US3736532A - Ultrasonic delay lines - Google Patents

Ultrasonic delay lines Download PDF

Info

Publication number
US3736532A
US3736532A US00162583A US3736532DA US3736532A US 3736532 A US3736532 A US 3736532A US 00162583 A US00162583 A US 00162583A US 3736532D A US3736532D A US 3736532DA US 3736532 A US3736532 A US 3736532A
Authority
US
United States
Prior art keywords
shell member
cylindrical shell
rod
strip
delay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00162583A
Inventor
A Armenakas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Navy
Original Assignee
US Department of Navy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Navy filed Critical US Department of Navy
Application granted granted Critical
Publication of US3736532A publication Critical patent/US3736532A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/0222Details of interface-acoustic, boundary, pseudo-acoustic or Stonely wave devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/30Time-delay networks
    • H03H9/40Frequency dependent delay lines, e.g. dispersive delay lines

Definitions

  • Tournois et 211. Use of Dispersive Delay Lines for Signal Processing in Underwater Acoustics, Jr. Acoustical Soc. of Amen, Vol. 46, 1969, pp. 517-531. J. deKlerk, Ultrasonic Transducers-Surface Wave Transducers Ultrasonics, l-1971, pp. 35-48.
  • ABSTRACT Delay lines with a variety of delay versus frequency characteristics are obtained by fabricating the delay line apparatus from multilayer materials. in one modification, the delay line is of rod construction and in another, of strip design.
  • the present invention relates generally to electroacoustic apparatus and, more particularly, to guided wave delay lines of the dispersive and nondispersive type wherein the delay versus frequency characteristic may have a range of possible slopes or curvatures.
  • a piezoelectric transducer transforms an electrical signal into a mechanical deformation which then propagates as an elastic wave along a prescribed path through the delay medium.
  • the elastic wave propagates essentially as a plane wave in an infinite medium, free from any surface interactions.
  • the crosssectional'dimensions of, 'for example, a wire or a rectangular strip are so chosen relative to the wavelength that the elastic wave interacts strongly with the boundary surfaces and propagates as a guided elastic wave motion.
  • the phase velocity varies as a function of frequency.
  • the delay lines utilizing these modes are termed dispersive.
  • zeroth-order modes corresponding to thickness shear in a thin, rectangular strip and torsional in a small diameter rod.
  • These zeroth-order modes are nondispersive and, below the cut-off frequency of the lowest dispersive mode, they propagate as isolated modes of elastic wave motion. These last two modes thus can operate without an objectionable signal distortion up to this cut-off frequency.
  • the low velocity of propagation of the torsional mode as compared for example, to the first longitudinal mode, renders this mode most suitable for nondispersive delay lines where long delay times in the order of milliseconds are required.
  • a dispersive guided wave delay line with a linear delay characteristic is in radar systems for increasing the range without necessitating a corresponding increase in peak power.
  • range is increased by increasing the average power radiated while range resolution is increased by decreasing the pulse length.
  • To increase range without compromising resolution requires an increase in peak power which is ultimately limited by voltage breakdown in the system.
  • One solution to this problem involves the pulse compression system which operates on the basis that when a short pulse is transmitted to a linear delay network of positive slope the various components of the Fourier frequency spectrum of the pulse are linearly dispersed in time, the higher frequencies being delayed more than the lower frequencies.
  • the output is a linearly frequency modulated pulse with an amplitude distribution described by the function sin x/x.
  • this pulse when it is returned, for example, from a remote reflecting target, may be transmitted to a second delay network having an equal but negative slope so that the components of the frequency spectrum will be delayed in inverted order, that is, the higher frequencies being delayed less than the lower frequencies.
  • the pulse may be compressed by retransmission through the same delay line used for expanding the original pulse, provided the order of the frequency is inverted by modulating with a local oscillator frequency of twice the midband frequency of the input pulse and selecting the lower sideband of the modulation products. After such processing, it will be recognized, the frequency components are restored to their initial phase relationship and the output pulse will have the same shape as the input pulse.
  • dispersive delay line made, for example, of a rod of a given material
  • the thickness of the rod must be chosen so that the inflection point of the delay versus frequency curve occurs at a certain frequency.
  • the linearity and the slope of this curve may be altered by changing the delaying material. But once the material is selected, the delay characteristic may be altered only by changing the length of the rod or by subdividing it into a series of lengths of different thicknesses.
  • dispersive delay lines made of a single material have somewhat inflexible delay versus frequency characteristics.
  • Another object of the present invention is to provide a dispersive delay line operating in the zeroth torsional mode in rods or in the zeroth face shear mode, in thin rectangular strips.
  • Another object of the present invention is to provide a nondispersive delay line which is capable of delaying high frequency signals wherein the acoustic signal is propagated as an interface disturbance.
  • FIG. 1 is a family of curves showing the variations of the specific group delay with frequency for rods of different materials
  • FIG. 2 is a plot of the same rods but with a different ratio of core thickness to casing thickness
  • FIG. 3 illustrates one modification of the invention whereinthe delay line is composed of concentric, cylin- FIG. 4 shows an alternative construction utilizing multilayered, rectangular strips;
  • FIG. 5 shows the variation of the specific group delay with frequency of waves traveling in the zeroth face shear mode in a structure like that of FIG. 4;
  • FIG. 6 shows an alternative arrangement wherein the mechanical deformation is in the form of a Stoneley wave
  • FIG. 7 shows a delay line wherein the mechanical 'deformation is in the form of a Rayleigh wave.
  • the delay line consists of a plurality of concentric, cylindrical members made from different materials. The geometrical and physical properties of the individual members may be selected to yield the performance curves desired.
  • a plurality of rectangular strips are utilized to achieve the same flexibility.
  • the first construction is utilized with waves traveling in the zeroth torsional mode or in the first axisymrnetric, nontorsional mode.
  • the second construction is utilized with waves propagating in the, zeroth face shear mode or in the first longitudinal mode.
