating a continuous ink jet by pressure
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06B—TREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
- D06B11/00—Treatment of selected parts of textile materials, e.g. partial dyeing
- D06B11/0056—Treatment of selected parts of textile materials, e.g. partial dyeing of fabrics
- D06B11/0059—Treatment of selected parts of textile materials, e.g. partial dyeing of fabrics by spraying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2202/00—Embodiments of or processes related to ink-jet or thermal heads
- B41J2202/01—Embodiments of or processes related to ink-jet heads
- B41J2202/15—Moving nozzle or nozzle plate
Definitions
- ABSTRACT Apparatus and method for generating drops in a continuous falling curtain by controlled stimulation of a set of fluid streams are formed by forcing a working fluid under pressure through a set of orifices in an orifice plate, and are stimulated to produce drops by propagating a series of bending waves down the length of the plate. It is shown that this method of stimulation provides regulation of the phase and amplitude of applied stimulation energy and accurately controls the filament length of all streams.
- an improved jet drop recording apparatus wherein graphic printing quality is greatly improved by travelling wave stimulation of a set of digitally switched jets.
- FIG-4B FIG-4A I .O II-000000.... III OQOOOOOOOO. Ill-Ill 00 00.000.000
- FIG-5A i oooooooo 8 l «. l l
- This invention relates generally to the field of fluid drop generation and the application thereof to jet drop recorders of the type shown in Sweet et al U. S. Pat. No. 3,373,437 and Taylor et al U. S. Pat. No. 3,560,641.
- recorders of this type there are one or more rows of orifices which receive an electrically conductive recording fluid, such as for instance a water base ink, from a pressurized fluid supply manifold and eject the fluid in rows of parallel streams.
- These recorders accomplish graphic reproduction by selectively charging and deflecting the .drops in each of the streams and thereafter depositing at least some of the drops on a moving web of paper or other material.
- the above mentioned charging is accomplished by application of control signals to charging electrodes positioned near each of the streams.
- each drop breaks off from its parent fluidfilament, it carries with it -a charge which is in effect a sample of the voltage present v on the associated charge electrode at the instant of drop separation.
- the drop passes through an electrostatic field and is deflected in the field direction a a distance which is proportional to the magnitude of the drop charge.
- the drops are charged binarily for print-no-print operation; some drops being uncharged and undeflected for printing, and all other drops being charged to a fixed level and deflected into a catcher.
- This error arises from channel to channel differences in drop flight time; that is, the elapsed time from drop I break-'off/charging to impact on the moving web of paper. It is somewhat analogous to a gunnery problem wherein a projectile must be aimed to hit a moving target. I-Iere each drop is programmed to hit the paper at a precise position relative to other drops, and if it must fall a greater or lesser distance than had been anticipated, it will miss. With a web speed adjusted for slight overlap of adjacent printed dots, the above mentioned length difference of plus or minus 3 times the drop spacing distance will produce a printing error in the direction of web movement of plus or minus about three printed dot diameters. Such an error is unacceptably large for printing of graphic arts quality.
- This object isaccomplished by combining a laminated print head of the type generally disclosed in Beam et al. U. S. Pat. No. 3,586,907 with an ultrasonic transducer in a manner whereby drop stimulating vibrations are generated in a continuing series of travelling waves. More particularly the jet forming fluid is caused to flow through a row of orifices in a plate sealed against a fluid supply manifold and concomitantly to be subjected to the drop stimulating action of bending waves travelling longitudinally down the length of the plate. At the same time extraneous drop stimulating disturbances are surpressed by terminating the orifice plate in a manner precluding reflection and repropagation of the waves.
- each jet will be excited by a drop stimulating disturbance each time a bending wave passes the jet forming orifice.
- the time interval (phase delay) between successive drop releases in adjacent jets will be seen to depend upon the orifice spacing and the bending wave propagation speed.
- Bending waves for this purpose may be generated by placing the ultrasonic transducer in direct contact with the orifice plate; preferably at one end thereof. Bending wave reflection is preferably suppressed by use of absorbing elements at each end of the orifice plate.
- a second object of the invention is to simplify charge electrode design problems in multiple channel jet drop
- Another object of the invention is to improve drop stimulation in a row of cooperating fluid streams by regulating the phase and amplitude of the stimulating energy applied to each stream.
- FIG.. 1 is an exploded perspective view of a recording head assembly
- FIG. 1A is a perspective view of a supply manifold with portions broken away;
- FIG. 2 is a cross sectional through the assembly of FIG. 1;
- FIG. 3 is a perspective of an orifice plate and attached-dampers
- FIGS. 4A and 4B illustrate graphically bending waves which may be induced in the orifice plate
- FIG. 5A is a diagrammatic representation of drop generation in accordance with the prior art.
- FIG. 5B illustrates drop generation in accordance with the present invention.
- FIG. 1 A preferred embodiment of this invention is illustrated in exploded pictorial form in FIG. 1 together with other elements comprising a complete multiple channel recording head assembly 10. As shown in the figure, the various elements of the head are assembled for support by a support bar 12. Assembly thereto is accomplished by attaching the elements by means of machine screws (not shown) to a clamp bar 14 which is in turn connected to the support bar 12 by means of clamp rods 16.
- the recording head comprises an orifice plate 18 soldered, welded or otherwise bonded to fluid supply manifold 20 with a pair of wedge-shaped acoustical dampers 22 therebetween.
- Orifice plate 18 is preferably formed of a relatively stiff material such as stainless steel or nickel coated beryllium-copper but is relatively thin to provide the required flexibility.
- dampers 22 are cast in place by pouring polyurethane rubber or other suitable damping material through openings 24 while tilting manifold 20 (orifice plate 18' being attached) atan appropriate angle from the from the vertical. This is a two step operation as dampers 22 require tilting in opposite directions (See FIG. 1A).
