US3736197A - Powderless etching bath compositions and additives - Google Patents

Powderless etching bath compositions and additives Download PDF

Info

Publication number
US3736197A
US3736197A US00239383A US3736197DA US3736197A US 3736197 A US3736197 A US 3736197A US 00239383 A US00239383 A US 00239383A US 3736197D A US3736197D A US 3736197DA US 3736197 A US3736197 A US 3736197A
Authority
US
United States
Prior art keywords
acid
etching
carbon atoms
bath
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00239383A
Inventor
H Messerschmidt
K Heyman
B Johnsen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mona Industries Inc
Original Assignee
Mona Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mona Industries Inc filed Critical Mona Industries Inc
Application granted granted Critical
Publication of US3736197A publication Critical patent/US3736197A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions

Definitions

  • etching baths containing such compositions and nitric acid and water give good etching performance, particularly improved definition of the printable area of the plate, depth, of half-tones, and side wall smoothness.
  • This invention relates to powderless etching and is more specifically concerned with improved additive compositions, both anhydrous with water based, for use in powderless etching baths.
  • the invention relates to etching baths as such, particularly for chemically dimensioning photoengraving plates, and with a method of etching such plates, especially magnesiumbased plates.
  • a flat or cylindrical plate of an acid-soluble metal such as magnesium, zinc or one of their alloys is coated with a light sensitive coating or enamel.
  • This coated surface is exposed to light through a negative having an image thereon so as to produce an image on the coating.
  • the exposed coated surface is then developed to form an acid-resistant coating corresponding to the image produced by exposure.
  • This coating may be further hardened by heating and the final acid-resistant image is called the resist.
  • the image bearing surface of the plate is subjected to etching by an acid to remove the metal which is not under the resist and thus to produce the image in relief.
  • Powderless etching is now a well-known, widely practiced technique. It is used to etch photoengraving plates and other similar shaped articles. Zinc, magnesium and alloys based thereon are generally used as the photoengraving plate metals.
  • etching baths made up of aqueous solutions of nitric acid and one or more surfactants are quite suitable for powderless etching of zinc and/or magnesium.
  • Many technological contributions have been made to this art, such as for example in U.S. Pats. 2,640,673; 2,640,764 and 2,640,766, according to which the aqueous nitric acid etching baths are modified by the incorporation therein of aliphatic acids, or esters of aliphatic acids with polyhydric aliphatic alcohols, or sulfonates of succinic acid diesters.
  • the most commonly commercially used surfactant in the powderless etching art is a material which is usually referred to in the trade as sulfonated castor oil. This is a commercially available material which is chemically mis-named.
  • the material referred to is actually a sufated castor-oil, mainly the sulfate ester of ricinoleic acid (that is, the hydroxyl group of ricinoleic acid is esterified with sulfuric acid to add a sulfate group thereon).
  • surfactants which have been recommended in the patent literature in combination with the water-immiscible organic liquid are sulfosuccinates, petroleum sulfonates, al-kylaryl sulfonates, sulfated alcohols, sulfated fats and oils other than sulfated castor oil, phosphates,
  • esters polyether non-ionic surfactants, and alkyaryl ether sulfonates.
  • Other objects of this invention are to provide a novel etching bath capable of producing desired depths of etch in all kinds of image areas of combination plates, to provide an etching bath capable of forming a stable protective film to provent or retard lateral etching and chipping of relief side walls and a smooth, uniform side wall permitting easy release from a matrix, besides having visual appeal.
  • a still further object of this invention is to provide an improved etching bath for producing name plates, metal patterns, templates and the like.
  • an additive composition comprising (a) from about 0.5 to 90, preferably from to 80, percent by weight of a water-soluble or water dispersible anionic aliphatic sulfonated carboxylic acid containing at least one hydrophobic hydrcarbon group of from 8 to 24 carbon atoms attached to the carboxyl group and at least one sulfonate group attached to a carbon atom in said hydrophobic hydrocarbon group;
  • compositions containing components (a) and (b), as identified above show substantial improvement relative to prior etching additives and bath compositions
  • component (c) significantly improves the etching characteristics, particularly the regularity of the side walls and the definition of the printable area of the etched plate.
  • use of component (0) eliminates irregular erosion on the side wall and yields etch factor ratios (defined below) unexpectedly higher than those achievable by compositions not containing component (c).
  • the instant invention provides etching bath compositions comprising components (a), (b), and (c) and, additionally, water and a mineral acid.