  • the various curves shown illustrate the variation of the specific group delay with frequency of waves traveling in the first axisymmetric, nontorsional mode in a composite rod consisting of a circular core of one material bounded by and bonded to a circular casing of another material. It will be seen that all of the curves, which represent different combinations of materials having various density and stiffness 1 ratios, p and a, possess an inflection point, such as points 1, 2 and 3 in FIG. 1, and that a linear range of delay versus frequency occurs over an operating range adjacent to these points.
  • the ratio of core thickness to casing thickness H is 4.5.
  • this ratio equals one-third, and it will be observed that the same combinations of materialsnow yield a different set of delay versus frequency curves.
  • the inflection points are displaced from those of FIG. 1, and the linear regions occur at different frequencies.
  • FIG. 3 A guided delay line making use of the above characteristics is shown in FIG. 3.
  • the apparatus consists of a solid inner rod or core member made of a first material. A shorter, circular casing 11 of a second material is bonded thereto, and still shorter length of circular casing 12 of a third material is bonded to this casing.
  • the piezoelectric input and output transducers 13 and 14 Attached to opposite ends of the central core 10 are the piezoelectric input and output transducers 13 and 14, respectively. As is well known, the orientation and construction of these transducers and the manner in which the input transducer is excited determine the particular mode excited in the delay line.
  • the individual components of the delay line may be made of any material which is suitable for acoustic delay media, such as, for example, aluminum, nickeliron alloy, iron, fine grained bronze or any other fine grained material.
  • FIG. 4 there is disclosed an analogous multilayer guided wave delay line fashioned from a plurality of relatively thin, rectangular strips of different metal.
  • the piezoelectric input and output transducers 20 and 21 are secured to opposite end faces of an inner rectangular strip 22. Bonded to its opposite surfaces are a first pair of shorter rectangular strips 23 and 24. A second pair of still shorter strips 25 and 26 are bonded to these strips. Each pair of strips is made of the same material so that the over-all stepped sandwich has a symmetrical configuration and composition.
  • the zeroth face shear mode in a multilayer plate assembly is dispersive. This, too, is in contradistinction with the same mode propagating in a unitary plate of a single material and may be utilized to provide a new class of dispersive guided wave delay lines.
  • the consecutive casings where the delay line is of a rod design or the consecutive strips where the line is made of such strips, need not be of shorter length such as depicted in FIGS. 3 and 4. What is important is that the cross section of the delay medium changes along its length. Itwill be appreciated that the length of proportions L,, L L L L and the materials from which these components are made will be selected in order to achieve the desired performance curve.
  • FIG. 5 illustrates the variation of the specific group delay with frequency of waves traveling in the zeroth face-shear mode in a three-layer plate construction of the type shown in FIG. 4.
  • FIGS. 3 and 4 are capable of linearly delaying pulses having a considerably larger bandwidth than has been possible heretofore. This improvement is due to the more extensive linearity of their delay versus frequency characteristics, as exemplified by the curves of FIG. 5.
  • FIG. 6 there is disclosed a composite delay line which is capable of operating at considerably higher frequencies.
  • the apparatus consists of a two-layer, rectangular plate made by bonding together two different strips, 30 and 31, of similar dimensions.
  • the composite plate is driven by an interdigital electrode transducer 32 which excites a Stoneley wave which propagates as an interface disturbance.
  • the output signal is removed by a second interdigital electrode transducer 33.
  • the individual comblike strips that form each transducer are provided with suitable insulating coatings to protect against shorting by the confronting surfaces of the two strips.
  • One of the materials that lends itself to this type of delay line is silicon which exhibits relatively low losses in the microwave signal region.
  • FIG. 7 shows an arrangement in which the the signal is propagated as an inner surface Rayleigh wave in a hollow cylinder made of two concentric shells 40 and 41.
  • One of the conditions for operation is that the shear velocity in the material of the inner cylinder be smaller than in the material of the outer layer.
  • the Rayleigh waves are produced by an interdigital electrode transducer 42 affixed to the inner wall surface of the inner shell of the hollow composite cylinder.
  • the output signal is extracted by a similar transducer located at the other end of the cylinder.
  • a solid delay line comprising, in combination,
  • a first cylindrical shell member made of a material that is capable of propagating elastic waves
  • an input interdigital electrode transducer secured to the inner wall surface of said shell member at a position adjacent one end thereof;
  • an output interdigital electrode transducer secured to the inner wall surface of said shell member at a location adjacentthe other end thereof;
  • transducers being in alignment such that an elastic wave excited by said input transducer is subsequently detected by said output transducer;
  • a delay line comprising in combination a solid rod made of a first material that is capable of propagating elastic waves;
  • first cylindrical shell member having a length less than that of said rod bonded to the outer surface of said rod, said shell member being made of a second material that is also capable of propagating elastic waves;
  • a second cylindrical shell member having a length less than that of said first cylindrical shell member, said second cylindrical shell member being bonded to the outer surface of said first cylindrical shell member and being made of a material that is capable of propagating elastic waves,
  • the lengths of said rod, and said first and second cylindrical shell members and the density and stiffness ratios of said rod and said first and second cylindrical shell members being selected to achieve. the signal time delay desired.
  • a solid delay line comprising in combination a pair of unequal length strips made of different metals that are capable of propagating elastic waves; said strips being bonded together over their common length and having a thickness such that any elastic wave excited in the longer strip travels also within the shorter strip when it reaches one end of this strip;
  • said elastic wave also traveling within said third' strip when it reaches one end thereof; the lengths of said strips and their density and stiffness ratios being selected to obtain the desired signal time delay.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