- Orifice plate 18 preferably contains two rows of ori- I fices 26 and is simulated by stimulator 28 which is threaded into clamp bar 14 to carry stimulation probe 30 through manifold 20 and into direct contact with plate 18.
- Orifice plate 18, manifold 20, and clamp bar 14 together with a filter plate 32 and 0 rings 34, 36 and 38 (see also FIG. 2') comprise a clean package which may be preassembled and kept closed to prevent dirt or foreign material from reaching and clogging orifices 26.
- Conduit 40 may be provided for flushing of the clean package.
- Service connections for the recording head include a coating fluid supply tube 42, air exhaust and inlet tubes 44 and 46, and a tube 48 for connection to a pressure transducer (not shown).
- a'charge ring plate 50 an electrically conductive deflection ribbon 52, and a pair of catchers 54.
- Catchers 54 are supported by holders 56 which are fastened directly to fluid supply manifold 20. Spacers 58 and 60 reach through apertures 62 and 64, respectively, in charge ring plate 50 to support holders 56 without stressing or constraining charge ring plate 50.
- Deflection ribbon 52 is also'supported by holders 56 and is stretched tightly therebetween by means of tightening block 66. Ribbon 52 extends between catchers 54 as best shown in FIG. 2.
- Catchers 54 are laterally adjustable relative to ribbon 52. This adjustability is accomplished by assembling the head with catchers 54 resting in slots 68 of holders 21, and urging them mutually inward with a pair of elastic bands 70. Adjusting blocks 72 are inserted upwardly through recesses 74 and 76 to bear against faces 78 of catchers 54, and adjusting screws 80 are provided to drive adjusting blocks 72 and catchers 54 outwardly against elastic bands 70. Holders 56 are made of insulative material which may be any available reinforced plastic board.
- the fully-assembled recording head is shown in cross section in FIG. 2.
- coating fluid 82 flows downwardly through orifices 26 forming two rows of streams which break up into drops 84.
- Drops 84 then pass through two rows of charge rings 86 in charge ring plate 50 and thence into one of the catchers 54 or onto the moving web of paper 88.
- Switching of drops between catch and deposit trajectories is accomplished by electrostatic charging and deflection as hereinafter described.
- Coordinated printing capability is achieved by staggering the two rows of streams in accordance with the teachings of Taylor et al. U. S Pat. No. 3,560,640. As taught in that patent, the drops in the forward row of streams (i.e.
- Formation of drops 84 is closely controlled by application of a constant frequency, controlled amplitude, stimulating disturbance to each of the fluid streams emanating from orifice plate 18. Disturbances for this purpose are set up by operating transducer 28 to vibrate probe 30 at constant amplitude and frequency against plate 18. This causes a continuing series of bending waves to travel the length of plate 18; each wave producing a drop stimulating disturbance each time it passes one of the orifices 26. Dampers 22 prevent reflection and repropagation of these waves. Accordingly each stream comprises an unbroken fluid filament and a series of uniformly sized and regularly spaced drops all in accordance with the well known Rayleigh jet break-up phenomenon.
- each drop 84 is formed it is exposed to the charging influence of one of the charge rings 86. If the drop is to be deflected and caught, an electrical charge is applied to the associated charge ring 86 during the instant of drop formation. This causes an electrical charge to be induced in the tip of the fluid filament and carried away by the drop.
- a static electrical field is set up between deflection ribbon 52 and the faces of each of the catchers 54 (by opposite polarity' electrical charging thereof), and when the drop traverses this field it is deflected to strike the face of the appropriate catcher. Thereafter the drop runs down the face of the catcher, is ingested, and carried off. Drop ingestion may be promoted by application of a suitable vacuum to the ends 90 of catchers 54. For drops which are to deposit on the web 88, no electrical charge is applied to the associated charge ring.
- Appropriate charges for accomplishment of the above mentioned drop charging are induced by setting up an electrical potential difference between orifice plate 18 (or any other conductive structure in electrical contact with the coating fluid supply) and each appropriate charge ring 86. These potential differences are created by grounding plate 18 and applying appropriately timed voltage pulses to wires 92 in connectors 94 (only one connector illustrated). Connectors 94 are plugged into receptacles 96 at the edge of charge ring plate 50 and deliver the mentioned voltage pulses over printed circuit lines 98 to charge rings 86.
- Charge ring plate 50 is fabricated from insulative material and I charge rings 86 are merely coatings of conductive macrease the number of wires and connectors.
- solid state demultiplexing circuits may be employed to demultiplex the signals and route the pulses to the proper charge rings. Such solid state circuits may be manufactured by known methods as a permanent part of charge ring plate 50.
- the printing head as above described is adapted to be employed in combination with another such head further in accordance with the teachings of Taylor et al.
- Such a combination will produce solid printing coverage with'the streams in each row on l6 mil centers, whichis within the state of the art for current orifice plate and charge ring plate manufacturing techniques.
- the effective stream spacing for the equivalent single row is 4 mils, and this will produce solid printing coverage if each drop makes a printed dot in the order of about 5 mils.
- Suitable drops for such printed dots may be produced with 1.5 mil orifices, an fluid pressure of about 1 l p.s.i. and a stimulation frequency of about 60 KHz.
- the speed of web 88 should be set at about 1200 ft. per sec.
- solid printing coverage may be obtained by operatinga single printing head as above described but at a reduced web travel speed.
- a'web speed of about 450 ft. per sec. has been found to be satisfactory.
- This reduction in web speed results in a decreased longitudinal (i.e. web movement direction) spacing of drop deposit points.
- two consecutive drops in one stream are both deposited they tend to pile up and spread in all directions. They behave much like one drop of larger volume, and they fill the laterally adjacent marking cell left empty by omission of the second recording head. This, of course, degrades the resolution of the resulting "print, but a recording head has been saved.