  • component (a) is preferably contained) in an amount of from 0.5 to 10, most preferably from 2 to 6, grams per liter of final bath.
  • component (b) is preferably contained in an amount of from 0.5 to 10, most preferably from 2 to 8 grams, per liter of final bath.
  • Component (c) is contained in an amount of from 1 to 200, more preferably 2 to 100, and, most preferably from 5 to 70, grams per liter of final bath.
  • the mineral acid of an etching bath is generally nitric acid, although mixtures of nitric acid and small quantities of sulfuric, hydrochloric or acetic acids can be beneficial. Suitable amounts of mineral acid range from about 30 to 300 grams per liter of bath with a preferred range from about 70 to 250 grams per liter of bath.
  • the mineral acid component of the powderless etching bath of this invention is per se known.
  • the sulfonated carboxylic acids used as component (a) in this invention are true sulfonates as distinguished from the so called sulfonated oils like sulfonated castor oil which products are actually sulfates or esters of sulfuric acid.
  • the true sulfonates of this inveniton differ from the sulfates by the fact that, in the sulfonate, sulfur is directly linked to a carbon atom rather than through an intermediary oxygen atom as in the sulfate.
  • fatty acids which in their sulfonated condition are useful in this invention are, for example, capyrlic, capric, lauric, myristic, palmitic, stearic, isostearic, behenic, ligonoceric acids, undecylenic, myristicoleic, palmitoleic, oleic, linoleic, linolenic, eleostearic, arachidonic acids and the like.
  • Saturated and unsaturated fatty acids which have substituents on their hydrocarbon chains can also be sulfonated to add a sulfonate substituent bonded to a carbon atom thereof.
  • esters, amides and nitriles, chlorides and/or anhydrides of these fatty acids can be sulfonated with ease, and the sulfonation products thus produced are applicable in this invention provided there is a sulfur-carbon bond and provided they hydrolyze in an aqueous acid etching bath into the corresponding sulfonated carboxylic acids.
  • the sulfonated acids of this invention can be based on pure fatty acids or can be mixtures of fatty acids and/ or esters or other derivatives thereof such as occur naturally in vegetable, animal or marine oils, fats and waxes or in synthetic fatty acids derived from petroleum, bituminous coal and natural gas. Where mixtures of sulfonated fatty acids are to be used, sulfonation of the fatty acids can be accomplished before and after mixing.
  • sulfonation of fatty carboxylic acids is a well established procedure and can be accomplished by different means as the occasion demands.
  • Saturated fatty acids can be sulfonated directly in the alpha-position by reaction thereof with chlor-sulfonic acid or sulfur trioxide, which may be dissolved in sulphur dioxide, dioxane or chlorinated hydrocarbons.
  • Alpha-sulfonations can also be accomplished less directly by the Strecker reaction of an alphabromo fatty acid with sodium sulfite.
  • Monoand polyunsaturated fatty acids having hydrocarbon chains in the range of 8 to 24 carbon atoms can be sulfonated with sulfur trioxide dissolved in sulfur dioxide to yield truly sulfonated carboxylic acids e.g., oleic acid yields predominantly 8, 9-, 10-, or ll-sulfo-oleic and 9-hydroxy-lO-sulfostearic acids when reacted with a stoichiometric amount of sulfur trioxide (see U.S. Pat. 2,743,- 288 to Rueggeberg et al.). As taught in the Rueggeberg et al.
  • the sulfo group attaching to the fatty acid may attach on one or more different positions; thus, in the case of the sulfo-oleic acid produced according to Rueggeberg et al., the reaction product appears to be a mixture of predominantly 8, 9-, 10-, or 11- sulfo-oleic acid (as well as some 9-hydroxy-l0-sulfostearic acid).
  • 11- sulfo-oleic acid is sometimes used; in using this term We intend to refer to the mixed product obtained by following the teachings of the art.
  • Truly sulfonated ricinoleic acid can also be obtained by sulfonation with acetyl sulfonic acid, which is itself obtained by reacting sulfur trioxide with glacial acid or acetic anhydride.
  • the mono-carboxylic acids used as component (b) in this invention may be straight-chain, linear, or branchedchain and preferably contain from 8 to 18 carbon atoms.
  • said acids Preferably, said acids have melting points below 50 C. and, most preferably, they are liquids at room temperature.
  • Exemplary of the mono-carboxylic acids which may be used are both saturated acids and unsaturated acids such as caprylic, capric, lauric, myristic palmitic, stearic, isostearic, behenic, lignoceric acids, undecylenic, oleic, linoleic, linolenic, eleostearic, arachidonic acids and the like.