Delay lines with a variety of delay versus frequency characteristics are obtained by fabricating the delay line apparatus from multilayer materials. In one modification, the delay line is of rod construction and in another, of strip design.

Description

, United States Patent Armenakas 1 May 29, 1973 75 1 Inventor:
[54] ULTRASONIC DELAY LINES Anthony E. Armenakas, Beachhurst, N.Y.
[73] Assignee: The United States of America as represented by the Secretary of the Navy, Washington, D.C.
[22] Filed: July 14, 1971 [21] Appl. No-.: 162,583
[52] U.S. Cl. ..333/30 R, 333/71 [51] Int. Cl..... ..H03h 9/30 [58] Field of Search ..333/30 R, 30 M, 71, 333/72, 32
[56] I I References Cited UNITED STATES PATENTS r 3,264,583 8/1966 Fitch ..333/30 R 2,549,578 4/1951 Curtis ..333/72 3,173,102 3/1965. Loewenstern, Jr.
3,464,033 8/1969 Tournois OTHER PUBLICATIONS Smith et al., Dispersive Rayleigh Wave Delay Line Utilizing Gold on Lithium Niobate, MTT17, 11-69,
Electronics, Microwave Acoustics Surfacing, Electronics 12-23-68, pp. 95-96.
Matthews et al., Observation of Lone Wave Propagation at UHF Frequencies, Applied Physics Letters, Vol. 14, 1969, pp. 171-172. I
Daniel et al., Velocity Measurements of Elastic Surface Waves in the Layered System ZNS on A1 0 Applied Physics Letters, Vol. 16, 5-1-69, pp.
Tournois et 211., Use of Dispersive Delay Lines for Signal Processing in Underwater Acoustics, Jr. Acoustical Soc. of Amen, Vol. 46, 1969, pp. 517-531. J. deKlerk, Ultrasonic Transducers-Surface Wave Transducers Ultrasonics, l-1971, pp. 35-48.
J. B. May, Jr., Wire-Type Dispersive Ultrasonic Delay Lines, IRE Trans. on Ultrasonic Eng, 6-1960, pp. 44-53.
C. C. Tseng, Elastic Surface Waves on Free Surface & Metallized Surface of Cds, ZNO & PZT-4, Jr. of
App. Physics, v01. 38, 1967, pp. 4281-4284.
Primary Examiner-Rudolph V. Rolinec Assistant Examiner-Wm. H. Punter Attorney- R. S. Sciascia and L. 1. Shrago [57] ABSTRACT Delay lines with a variety of delay versus frequency characteristics are obtained by fabricating the delay line apparatus from multilayer materials. in one modification, the delay line is of rod construction and in another, of strip design.
3 Claims, 7 Drawing Figures TRANSDUCER TRANSDUCER Patented May'29, 1973 3 Sheets-Sheet 1 Patented May 29, 1973 MATERIAL l TRANSDUCER MATERIAL 2 L m R E T A M 3 Sheets-Sheet 2 MATERIAL 3 Fig.3
TRANSDUCER TRANSDUCER TRANSDUCER Fig.4
/ MATERIAL I \-MATER|AL 2 K3? INTERDIGIT L INTERDIGITAL ELECTRODE TRANSDUCER ELECTRODE TRANSDUCER e m r WA E V) o m n A Fig.6
Patented May 29, 1973 v 3,736,532
3 Sheets-Sheet :5
' u=2.0, p=|.o
' LO, 0.30 a
o 0 5 v.0 l5 2 O 52 Fig. 5
INTERDIGITAL ELECTRODE TRANSDUCER Fig.7
INVENTOR Anthony E. Armemzkos ULTRASONIC DELAY LINES The present invention relates generally to electroacoustic apparatus and, more particularly, to guided wave delay lines of the dispersive and nondispersive type wherein the delay versus frequency characteristic may have a range of possible slopes or curvatures.
In the conventional acoustic delay line, a piezoelectric transducer transforms an electrical signal into a mechanical deformation which then propagates as an elastic wave along a prescribed path through the delay medium. In the usual case, such as the simple rod-type delay line, the elastic wave propagates essentially as a plane wave in an infinite medium, free from any surface interactions.
In the guided wave acoustic delay line, the crosssectional'dimensions of, 'for example, a wire or a rectangular strip are so chosen relative to the wavelength that the elastic wave interacts strongly with the boundary surfaces and propagates as a guided elastic wave motion. Thus, there exists many possible modes of wave propagation and, in most of these modes, the phase velocity varies as a function of frequency. In this sense, the delay lines utilizing these modes are termed dispersive.
There are, however, exceptions to the above in the case of zeroth-order modes corresponding to thickness shear in a thin, rectangular strip and torsional in a small diameter rod. These zeroth-order modesare nondispersive and, below the cut-off frequency of the lowest dispersive mode, they propagate as isolated modes of elastic wave motion. These last two modes thus can operate without an objectionable signal distortion up to this cut-off frequency. Additionally, the low velocity of propagation of the torsional mode, as compared for example, to the first longitudinal mode, renders this mode most suitable for nondispersive delay lines where long delay times in the order of milliseconds are required.
One of the most important applications of a dispersive guided wave delay line with a linear delay characteristic is in radar systems for increasing the range without necessitating a corresponding increase in peak power. In the usual pulse radar system, range is increased by increasing the average power radiated while range resolution is increased by decreasing the pulse length. To increase range without compromising resolution requires an increase in peak power which is ultimately limited by voltage breakdown in the system. One solution to this problem involves the pulse compression system which operates on the basis that when a short pulse is transmitted to a linear delay network of positive slope the various components of the Fourier frequency spectrum of the pulse are linearly dispersed in time, the higher frequencies being delayed more than the lower frequencies. The output is a linearly frequency modulated pulse with an amplitude distribution described by the function sin x/x. Thereafter, this pulse, when it is returned, for example, from a remote reflecting target, may be transmitted toa second delay network having an equal but negative slope so that the components of the frequency spectrum will be delayed in inverted order, that is, the higher frequencies being delayed less than the lower frequencies. Alternatively, the pulse may be compressed by retransmission through the same delay line used for expanding the original pulse, provided the order of the frequency is inverted by modulating with a local oscillator frequency of twice the midband frequency of the input pulse and selecting the lower sideband of the modulation products. After such processing, it will be recognized, the frequency components are restored to their initial phase relationship and the output pulse will have the same shape as the input pulse.