- travelling waves which are a central feature of this invention are illustrated pictorially in FIG. 3.
- the waves 100 originate in an area 102 of orifice plate 18, passing orifices 26 as they travel. Area 102 receives vibrations for generation of the waves by physical contact with the probe 30 of stimulation transducer 28. Orifice plate 18 is bonded to fluid supply manifold 20 in the region of the shaded area 104. Reflection and repropagation of waves 100 are prevented as mentioned above by use of acoustical dampers 22.
- FIGS. 4A and 4B illustratethe two lowest widthwise resonance modes for orifice plates which are constrained respectively by pinning and clamping at their edges.
- the figures represent cross sections across the width of the orifice plates.
- the first order resonance mode is represented by the Roman numeral I
- the second order resonance mode is represented by the Roman numeral II.
- For a given unsupported or resonating width there is a minimum stimulation frequency below which each of the illustrated resonance modes may not be excited.
- mode I for propogation down the length of the plate, but to avoid excitation of mode II.
- Orifice plate 18 as illustrated inFIG. 1 has clamped edges, and has been'satisfactorily operated at 60 KHz stimulation with 'a thickness of 10 mils. alength of 5 inches, and an effective resonating width of 0.25
- FIG. 53 illustrates typical observed results of tests conducted upon clamped orifice plates stimulated as above described at KHz.
- the acoustical dampers used for these tests were about 1 inch long.
- Corresponding results for stimulation by prior art methods are illustrated in FIG. 5A. In each case the illustrations show a section of the orifice plate as it may be observed under magnification and stroboscopic illumination.
- Each stream of FIGS. 5A and 58 comprises a series of spaced drops 84 and an unbroken fluid filament 106.
- Each filament 106 has some nominal length and varies cyclically about that length each time a drop is formed. During drop formation that filament lenghtens, pinches off to form a drop, and then shortens a distance about equal to the spacing between downstream drops.
- Method of generating drops comprising the steps of producing a set of fluid filaments by forcing a fluid simultaneously through a set of orifices spaced along a flexible plate, and breaking said filaments up into drops by generating a series of drop stimulating bending waves and guiding said waves unidirectionally along said plate on a path joining said orifices.
- Apparatus for generating a curtain of falling drops comprising:
- said confining means comprising means for sealing the fluid supply manifold rigidly against the orifice plate and creating a clamped joint therebetween.
- Apparatus according to claim 5 said orifices being uniformly sized and uniformly spaced along a straight line.
- said confining means further comprising acoustical damping means at both ends of the orifice plate.
- acoustical damping means being of wedge-shaped configuration, and said fluid supply manifold being provided with a pair of apertures for casting said damping means in place.
- a jet drop recording apparatus comprising drop forming means for forming a plurality of streams of uniformly sized and regularly spaced drops, a common pressurized fluid supply manifold for supplying coating fluid to all of said streams, and means for selectively deflecting drops within each of the streams; the improvement wherein said drop forming means comprises:
- damping means secured to the orifice plate at the end of said line for absorbing said bending waves and suppressing backwardly directed reflection thereof.
- Jet drop recording apparatus comprising:
- a flexible orifice plate provided with a plurality of uniformly sized and spaced orifices arranged along a straight line
- an electrically nonconductive charge ring plate positioned across the path of said streams and provided with a set of charge ring apertures for passage of the streams therethrough; said charge ring apertures being coated with electrically conductive material for selective charging of drops created as aforesaid,
- Apparatus for generating a curtain of falling drops comprising:
- a flexible orifice plate provided with a plurality of uniformly sized orifices spaced uniformly along a straight line
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Textile Engineering (AREA)
- Particle Formation And Scattering Control In Inkjet Printers (AREA)
- Facsimile Heads (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18929771A | 1971-10-14 | 1971-10-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3739393A true US3739393A (en) | 1973-06-12 |
Family
ID=22696729
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00189297A Expired - Lifetime US3739393A (en) | 1971-10-14 | 1971-10-14 | Apparatus and method for generation of drops using bending waves |
Country Status (11)
Cited By (67)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3787883A (en) * | 1972-12-20 | 1974-01-22 | Mead Corp | Deflection electrode assembly for a jet drop recorder |