  • the unsaturated acids, oleic and linoleic (one olefinic double bond) and linolenic (two double bonds) are preferred.
  • operative acids may include one or more substituents which do not essentially alter the lipophilicity of the acid molecule;
  • halogenated mono-carboxylic acids such as bromo-
  • chloro-, or fluoro-substituted acids may be employed.
  • the water-soluble or water-dispersible polyhydric alcohols or ether derivatives thereof operative as component (c) herein may be saturated or olefinically unsaturated, and the ether portion, in the case of the ether derivatives, may be aliphatic (e.g., alkyl), cycloaliphatic, or aryl; the ether portions preferably do not decrease the water-solubility of the molecule to such an extent that it would no longer be soluble in the bath at the concentrations and conditions set forth herein as preferred.
  • the polyhydric alcohols usable herein are preferably dior tri-hydric but may contain more OH groups (as in sorbitol) and are preferably water-soluble over the range of 0.5 to 100 grams per liter.
  • ether glycols Illustrative of operative alcohols under this invention are ethylene glycol, diethylene glycol, propylene glycol, triethylene glycol, hexylene glycol, diand tripropylene glycol, glycerine, and the like.
  • the ether glycols are preferred.
  • ether derivatives of the aforementioned polyhydric alcohols i.e. wherein one or more of the OH groups of the alcohols are replaced with an OR group where R is typically an aliphatic radical of up to, e.g., 12 carbon atoms, preferably from 1 to 8 carbon atoms, e.g. alkyl or substituted alkyl radicals.
  • the mono-ether derivatives of the polyhydric alcohols or, more precisely, molecules in which at least one OH- function is etherified and at least one is not etherified, i.e., where there is partial etherification, are in fact preferred for use herein, relative to the alcohols per se, and ether derivatives in which the total number of carbon atoms in the ether (i.e., OR) groups is from 1 to 4 for every etheric oxygen interrupting the carbon chain of the alcohpl, are most preferred.
  • a mono-ether derivative of diethylene glycol which contains one internal ether oxygen
  • the ether moiety of the ether derivatives of the polyhydric alcohols contemplated herein may be cycloaliphatic or aromatic as well aliphatic.
  • suitable aromatic ethers are those wherein the ether moiety is benzene, naphthalene or higher aryl, and substituted aryl moieties such as the alkylaryl, e.g., alkylbenzene (for instance tolyl) groups; other substitutents on the aryl ring may be alkoxy, halogen, e.g., chloro or bromo, nitro, cyano, sulfo and the like.
  • cycloaliphatic as used herein is intended to embrace not only the usual, e.g., cycloalkyl radicals such as cyclobutyl, cyclopentyl, or cyclohexyl, but also cyclic moieties containing a hetero atom, e.g., a nitrogen atom as in pyrrolidinyl, or oxygen atom as in tetrahydrofuryl.
  • cycloaliphatic moieties contemplated herein may, of course, be substituted with the substituents envisioned above for the aryl moieties.
  • component (c) there are the monocyclobutyl ethers of ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol and butylene glycol, it having been found that those ethers wherein the ether moiety is relatively bulky are preferably ethers of glycols, as opposed to polyhydric alcohol having no internal oxygen atom.
  • aryl ethers i.e., there are embraced herein the monophenyl ethers of the aforementioned glycols, e.g., monophenyl Cellosolve and monophenyl Carbitol, which are commercially available products.
  • the amount of .component (c) in the final bath compositions contemplated herein will range from 1 to 200 grams per liter of bath as noted above and it can readily be appreciated that optimum amounts Will depend on many factors, e.g., nitric acid content and the amount and identity of components (a) and (b) used, and is readily determinable by those skilled in the art.
  • the additive compositions and ultimate etching baths contain, in addition to components (a), (b),
  • Component ((1) as contemplated herein is at least one saturated or olefinically unsaturated (i) lower monocarboxylic acid of from 2 to 6 carbon atoms and/or (ii) lower poly-carboxylic acid of from 2 to 10 carbon atoms.
  • component (d) yields not only the advantages set forth above as being due to the presence of component (d) use of components, (a) to (d), inclusive, results in a particularly Well-defined printable area and improved depth of half-tones.
  • the monoor poly carboxylic acids operative as component (d) herein are, optionally substituted, saturated or olefinically unsaturated mono-carboxylic acids of from 2 to 6 carbon atoms, or poly-, especially diand tri-, carboxylic acids of from 2 to 10 carbon atoms.