In designing a dispersive delay line, made, for example, of a rod of a given material, the thickness of the rod must be chosen so that the inflection point of the delay versus frequency curve occurs at a certain frequency. The linearity and the slope of this curve may be altered by changing the delaying material. But once the material is selected, the delay characteristic may be altered only by changing the length of the rod or by subdividing it into a series of lengths of different thicknesses. Thus, dispersive delay lines made of a single material have somewhat inflexible delay versus frequency characteristics.
It is accordingly a primary object of the present invention to provide a dispersive delay line with a linear delay versus frequency characteristic whose slope may be readily selected within a range of possible values.
drical members;
It is another object of the present invention to provide a dispersive delay line with a nonlinear delay versus frequency characteristic of a desired curvature.
Another object of the present invention is to provide a dispersive delay line operating in the zeroth torsional mode in rods or in the zeroth face shear mode, in thin rectangular strips.
Another object of the present invention is to provide a nondispersive delay line which is capable of delaying high frequency signals wherein the acoustic signal is propagated as an interface disturbance.
Other objects, advantages and novel features of the inventionwill become apparent from the following detailed description of the invention when considered in conjunction with the accompanying drawings wherein:
FIG. 1 is a family of curves showing the variations of the specific group delay with frequency for rods of different materials;
FIG. 2 is a plot of the same rods but with a different ratio of core thickness to casing thickness;
FIG. 3 illustrates one modification of the invention whereinthe delay line is composed of concentric, cylin- FIG. 4 shows an alternative construction utilizing multilayered, rectangular strips;
FIG. 5 shows the variation of the specific group delay with frequency of waves traveling in the zeroth face shear mode in a structure like that of FIG. 4;
FIG. 6 shows an alternative arrangement wherein the mechanical deformation is in the form of a Stoneley wave; and
FIG. 7 shows a delay line wherein the mechanical 'deformation is in the form of a Rayleigh wave.
Briefly and in general terms, the objects of the invention enumerated above are realized by fabricating the delay line apparatus from multilayer materials instead of the'unitary material heretofore employed in prior art structures. With multilayer. materials, it will be appreciated, a broader choice of design parameters are available and a greater selection of delay versus frequency characteristics may be obtained. Thus, in one modification, the delay line consists of a plurality of concentric, cylindrical members made from different materials. The geometrical and physical properties of the individual members may be selected to yield the performance curves desired. In an alternative embodiment, a plurality of rectangular strips are utilized to achieve the same flexibility. The first construction is utilized with waves traveling in the zeroth torsional mode or in the first axisymrnetric, nontorsional mode. The second construction is utilized with waves propagating in the, zeroth face shear mode or in the first longitudinal mode.
Referring now to FIG. 1, the various curves shown illustrate the variation of the specific group delay with frequency of waves traveling in the first axisymmetric, nontorsional mode in a composite rod consisting of a circular core of one material bounded by and bonded to a circular casing of another material. It will be seen that all of the curves, which represent different combinations of materials having various density and stiffness 1 ratios, p and a, possess an inflection point, such as points 1, 2 and 3 in FIG. 1, and that a linear range of delay versus frequency occurs over an operating range adjacent to these points. The ratio of core thickness to casing thickness H is 4.5.
In FIG. 2 this ratio equals one-third, and it will be observed that the same combinations of materialsnow yield a different set of delay versus frequency curves. The inflection points are displaced from those of FIG. 1, and the linear regions occur at different frequencies.
A guided delay line making use of the above characteristics is shown in FIG. 3. The apparatus consists of a solid inner rod or core member made of a first material. A shorter, circular casing 11 of a second material is bonded thereto, and still shorter length of circular casing 12 of a third material is bonded to this casing.
' Attached to opposite ends of the central core 10 are the piezoelectric input and output transducers 13 and 14, respectively. As is well known, the orientation and construction of these transducers and the manner in which the input transducer is excited determine the particular mode excited in the delay line.
Once the variation of delay versus frequency for a composite rod consisting of a core member of one material, having a circular casing of another material bonded thereto, such as 10 and 11, has been established, the addition of a third layer, such as 12, it will be appreciated, allows an added degree of freedom in the design of the delay line. Changing the cross section of these elements, likewise, permits the designing of dispersive delay lines having a still wider variety of delay versus frequency characteristics. This may be explained qualitatively by noting that this arrangement constitutes a series combination of cross sections and, consequently, the delay at frequency f, of the rod assembly is given as U!) il l tZ Z ts a t2 4 u 5- where d d and d are the specific delays of the various portions of the rod, at the frequency 12; L L L L L, are the lengths of the portions. The choice of the materials 1, 2, 3 and the relative thick ness of the layers affects the values of the specific delays (i (1, dig. However, the delay versus frequency characteristic will also depend upon the lengths L11 LI? L3, L4, L5-
The individual components of the delay line may be made of any material which is suitable for acoustic delay media, such as, for example, aluminum, nickeliron alloy, iron, fine grained bronze or any other fine grained material.
It has been determined by mathematical analysis that the zeroth torsional mode in a multilayer rod arrangement, such as shown in FIG. 3, is dispersive. This same mode in a unitary rod, it will be recalled, is nondispersive. Consequently, this zeroth torsional mode with its advantages of low signal distortion and low velocity of propagation may be utilized to provide a new class of dispersive guided wave delay lines.