US3868698A (en) * | 1973-10-24 | 1975-02-25 | Mead Corp | Stimulation control apparatus for an ink jet recorder |
US3882508A (en) * | 1974-07-22 | 1975-05-06 | Mead Corp | Stimulation apparatus for a jet drop recorder |
US3958249A (en) * | 1974-12-18 | 1976-05-18 | International Business Machines Corporation | Ink jet drop generator |
DE2602263A1 (de) * | 1975-01-23 | 1976-07-29 | Ibm | Dueseneinheit |
US4018383A (en) * | 1974-06-05 | 1977-04-19 | Imperial Chemical Industries Limited | Process for production of drop streams |
DE2703320A1 (de) * | 1976-01-29 | 1977-08-04 | Mead Corp | Troepfchenstrahlen-aufzeichnungsvorrichtung |
US4043507A (en) * | 1971-05-05 | 1977-08-23 | United Kingdom Atomic Energy Authority | Apparatus for the formation of liquid droplets |
US4065774A (en) * | 1975-05-30 | 1977-12-27 | International Business Machines Corporation | Hybrid fluid jet drop generation |
US4110759A (en) * | 1977-02-03 | 1978-08-29 | The Mead Corporation | Orifice plate holder for a fluid jet printing apparatus |
US4135197A (en) * | 1977-10-14 | 1979-01-16 | The Mead Corporation | Vibration damping means for ink jet printing device |
DE2831558A1 (de) * | 1977-07-18 | 1979-02-01 | Mead Corp | Vorrichtung zur erzeugung mehrerer fluessigkeitstroepfchenstroeme |
US4158204A (en) * | 1976-12-30 | 1979-06-12 | International Business Machines Corporation | Time correction system for multi-nozzle ink jet printer |
US4185290A (en) * | 1977-12-22 | 1980-01-22 | International Business Machines Corporation | Compensation for aerodynamic drag on ink streams from a multi-nozzle ink array |
US4184925A (en) * | 1977-12-19 | 1980-01-22 | The Mead Corporation | Solid metal orifice plate for a jet drop recorder |
US4198643A (en) * | 1978-12-18 | 1980-04-15 | The Mead Corporation | Jet drop printer with elements balanced about support plate in nodal plane |
US4210920A (en) * | 1979-01-31 | 1980-07-01 | The Mead Corporation | Magnetically activated plane wave stimulator |
US4229748A (en) * | 1979-02-16 | 1980-10-21 | The Mead Corporation | Jet drop printer |
US4229265A (en) * | 1979-08-09 | 1980-10-21 | The Mead Corporation | Method for fabricating and the solid metal orifice plate for a jet drop recorder produced thereby |
US4242687A (en) * | 1979-07-06 | 1980-12-30 | The Mead Corporation | Heated deflection electrode assembly for a jet drop recorder |
US4245226A (en) * | 1979-07-06 | 1981-01-13 | The Mead Corporation | Ink jet printer with heated deflection electrode |
US4303927A (en) * | 1977-03-23 | 1981-12-01 | International Business Machines Corporation | Apparatus for exciting an array of ink jet nozzles and method of forming |
US4324117A (en) * | 1980-06-11 | 1982-04-13 | The Mead Corporation | Jet device for application of liquid dye to a fabric web |
USRE31358E (en) * | 1978-12-18 | 1983-08-23 | The Mead Corporation | Jet drop printer with elements balanced about support plate in nodal plane |
EP0097413A1 (en) * | 1982-06-21 | 1984-01-04 | EASTMAN KODAK COMPANY (a New Jersey corporation) | A fluid jet print head, and a method of stimulating the break up of a fluid stream emanating therefrom |
US4473830A (en) * | 1983-01-13 | 1984-09-25 | Eastman Kodak Company | Ink jet print head |
US4528571A (en) * | 1984-03-05 | 1985-07-09 | The Mead Corporation | Fluid jet print head having baffle means therefor |
US4530464A (en) * | 1982-07-14 | 1985-07-23 | Matsushita Electric Industrial Co., Ltd. | Ultrasonic liquid ejecting unit and method for making same |
US4554558A (en) * | 1983-05-19 | 1985-11-19 | The Mead Corporation | Fluid jet print head |
US4583101A (en) * | 1982-12-27 | 1986-04-15 | Eastman Kodak Company | Fluid jet print head and stimulator therefor |
US4587528A (en) * | 1983-05-19 | 1986-05-06 | The Mead Corporation | Fluid jet print head having resonant cavity |
US4639737A (en) * | 1985-10-10 | 1987-01-27 | Burlington Industries, Inc. | Tensionable electrodes for charging and/or deflecting fluid droplets in fluid-jet marking apparatus |
US4646104A (en) * | 1982-06-21 | 1987-02-24 | Eastman Kodak Company | Fluid jet print head |
US4736209A (en) * | 1985-10-10 | 1988-04-05 | Burlington, Industries, Inc. | Tensionable ground electrode for fluid-jet marking apparatus |
US4746929A (en) * | 1987-01-16 | 1988-05-24 | Xerox Corporation | Traveling wave droplet generator for an ink jet printer |
US5179394A (en) * | 1989-11-21 | 1993-01-12 | Seiko Epson Corporation | Nozzleless ink jet printer having plate-shaped propagation element |
WO1995007765A1 (en) * | 1993-09-15 | 1995-03-23 | Mobium Enterprises, Inc. | Hybrid pulsed valve for thin film coating and method |
WO1996014212A1 (en) * | 1994-11-07 | 1996-05-17 | Jemtex Ink Jet Printing Ltd. | Multi-jet generator device for use in printing |
US5560543A (en) * | 1994-09-19 | 1996-10-01 | Board Of Regents, The University Of Texas System | Heat-resistant broad-bandwidth liquid droplet generators |
WO1996031291A1 (en) * | 1995-04-03 | 1996-10-10 | Mobium Enterprises Corporation | Method of coating a thin film on a substrate |