  • saturated mono-carboxylic acids preferably of from 2 to 4 carbon atoms, such as acetic and butanoic, but also hexanoic, acids, as well as unsaturated monocarboxylic acids such as acrylic, crotonic or isocrotonic (butenoic) acid, and saturated or unsaturated monoacids also containing a substitutent, e.g., halogen, such as chloro, fluoro, bromo, or iodo, or hydroxy or sulfoor cyano, which preferably does not substantially decrease the water-solubility of the molecule; chloro-acetic acid is illustrative. For instance, glycolic acid,
  • acetic acid may be employed and, interestingly, we have found that less of the hydroxy-substituted acid is needed to give the same results as the corresponding unsubstituted acid, i.e., acetic acid, although the same final result could be achieved by use of greater amounts of the acetic acid.
  • component (d) Of the poly-carboxylic acids within the compass of component (d), were prefer the di-and tri-carboxylic materials of 2 to 10, preferably 4 to 6, carbon atoms and we prefer the triover and di-acids. In addition, we prefer the triand di-materials over the mono-carboxylic acids because of the particularly excellent results achieved by use of the poly-acids.
  • dicarboxylic acids are oxalic acid, malonic, succinic acid, glutaric acid, adipic acid, suberic acid, azaleic acid, and sebacic acid; hydroxy malonic acid and malic acid (which are hydroxy substituted); tartaric acid (which is a di-OH acid); and maleic acid and itaconic acid (which are unsaturated di-acids).
  • 2-hydr0xyhexen-3-1,6-dioic acid i.e., molecules having substitution and unsaturation.
  • tri-carboxylic acids there may be mentioned as illustrative citric acid, and aconitic acid (which is unsaturated) and 4-hydroxy-1,2,6-heXatrioic acid. The unsaturation and substitution described above for the monoacids is thus also applicable to the di-and triacids of component (d).
  • the acids of component (d) may, of course, be supplied in the form of salts thereof, e.g., sodium or other alkali metal salts, or ammonium or amine salts, thereof; these are then split to the free acid in the ultimate bath composition.
  • inventive component (1) sodium succinate or ammonium ita conate, or where the acid is substituted, e.g., sodium sulfosuccinic acid and tri-sodium sulfo-itaconate.
  • component (d) in a particular use application is readily determinable by the skilled artisan we find that with regard to the additive composition aspect of this invention, 0.5 to 90 percent by weight of component (d) are desirably added; with regard to the bath compositions 0.5 to 100 grams of component (d) per liter of final bath, preferably 1 to 60 grams/liter and, most preferably, 2 to 30 grams per liter, are used. In general, more of the mono-acid is needed for the same results as of the di-acid, and more of the di-acid than of the tri-acid except when substitutions, e.g. OH substitution, lessen the amount required, as noted above.
  • substitutions e.g. OH substitution
  • the ratio of component (c) to the combined total weight of components (a) and (b) in the compositions used herein is desirably from about 0.5 :1 to 20:1 and will more generally be found to be more optimum at 1:1 to :1; (most preferred when using the preferred species of components (a), (b) and (c) are ratios of 2:1 to 3:1).
  • the additive also contains component (d)
  • the preferred amounts of (c) in relation to (a) and (b) are not substantially altered, i.e., they remain as stated above.
  • component (d) this is desirably added in a ratio of 0.111 to 3:1 (in relation to the total weight of (a) and (b)). More preferably we find that a weight ratio of 0.1 :1 to 2:1 will be found optimum when using the preferred species of components (a), (b), (c), and (d).
  • compositions which are one aspect of this invention, i.e., those compositions not containing the mineral acid and water used in the final etching bath, may desriably contain, in addition to the components (a) to (c) or ((1) set forth above, a neutralizing agent such as a basic amine, e.g., diethanol amine, monoisopropanol amine and the ethylene glycol amines, for the purpose of neutralizing the acid components included within (a) to (c) or (d) above.
  • a neutralizing agent such as a basic amine, e.g., diethanol amine, monoisopropanol amine and the ethylene glycol amines
  • additive compositions contemplated herein components (a) to (c) or (d) are combined with water, and, as a neutralizing agent, appropriate amounts of an alkali metal hydroxide such as potassium hydroxide.
  • an alkali metal hydroxide such as potassium hydroxide.