In FIG. 4 there is disclosed an analogous multilayer guided wave delay line fashioned from a plurality of relatively thin, rectangular strips of different metal. Here, the piezoelectric input and output transducers 20 and 21 are secured to opposite end faces of an inner rectangular strip 22. Bonded to its opposite surfaces are a first pair of shorter rectangular strips 23 and 24. A second pair of still shorter strips 25 and 26 are bonded to these strips. Each pair of strips is made of the same material so that the over-all stepped sandwich has a symmetrical configuration and composition.
It has also been determined mathematically that the zeroth face shear mode in a multilayer plate assembly, such as shown in FIG. 4, is dispersive. This, too, is in contradistinction with the same mode propagating in a unitary plate of a single material and may be utilized to provide a new class of dispersive guided wave delay lines.
It should be appreciated that the consecutive casings, where the delay line is of a rod design or the consecutive strips where the line is made of such strips, need not be of shorter length such as depicted in FIGS. 3 and 4. What is important is that the cross section of the delay medium changes along its length. Itwill be appreciated that the length of proportions L,, L L L L and the materials from which these components are made will be selected in order to achieve the desired performance curve.
FIG. 5 illustrates the variation of the specific group delay with frequency of waves traveling in the zeroth face-shear mode in a three-layer plate construction of the type shown in FIG. 4.
The arrangements as shown in FIGS. 3 and 4 are capable of linearly delaying pulses having a considerably larger bandwidth than has been possible heretofore. This improvement is due to the more extensive linearity of their delay versus frequency characteristics, as exemplified by the curves of FIG. 5.
The frequencies at which nondispersive delay lines operate without objectionable signal distortion do not exceed a few megacycles. In FIG. 6 there is disclosed a composite delay line which is capable of operating at considerably higher frequencies. The apparatus consists of a two-layer, rectangular plate made by bonding together two different strips, 30 and 31, of similar dimensions. The composite plate is driven by an interdigital electrode transducer 32 which excites a Stoneley wave which propagates as an interface disturbance. The output signal is removed by a second interdigital electrode transducer 33. It will be appreciated that the individual comblike strips that form each transducer are provided with suitable insulating coatings to protect against shorting by the confronting surfaces of the two strips. One of the materials that lends itself to this type of delay line is silicon which exhibits relatively low losses in the microwave signal region.
FIG. 7 shows an arrangement in which the the signal is propagated as an inner surface Rayleigh wave in a hollow cylinder made of two concentric shells 40 and 41. One of the conditions for operation is that the shear velocity in the material of the inner cylinder be smaller than in the material of the outer layer. The Rayleigh waves are produced by an interdigital electrode transducer 42 affixed to the inner wall surface of the inner shell of the hollow composite cylinder. The output signal is extracted by a similar transducer located at the other end of the cylinder.
Obviously many modifications and variations of the present invention are possible in the light of the above teachings. It is therefore to be understood that within the scope of the appended claims the invention may be practiced otherwise than as specifically described.
What is claimed is:
1. A solid delay line comprising, in combination,
a first cylindrical shell member made of a material that is capable of propagating elastic waves;
an input interdigital electrode transducer secured to the inner wall surface of said shell member at a position adjacent one end thereof;
an output interdigital electrode transducer secured to the inner wall surface of said shell member at a location adjacentthe other end thereof;
said transducers being in alignment such that an elastic wave excited by said input transducer is subsequently detected by said output transducer;
a second cylindrical shell member made of a different material that is also capable of propagating elastic waves, the inner surface of said second cylindrical shell member being bonded to the outer surface of said first inner cylindrical shell member over their common length, the thickness of said first cylindrical shell member being such that said elastic wave also travels through portions of said second cylindrical shell member. 2. A delay line comprising in combination a solid rod made of a first material that is capable of propagating elastic waves;
an input transducer secured to one end of said rod;
an output transducer secured to the other end of said rod;
a first cylindrical shell member having a length less than that of said rod bonded to the outer surface of said rod, said shell member being made of a second material that is also capable of propagating elastic waves;
a second cylindrical shell member having a length less than that of said first cylindrical shell member, said second cylindrical shell member being bonded to the outer surface of said first cylindrical shell member and being made of a material that is capable of propagating elastic waves,
The lengths of said rod, and said first and second cylindrical shell members and the density and stiffness ratios of said rod and said first and second cylindrical shell members being selected to achieve. the signal time delay desired.
3. A solid delay line comprising in combination a pair of unequal length strips made of different metals that are capable of propagating elastic waves; said strips being bonded together over their common length and having a thickness such that any elastic wave excited in the longer strip travels also within the shorter strip when it reaches one end of this strip;
an input transducer secured to one end face of the longer strip;
an output transducer secured to the other end face of said longer strip;
a third strip having a length less than the longer strip of said pair and bonded to said longer strip over its length,
said elastic wave also traveling within said third' strip when it reaches one end thereof; the lengths of said strips and their density and stiffness ratios being selected to obtain the desired signal time delay.