US6152556A (en) * | 1995-04-04 | 2000-11-28 | Marconi Data Systems Inc. | Droplet generator for a continuous stream ink jet print head |
EP1364800A1 (en) | 2002-05-24 | 2003-11-26 | Agfa-Gevaert | Improved recording element for ink jet printing. |
EP1375173A1 (en) | 2002-06-27 | 2004-01-02 | Agfa-Gevaert | Ink jet image improved for light-fastness |
EP1393922A1 (en) | 2002-08-27 | 2004-03-03 | Agfa-Gevaert | Improved ink jet recording material |
EP1398166A1 (en) | 2002-09-11 | 2004-03-17 | Agfa-Gevaert | Ink jet recording material and light-stabilising agent |
EP1410921A1 (en) | 2002-10-15 | 2004-04-21 | Agfa-Gevaert | Ink jet recording material and light-stabilising compound |
EP1419893A1 (en) | 2002-11-18 | 2004-05-19 | Agfa-Gevaert | Improved ink jet recording material |
EP1437230A1 (en) | 2003-01-10 | 2004-07-14 | Agfa-Gevaert | Ink-jet recording material |
US20040142123A1 (en) * | 2003-01-10 | 2004-07-22 | Aert Huub Van | Ink-jet recording material |
US20040191432A1 (en) * | 2003-03-18 | 2004-09-30 | Johan Loccufier | Ink jet recording material improved for light-and gas-fastness |
US20040244643A1 (en) * | 2003-06-05 | 2004-12-09 | Voeght Frank De | UV-absorbing ink composition for ink-jet printing |
US20050190245A1 (en) * | 2004-02-20 | 2005-09-01 | Agfa-Gevaert | Ink-jet printing system |
EP1586459A1 (en) | 2004-02-20 | 2005-10-19 | Agfa-Gevaert | Improved ink-jet printing system |
US20050247235A1 (en) * | 2004-05-06 | 2005-11-10 | Agfa-Gevaert N.V. | Multi-density ink-jet ink set for ink-jet printing |
US20060170745A1 (en) * | 2004-12-21 | 2006-08-03 | Agfa-Gevaert | Ink-jet ink set for producing images with large colour gamut and high stability |
US20070064066A1 (en) * | 2005-09-16 | 2007-03-22 | Eastman Kodak Company | Continuous ink jet apparatus and method using a plurality of break-off times |
US20070064034A1 (en) * | 2005-09-16 | 2007-03-22 | Eastman Kodak Company | Ink jet break-off length controlled dynamically by individual jet stimulation |
US20070064037A1 (en) * | 2005-09-16 | 2007-03-22 | Hawkins Gilbert A | Ink jet break-off length measurement apparatus and method |
US20070064068A1 (en) * | 2005-09-16 | 2007-03-22 | Eastman Kodak Company | Continuous ink jet apparatus with integrated drop action devices and control circuitry |
EP1800866A1 (en) | 2005-12-26 | 2007-06-27 | Hitachi, Ltd. | Droplet generator and ink-jet recording device using thereof |
US20080088680A1 (en) * | 2006-10-12 | 2008-04-17 | Jinquan Xu | Continuous drop emitter with reduced stimulation crosstalk |
US20080231669A1 (en) * | 2007-03-19 | 2008-09-25 | Brost Randolph C | Aerodynamic error reduction for liquid drop emitters |
US20080265051A1 (en) * | 2007-04-30 | 2008-10-30 | Vladimir Theodorof | Droplet generator for engine system |
WO2014168770A1 (en) | 2013-04-11 | 2014-10-16 | Eastman Kodak Company | Printhead including acoustic dampening structure |
US9162454B2 (en) | 2013-04-11 | 2015-10-20 | Eastman Kodak Company | Printhead including acoustic dampening structure |
US9199462B1 (en) | 2014-09-19 | 2015-12-01 | Eastman Kodak Company | Printhead with print artifact supressing cavity |
EP3124279A1 (en) | 2015-07-28 | 2017-02-01 | Grandeco Wallfashion Group - Belgium | Method to produce wallpaper with minimum side effects |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5080041A (enrdf_load_stackoverflow) * | 1973-11-12 | 1975-06-28 | ||
DE2543451C2 (de) * | 1975-09-29 | 1982-05-06 | Siemens AG, 1000 Berlin und 8000 München | Piezoelektrisch betriebener Schreibkopf für Tintenmosaikschreibeinrichtungen |
GB1568551A (en) * | 1976-03-29 | 1980-05-29 | Ibm | Ink jet printers |
JPS57113075A (en) * | 1980-12-30 | 1982-07-14 | Fujitsu Ltd | Ink jet head |
CA1215577A (en) * | 1982-12-27 | 1986-12-23 | Hilarion Braun | Fluid jet print head and stimulator therefor |
US4650694A (en) * | 1985-05-01 | 1987-03-17 | Burlington Industries, Inc. | Method and apparatus for securing uniformity and solidity in liquid jet electrostatic applicators using random droplet formation processes |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3577198A (en) * | 1969-11-24 | 1971-05-04 | Mead Corp | Charged drop generator with guard system |
US3656174A (en) * | 1970-12-08 | 1972-04-11 | Mead Corp | Fluid drop marking apparatus |
-
0
- BE BE790064D patent/BE790064A/xx not_active IP Right Cessation
-
1971
- 1971-10-14 US US00189297A patent/US3739393A/en not_active Expired - Lifetime
-
1972
- 1972-09-20 AU AU46877/72A patent/AU463044B2/en not_active Expired
- 1972-09-21 CA CA152,235A patent/CA957009A/en not_active Expired
- 1972-09-25 GB GB4428472A patent/GB1401452A/en not_active Expired
- 1972-10-10 NL NL727213667A patent/NL153999B/xx not_active IP Right Cessation
- 1972-10-11 IT IT12948/72A patent/IT966634B/it active
- 1972-10-12 CH CH1490572A patent/CH553660A/xx not_active IP Right Cessation
- 1972-10-13 FR FR7236384A patent/FR2157486A5/fr not_active Expired
- 1972-10-13 JP JP47101994A patent/JPS5129769B2/ja not_active Expired
-
1979