Claims (3)

1. A solid delay line comprising, in combination, a first cylindrical shell member made of a material that is capable of propagating elastic waves; an input interdigital electrode transducer secured to the inner wall surface of said shell member at a position adjacent one end thereof; an output interdigital electrode transducer secured to the inner wall surface of said shell member at a location adjacent the other end thereof; said transducers being in alignment such that an elastic wave excited by said input transducer is subsequently detected by said output transducer; a second cylindrical shell member made of a different material that is also capable of propagating elastic waves, the inner surface of said second cylindrical shell member being bonded to the outer surface of said first inner cylindrical shell member over their common length, the thickness of said first cylindrical shell member being such that said elastic wave also travels through portions of said second cylindrical shell member.
2. A delay line comprising in combination a solid rod made of a first material that is capable of propagating elastic waves; an input transducer secured to one end of said rod; an output transducer secured to the other end of said rod; a first cylindrical shell member having a length less than that of said rod bonded to the outer surface of said rod, said shell member being made of a second material that is also capable of propagating elastic waves; a second cylindrical shell member having a length less than that of said first cylindrical shell member, said second cylindrical shell member being bonded to the outer surface of said first cylindrical shell member and being made of a material that is capable of propagating elastic waves, The lengths of said rod, and said first and second cylindrical shell members and the density and stiffness ratios of said rod and said first and second cylindrical shell members being selected to achieve the signal time delay desired.
3. A solid delay line comprising in combination a pair of unequal length strips made of different metals that are capable of propagating elastic waves; said strips being bonded together over their common length and having a thickness such that any elastic wave excited in the longer strip travels also within the shorter strip when it reaches one end of this strip; an input transducer secured to one end face of the longer strip; an output transducer secured to the other end face of said longer strip; a third strip having a length less than the longer strip of said pair and bonded to said longer strip over its length, said elastic wave also traveling within said third strip when it reaches one end thereof; the lengths of said strips and their denSity and stiffness ratios being selected to obtain the desired signal time delay.
US00162583A 1971-07-14 1971-07-14 Ultrasonic delay lines Expired - Lifetime US3736532A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US16258371A 1971-07-14 1971-07-14