- 1979-11-29 HK HK810/79A patent/HK81079A/xx unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3577198A (en) * | 1969-11-24 | 1971-05-04 | Mead Corp | Charged drop generator with guard system |
US3656174A (en) * | 1970-12-08 | 1972-04-11 | Mead Corp | Fluid drop marking apparatus |
Cited By (98)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4043507A (en) * | 1971-05-05 | 1977-08-23 | United Kingdom Atomic Energy Authority | Apparatus for the formation of liquid droplets |
US3787883A (en) * | 1972-12-20 | 1974-01-22 | Mead Corp | Deflection electrode assembly for a jet drop recorder |
US3868698A (en) * | 1973-10-24 | 1975-02-25 | Mead Corp | Stimulation control apparatus for an ink jet recorder |
DE2450638A1 (de) * | 1973-10-24 | 1975-04-30 | Mead Corp | Tropfenstrahl-aufzeichnungskopf |
US4018383A (en) * | 1974-06-05 | 1977-04-19 | Imperial Chemical Industries Limited | Process for production of drop streams |
US3882508A (en) * | 1974-07-22 | 1975-05-06 | Mead Corp | Stimulation apparatus for a jet drop recorder |
DE2532796A1 (de) * | 1974-07-22 | 1976-02-12 | Mead Corp | Tropfenstrahl-aufzeichnungskopf |
US3958249A (en) * | 1974-12-18 | 1976-05-18 | International Business Machines Corporation | Ink jet drop generator |
DE2602263A1 (de) * | 1975-01-23 | 1976-07-29 | Ibm | Dueseneinheit |
US4065774A (en) * | 1975-05-30 | 1977-12-27 | International Business Machines Corporation | Hybrid fluid jet drop generation |
DE2703320A1 (de) * | 1976-01-29 | 1977-08-04 | Mead Corp | Troepfchenstrahlen-aufzeichnungsvorrichtung |
US4158204A (en) * | 1976-12-30 | 1979-06-12 | International Business Machines Corporation | Time correction system for multi-nozzle ink jet printer |
US4110759A (en) * | 1977-02-03 | 1978-08-29 | The Mead Corporation | Orifice plate holder for a fluid jet printing apparatus |
US4303927A (en) * | 1977-03-23 | 1981-12-01 | International Business Machines Corporation | Apparatus for exciting an array of ink jet nozzles and method of forming |
DE2831558A1 (de) * | 1977-07-18 | 1979-02-01 | Mead Corp | Vorrichtung zur erzeugung mehrerer fluessigkeitstroepfchenstroeme |
US4135197A (en) * | 1977-10-14 | 1979-01-16 | The Mead Corporation | Vibration damping means for ink jet printing device |
US4184925A (en) * | 1977-12-19 | 1980-01-22 | The Mead Corporation | Solid metal orifice plate for a jet drop recorder |
US4185290A (en) * | 1977-12-22 | 1980-01-22 | International Business Machines Corporation | Compensation for aerodynamic drag on ink streams from a multi-nozzle ink array |
US4198643A (en) * | 1978-12-18 | 1980-04-15 | The Mead Corporation | Jet drop printer with elements balanced about support plate in nodal plane |
USRE31358E (en) * | 1978-12-18 | 1983-08-23 | The Mead Corporation | Jet drop printer with elements balanced about support plate in nodal plane |
US4210920A (en) * | 1979-01-31 | 1980-07-01 | The Mead Corporation | Magnetically activated plane wave stimulator |
US4229748A (en) * | 1979-02-16 | 1980-10-21 | The Mead Corporation | Jet drop printer |
US4242687A (en) * | 1979-07-06 | 1980-12-30 | The Mead Corporation | Heated deflection electrode assembly for a jet drop recorder |
US4245226A (en) * | 1979-07-06 | 1981-01-13 | The Mead Corporation | Ink jet printer with heated deflection electrode |
US4229265A (en) * | 1979-08-09 | 1980-10-21 | The Mead Corporation | Method for fabricating and the solid metal orifice plate for a jet drop recorder produced thereby |
US4324117A (en) * | 1980-06-11 | 1982-04-13 | The Mead Corporation | Jet device for application of liquid dye to a fabric web |
EP0097413A1 (en) * | 1982-06-21 | 1984-01-04 | EASTMAN KODAK COMPANY (a New Jersey corporation) | A fluid jet print head, and a method of stimulating the break up of a fluid stream emanating therefrom |
US4646104A (en) * | 1982-06-21 | 1987-02-24 | Eastman Kodak Company | Fluid jet print head |
US4530464A (en) * | 1982-07-14 | 1985-07-23 | Matsushita Electric Industrial Co., Ltd. | Ultrasonic liquid ejecting unit and method for making same |
US4583101A (en) * | 1982-12-27 | 1986-04-15 | Eastman Kodak Company | Fluid jet print head and stimulator therefor |
US4473830A (en) * | 1983-01-13 | 1984-09-25 | Eastman Kodak Company | Ink jet print head |
US4554558A (en) * | 1983-05-19 | 1985-11-19 | The Mead Corporation | Fluid jet print head |
US4587528A (en) * | 1983-05-19 | 1986-05-06 | The Mead Corporation | Fluid jet print head having resonant cavity |
US4528571A (en) * | 1984-03-05 | 1985-07-09 | The Mead Corporation | Fluid jet print head having baffle means therefor |
US4639737A (en) * | 1985-10-10 | 1987-01-27 | Burlington Industries, Inc. | Tensionable electrodes for charging and/or deflecting fluid droplets in fluid-jet marking apparatus |
US4736209A (en) * | 1985-10-10 | 1988-04-05 | Burlington, Industries, Inc. | Tensionable ground electrode for fluid-jet marking apparatus |
US4746929A (en) * | 1987-01-16 | 1988-05-24 | Xerox Corporation | Traveling wave droplet generator for an ink jet printer |
EP0275211A3 (en) * | 1987-01-16 | 1989-12-27 | Xerox Corporation | Travelling wave droplet generator for an ink jet printer |
US5179394A (en) * | 1989-11-21 | 1993-01-12 | Seiko Epson Corporation | Nozzleless ink jet printer having plate-shaped propagation element |
WO1995007765A1 (en) * | 1993-09-15 | 1995-03-23 | Mobium Enterprises, Inc. | Hybrid pulsed valve for thin film coating and method |
US5403617A (en) * | 1993-09-15 | 1995-04-04 | Mobium Enterprises Corporation | Hybrid pulsed valve for thin film coating and method |
US5736195A (en) * | 1993-09-15 | 1998-04-07 | Mobium Enterprises Corporation | Method of coating a thin film on a substrate |
US5560543A (en) * | 1994-09-19 | 1996-10-01 | Board Of Regents, The University Of Texas System | Heat-resistant broad-bandwidth liquid droplet generators |
US5810988A (en) * | 1994-09-19 | 1998-09-22 | Board Of Regents, University Of Texas System | Apparatus and method for generation of microspheres of metals and other materials |
WO1996014212A1 (en) * | 1994-11-07 | 1996-05-17 | Jemtex Ink Jet Printing Ltd. | Multi-jet generator device for use in printing |
US5534904A (en) * | 1994-11-07 | 1996-07-09 | Meir Weksler | Multi-jet generator device for use in printing |
WO1996031291A1 (en) * | 1995-04-03 | 1996-10-10 | Mobium Enterprises Corporation | Method of coating a thin film on a substrate |
US6152556A (en) * | 1995-04-04 | 2000-11-28 | Marconi Data Systems Inc. | Droplet generator for a continuous stream ink jet print head |
EP1364800A1 (en) | 2002-05-24 | 2003-11-26 | Agfa-Gevaert | Improved recording element for ink jet printing. |
EP1375173A1 (en) | 2002-06-27 | 2004-01-02 | Agfa-Gevaert | Ink jet image improved for light-fastness |
EP1393922A1 (en) | 2002-08-27 | 2004-03-03 | Agfa-Gevaert | Improved ink jet recording material |
EP1398166A1 (en) | 2002-09-11 | 2004-03-17 | Agfa-Gevaert | Ink jet recording material and light-stabilising agent |
EP1410921A1 (en) | 2002-10-15 | 2004-04-21 | Agfa-Gevaert | Ink jet recording material and light-stabilising compound |
EP1419893A1 (en) | 2002-11-18 | 2004-05-19 | Agfa-Gevaert | Improved ink jet recording material |
EP1419897A1 (en) | 2002-11-18 | 2004-05-19 | Agfa-Gevaert | Ink jet recording material |
EP1437230A1 (en) | 2003-01-10 | 2004-07-14 | Agfa-Gevaert | Ink-jet recording material |
US20040142123A1 (en) * | 2003-01-10 | 2004-07-22 | Aert Huub Van | Ink-jet recording material |
US20040191432A1 (en) * | 2003-03-18 | 2004-09-30 | Johan Loccufier | Ink jet recording material improved for light-and gas-fastness |
US7141104B2 (en) | 2003-06-05 | 2006-11-28 | Agfa-Gevaert | UV-absorbing ink composition for ink-jet printing |
US20040244643A1 (en) * | 2003-06-05 | 2004-12-09 | Voeght Frank De | UV-absorbing ink composition for ink-jet printing |
US7278728B2 (en) | 2004-02-20 | 2007-10-09 | Agfa Graphics Nv | Ink-jet printing system |
US20050190245A1 (en) * | 2004-02-20 | 2005-09-01 | Agfa-Gevaert | Ink-jet printing system |
EP1586459A1 (en) | 2004-02-20 | 2005-10-19 | Agfa-Gevaert | Improved ink-jet printing system |
US20050247235A1 (en) * | 2004-05-06 | 2005-11-10 | Agfa-Gevaert N.V. | Multi-density ink-jet ink set for ink-jet printing |
US20060170745A1 (en) * | 2004-12-21 | 2006-08-03 | Agfa-Gevaert | Ink-jet ink set for producing images with large colour gamut and high stability |
US20070064066A1 (en) * | 2005-09-16 | 2007-03-22 | Eastman Kodak Company | Continuous ink jet apparatus and method using a plurality of break-off times |
US7249830B2 (en) | 2005-09-16 | 2007-07-31 | Eastman Kodak Company | Ink jet break-off length controlled dynamically by individual jet stimulation |
US20070064068A1 (en) * | 2005-09-16 | 2007-03-22 | Eastman Kodak Company | Continuous ink jet apparatus with integrated drop action devices and control circuitry |
WO2007035281A1 (en) | 2005-09-16 | 2007-03-29 | Eastman Kodak Company | Continuous ink jet apparatus |
WO2007035273A1 (en) | 2005-09-16 | 2007-03-29 | Eastman Kodak Company | Ink jet break-off length measurement |
WO2007035247A1 (en) | 2005-09-16 | 2007-03-29 | Eastman Kodak Company | Individual jet stimulation controlled jet break-off length |
WO2007035280A1 (en) | 2005-09-16 | 2007-03-29 | Eastman Kodak Company | Continuous ink jet apparatus |
EP2514596A2 (en) | 2005-09-16 | 2012-10-24 | Eastman Kodak Company | A method for operating a continuous inkjet apparatus |
US20090027459A1 (en) * | 2005-09-16 | 2009-01-29 | Hawkins Gilbert A | Ink jet break-off length measurement apparatus and method |
US20070064037A1 (en) * | 2005-09-16 | 2007-03-22 | Hawkins Gilbert A | Ink jet break-off length measurement apparatus and method |
US20070222826A1 (en) * | 2005-09-16 | 2007-09-27 | Hawkins Gilbert A | Ink jet break-off length controlled dynamically by individual jet stimulation |
US20070064034A1 (en) * | 2005-09-16 | 2007-03-22 | Eastman Kodak Company | Ink jet break-off length controlled dynamically by individual jet stimulation |
US8226199B2 (en) | 2005-09-16 | 2012-07-24 | Eastman Kodak Company | Ink jet break-off length measurement apparatus and method |
US7364276B2 (en) | 2005-09-16 | 2008-04-29 | Eastman Kodak Company | Continuous ink jet apparatus with integrated drop action devices and control circuitry |