Publications (1)

Publication Number Publication Date
US3736532A true US3736532A (en) 1973-05-29

Family

ID=22586262

Family Applications (1)

Application Number Title Priority Date Filing Date
US00162583A Expired - Lifetime US3736532A (en) 1971-07-14 1971-07-14 Ultrasonic delay lines

Country Status (1)

Country Link
US (1) US3736532A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USB410168I5 (en) * 1973-10-26 1975-01-28
US3922622A (en) * 1974-08-12 1975-11-25 Bell Telephone Labor Inc Elastic waveguide utilizing an enclosed core member
US3943389A (en) * 1974-07-02 1976-03-09 Motorola, Inc. Temperature stabilization of surface acoustic wave substrates
US3975698A (en) * 1974-08-08 1976-08-17 The United States Of America As Represented By The Secretary Of The Army Fiber acoustic waveguide and system
US4077023A (en) * 1976-11-26 1978-02-28 Bell Telephone Laboratories, Incorporated Elastic waveguide
US4742318A (en) * 1986-11-18 1988-05-03 Canadian Patents And Development Limited - Societe Canadienne Des Brevets Et D'exploitation Limitee Birefringent single-mode acoustic fiber
US5241287A (en) * 1991-12-02 1993-08-31 National Research Council Of Canada Acoustic waveguides having a varying velocity distribution with reduced trailing echoes
US6046656A (en) * 1997-05-08 2000-04-04 Kabushiki Kaisha Toshiba Elastic boundary wave device and method of its manufacture
US6938905B1 (en) 2004-11-05 2005-09-06 Haiming Tsai Hand truck
US20050258714A1 (en) * 2003-09-08 2005-11-24 David Henderson Mechanism comprised of ultrasonic lead screw motor
US20060049720A1 (en) * 2003-09-08 2006-03-09 David Henderson Mechanism comprised of ultrasonic lead screw motor
US20060090956A1 (en) * 2004-11-04 2006-05-04 Advanced Ultrasonic Solutions, Inc. Ultrasonic rod waveguide-radiator
US7339306B2 (en) 2003-09-08 2008-03-04 New Scale Technologies Inc. Mechanism comprised of ultrasonic lead screw motor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2549578A (en) * 1947-12-30 1951-04-17 Hazeltine Research Inc Magnetostrictive converter time delay device
US3173102A (en) * 1962-12-06 1965-03-09 Jr Walter Loewenstern Solid state multiple stream travelling wave amplifier
US3264583A (en) * 1963-06-12 1966-08-02 Bell Telephone Labor Inc Dispersive electromechanical delay line utilizing tapered delay medium
US3277404A (en) * 1963-08-23 1966-10-04 Bell Telephone Labor Inc Ultrasonic delay device
US3350665A (en) * 1965-11-19 1967-10-31 Bell Telephone Labor Inc Variable elastic wave delay line using two strips pressed together
US3406358A (en) * 1967-10-30 1968-10-15 Bell Telephone Labor Inc Ultrasonic surface waveguides
US3464033A (en) * 1966-03-17 1969-08-26 Csf Acoustical dispersive delay line having stratified waveguide of at least two solid media coupling input and output transducers

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2549578A (en) * 1947-12-30 1951-04-17 Hazeltine Research Inc Magnetostrictive converter time delay device
US3173102A (en) * 1962-12-06 1965-03-09 Jr Walter Loewenstern Solid state multiple stream travelling wave amplifier
US3264583A (en) * 1963-06-12 1966-08-02 Bell Telephone Labor Inc Dispersive electromechanical delay line utilizing tapered delay medium
US3277404A (en) * 1963-08-23 1966-10-04 Bell Telephone Labor Inc Ultrasonic delay device
US3350665A (en) * 1965-11-19 1967-10-31 Bell Telephone Labor Inc Variable elastic wave delay line using two strips pressed together
US3464033A (en) * 1966-03-17 1969-08-26 Csf Acoustical dispersive delay line having stratified waveguide of at least two solid media coupling input and output transducers
US3406358A (en) * 1967-10-30 1968-10-15 Bell Telephone Labor Inc Ultrasonic surface waveguides

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
C. C. Tseng, Elastic Surface Waves on Free Surface & Metallized Surface of Cds, ZNO & PZT 4, Jr. of App. Physics, Vol. 38, 1967, pp. 4281 4284. *
Daniel et al., Velocity Measurements of Elastic Surface Waves in the Layered System ZNS on Al O , Applied Physics Letters, Vol. 16, 5 1 69, pp. 331 332. *
Electronics, Microwave Acoustics Surfacing, Electronics 12 23 68, pp. 95 96. *
J. deKlerk, Ultrasonic Transducers Surface Wave Transducers Ultrasonics, 1 1971, pp. 35 48. *
J. E. May, Jr., Wire Type Dispersive Ultrasonic Delay Lines, IRE Trans. on Ultrasonic Eng., 6 1960, pp. 44 53. *
Matthews et al., Observation of Lone Wave Propagation at UHF Frequencies, Applied Physics Letters, Vol. 14, 1969, pp. 171 172. *
Smith et al., Dispersive Rayleigh Wave Delay Line Utilizing Gold on Lithium Niobate, MTT17, 11 69, pp. 1043 1044. *
Tournois et al., Use of Dispersive Delay Lines for Signal Processing in Underwater Acoustics, Jr. Acoustical Soc. of Amer., Vol. 46, 1969, pp. 517 531. *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USB410168I5 (en) * 1973-10-26 1975-01-28
US3914717A (en) * 1973-10-26 1975-10-21 Bell Telephone Labor Inc Surface wave tubular acoustic delay line
US3943389A (en) * 1974-07-02 1976-03-09 Motorola, Inc. Temperature stabilization of surface acoustic wave substrates
US3975698A (en) * 1974-08-08 1976-08-17 The United States Of America As Represented By The Secretary Of The Army Fiber acoustic waveguide and system
US3922622A (en) * 1974-08-12 1975-11-25 Bell Telephone Labor Inc Elastic waveguide utilizing an enclosed core member
US4077023A (en) * 1976-11-26 1978-02-28 Bell Telephone Laboratories, Incorporated Elastic waveguide
US4742318A (en) * 1986-11-18 1988-05-03 Canadian Patents And Development Limited - Societe Canadienne Des Brevets Et D'exploitation Limitee Birefringent single-mode acoustic fiber
US5241287A (en) * 1991-12-02 1993-08-31 National Research Council Of Canada Acoustic waveguides having a varying velocity distribution with reduced trailing echoes
US6046656A (en) * 1997-05-08 2000-04-04 Kabushiki Kaisha Toshiba Elastic boundary wave device and method of its manufacture
US20050258714A1 (en) * 2003-09-08 2005-11-24 David Henderson Mechanism comprised of ultrasonic lead screw motor
US20060049720A1 (en) * 2003-09-08 2006-03-09 David Henderson Mechanism comprised of ultrasonic lead screw motor
US7170214B2 (en) 2003-09-08 2007-01-30 New Scale Technologies, Inc. Mechanism comprised of ultrasonic lead screw motor
US7309943B2 (en) 2003-09-08 2007-12-18 New Scale Technologies, Inc. Mechanism comprised of ultrasonic lead screw motor
US7339306B2 (en) 2003-09-08 2008-03-04 New Scale Technologies Inc. Mechanism comprised of ultrasonic lead screw motor
US20060090956A1 (en) * 2004-11-04 2006-05-04 Advanced Ultrasonic Solutions, Inc. Ultrasonic rod waveguide-radiator
US7156201B2 (en) * 2004-11-04 2007-01-02 Advanced Ultrasonic Solutions, Inc. Ultrasonic rod waveguide-radiator
US6938905B1 (en) 2004-11-05 2005-09-06 Haiming Tsai Hand truck

Similar Documents

Publication Publication Date Title
US3736532A (en) Ultrasonic delay lines
US3360749A (en) Elastic wave delay device
US3283264A (en) Frequency selective system
US4910839A (en) Method of making a single phase unidirectional surface acoustic wave transducer
US3675163A (en) Cascaded f. m. correlators for long pulses
Morgan Surface acoustic wave devices and applications: 1. Introductory review
US2596460A (en) Multichannel filter
Kino et al. Signal processing in acoustic surface-wave devices
JPS62120115A (en) Dispersion type sound wave filter surface with tapered converter
US3678304A (en) Acoustic wave device for converting bulk mode waves to surface waves and vice versa
US3517390A (en) High power acoustic radiator
US3699364A (en) Acoustic surface wave device having improved transducer structure
US3387233A (en) Signal dispersion system
US3816753A (en) Parametric acoustic surface wave apparatus
US3882430A (en) Surface acoustic wave devices
US3936774A (en) High bulk mode rejection surface wave device
US3681579A (en) Non-interacting complementary coding system
US3818379A (en) Acoustic surface wave device
Lu et al. A unidirectional transducer design for scaling GHz AlN-based RF microsystems
US4801836A (en) SAW dispersive delay device
US4049982A (en) Elliptical, interdigital transducer
US3515911A (en) Surface wave transducer
US3845419A (en) Acoustic surface wave device
de Klerk Elastic surface waves
US3582834A (en) Microwave ultrasonic delay line