US20080122900A1 (en) * | 2005-09-16 | 2008-05-29 | Piatt Michael J | Continuous ink jet apparatus with integrated drop action devices and control circuitry |
US7401906B2 (en) | 2005-09-16 | 2008-07-22 | Eastman Kodak Company | Ink jet break-off length controlled dynamically by individual jet stimulation |
US8087740B2 (en) | 2005-09-16 | 2012-01-03 | Eastman Kodak Company | Continuous ink jet apparatus and method using a plurality of break-off times |
US7434919B2 (en) | 2005-09-16 | 2008-10-14 | Eastman Kodak Company | Ink jet break-off length measurement apparatus and method |
US7673976B2 (en) | 2005-09-16 | 2010-03-09 | Eastman Kodak Company | Continuous ink jet apparatus and method using a plurality of break-off times |
US20070146441A1 (en) * | 2005-12-26 | 2007-06-28 | Toru Miyasaka | Droplet generator and ink-jet recording device using thereof |
US7503645B2 (en) | 2005-12-26 | 2009-03-17 | Hitachi, Ltd. | Droplet generator and ink-jet recording device using thereof |
EP1800866A1 (en) | 2005-12-26 | 2007-06-27 | Hitachi, Ltd. | Droplet generator and ink-jet recording device using thereof |
US20080088680A1 (en) * | 2006-10-12 | 2008-04-17 | Jinquan Xu | Continuous drop emitter with reduced stimulation crosstalk |
US7777395B2 (en) | 2006-10-12 | 2010-08-17 | Eastman Kodak Company | Continuous drop emitter with reduced stimulation crosstalk |
US20080231669A1 (en) * | 2007-03-19 | 2008-09-25 | Brost Randolph C | Aerodynamic error reduction for liquid drop emitters |
US7758171B2 (en) | 2007-03-19 | 2010-07-20 | Eastman Kodak Company | Aerodynamic error reduction for liquid drop emitters |
US7926467B2 (en) | 2007-04-30 | 2011-04-19 | Caterpillar Inc. | Droplet generator for engine system |
US20080265051A1 (en) * | 2007-04-30 | 2008-10-30 | Vladimir Theodorof | Droplet generator for engine system |
WO2014168770A1 (en) | 2013-04-11 | 2014-10-16 | Eastman Kodak Company | Printhead including acoustic dampening structure |
US9162454B2 (en) | 2013-04-11 | 2015-10-20 | Eastman Kodak Company | Printhead including acoustic dampening structure |
US9168740B2 (en) | 2013-04-11 | 2015-10-27 | Eastman Kodak Company | Printhead including acoustic dampening structure |
US9199462B1 (en) | 2014-09-19 | 2015-12-01 | Eastman Kodak Company | Printhead with print artifact supressing cavity |
EP3124279A1 (en) | 2015-07-28 | 2017-02-01 | Grandeco Wallfashion Group - Belgium | Method to produce wallpaper with minimum side effects |
Also Published As
Publication number | Publication date |
---|---|
NL7213667A (enrdf_load_stackoverflow) | 1973-04-17 |
CA957009A (en) | 1974-10-29 |
DE2250029B2 (de) | 1976-10-14 |
JPS5129769B2 (enrdf_load_stackoverflow) | 1976-08-27 |
CH553660A (de) | 1974-09-13 |
BE790064A (fr) | 1973-02-01 |
DE2250029A1 (de) | 1973-04-26 |
JPS4849319A (enrdf_load_stackoverflow) | 1973-07-12 |
AU4687772A (en) | 1974-03-28 |
IT966634B (it) | 1974-02-20 |
HK81079A (en) | 1979-12-07 |
GB1401452A (en) | 1975-07-16 |
AU463044B2 (en) | 1975-07-17 |
FR2157486A5 (enrdf_load_stackoverflow) | 1973-06-01 |
NL153999B (nl) | 1977-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3739393A (en) | Apparatus and method for generation of drops using bending waves | |
US3701998A (en) | Twin row drop generator | |
US4219822A (en) | Skewed ink jet printer with overlapping print lines | |
US3900162A (en) | Method and apparatus for generation of multiple uniform fluid filaments | |
US4490729A (en) | Ink jet printer | |
US3701476A (en) | Drop generator with rotatable transducer | |
JPS5830836B2 (ja) | インク・ジエツト印刷装置 | |
JPS5842830B2 (ja) | 複数の液体小滴流を生成する装置 | |
US3813675A (en) | Catching apparatus for a jet drop recorder | |
GB1571698A (en) | Ink jet printing | |
EP0126536A2 (en) | A fluid jet system for a printer, and a method of ultrasonically cleaning such a system | |
US3787881A (en) | Apparatus and method for bar code printing | |
JPH0213628B2 (enrdf_load_stackoverflow) | ||
US4528571A (en) | Fluid jet print head having baffle means therefor | |
US4533925A (en) | Ink jet printer with non-uniform rectangular pattern of print positions | |
US4972201A (en) | Drop charging method and system for continuous, ink jet printing | |
US4198643A (en) | Jet drop printer with elements balanced about support plate in nodal plane | |
US4070679A (en) | Method and apparatus for recording information on a recording surface by the use of magnetic ink | |
US3960324A (en) | Method for generation of multiple uniform fluid filaments | |
US4245226A (en) | Ink jet printer with heated deflection electrode | |
US4554558A (en) | Fluid jet print head | |
US4544930A (en) | Ink jet printer with secondary, cyclically varying deflection field | |
US3787883A (en) | Deflection electrode assembly for a jet drop recorder | |
US6003979A (en) | Gray scale printing with high resolution array ink jet | |
EP0126649B1 (en) | Fluid jet print head |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: EASTMAN KODAK COMPANY A NJ CORP. Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:MEAD CORPORATION THE A CORP. OF OH;REEL/FRAME:004237/0482 Effective date: 19831206 |