  • Such additive compositions either non-aqueous or aqueous can be transported per so as articles of commerce and constitute an embodiment ofthis invention different from the ultimate etching bath compositions which also contain a mineral etching acid, e.g., nitric acid, which is a separate composition claimed herein.
  • ingredients may desirably be incorporated into either the additive compositions or the ultimate bath compositions envisioned herein.
  • foam suppressants such as Triton CF 21 may desirably be added
  • certain mineral oils may be added as cleansing agents but care must be taken that any water immiscible organic liquid be added only in amounts of less than two grams per liter of final bath because use of greater amounts deleteriously effects etching performance when using the compositions of the instant invention.
  • so-called water immiscible organic liquids are desirably only added at concentration ranges at which such liquid is in fact miscible, i.e., at very low concentrations.
  • the liquid in question e.g., white mineral oil
  • the resultant etching bath is suitable for use with no water-immiscible organic liquid required in the composition which liquids are called for in certain prior art compositions. Although very small amounts of such liquid may be added, e.g., up to about 2 grams per liter of the final bath, use of greater amounts deleteriously affects etching performance.
  • etching baths having the following composition:
  • patents comprises a manifold having multiple orifices in the manifold pipes immersed in the etching bath wherein compressed air is forced through the manifold to produce bubbles which then rise upwards through the etching bath into which the plate to be etched is immersed and rotated.
  • Other types of etching machines known to the art are also applicable.
  • etch factor ratio is defined as the ratio of (1) the depth of the etch adjacent to a line of resist divided by one-half of the loss in width of metal immediately beneath the resist using a particular additive to (2) the depth of the etch adjacent to a line of resist divided by one-half of the loss in width of metal immediately beneath the resist when only nitric acid is used in the exact concentration as was used with the particular additive:
  • Dr is the etch depth with additive Dn is the etch depth Without addtive Wa is the under cutting loss with additive Wn is the under cutting loss without additive.
  • An etching bath was made up consisting of 16% by Weight of (pure) nitric acid, 0.45% by weight of 11- sulfo-oleic acid, 0.35% by weight of caprylic acid, 0.6 percent by weight glycerine, and the balance water. This bath was used to etch magnesium printing plates having a typical, representative resist image thereon. Etching was carried out for 4 minutes at 100 F. in a bubble-etch machine conventional in the art as described above. The quality of the etched plates was good with little lateral etching or side wall erosion being observed. The plate relief was open and the printing surface held well. The etch factor ratio (EFR) was about 30.
  • EXAMPLE II An etching bath was made up consisting of 8% by weight of (pure) nitric acid, 0.1% by weight of ll-sulfooleic acid, 0.25% by weight of maleic acid, 0.65% by weight isobutyl Cellosolve (the mono-isobutyl ether of ethylene glycol), and the balance water. This bath was used to etch magnesium printing plates having a typical, representative resist image thereon. Etching was carried out for 4 minutes at 100 F. in a bubble-etch machine conventional in the art. The quality of the etched plates was good with little lateral etching or side wall erosion being observed. The plate relief was open and the printing surface held well. The etch factor ratio (EFR) was about 30.
  • EXAMPLE III etch machine conventional in the art.
  • the quality of the etched plates was good with little lateral etching or side wall erosion being observed.
  • the plate relief was open and the printing surface held well.
  • the etch factor ratio (EFR) was about 30.
  • EXAMPLE IV An etching bath was made up consisting of 10% by weight of (pure) nitric acid, 0.1% by weight 1l-sulfooleic acid, 0.25% by weight oleic acid and 4.5% by weight hexylene glycol, and the balance water. This bath was used to etch magnesium printing plates having a typical, representative resist image thereon. Etching was carried out for 4 minutes at 100 F. in a bubble-etch machine conventional in the art. The quality of the etched plates was good with little lateral etching or side wall erosion being observed. The plate relief was open and the printing surface held well. The etch factor ratio (EFR) was about 30.
  • An etching bath was made up consisting of 12% by weight of (pure) nitric acid, 0.15% by weight ll-sulfooleic acid, 0.30% by weight oleic acid, 0.50% by weight methyl Carbitol (the mono-methyl ether of diethylene glycol), 0.10% by weight citric acid and the balance water.
  • This bath was used to etch magnesium printing plates having a typical, representative resist image thereon.
  • Etching was carried out for 4 minutes at 100 F. in a bubble-etch machine conventional in the art.
  • the quality of the etched plates was good with little lateral etching or side wall erosion being observed.
  • the plate relief was open and the printing surface held well and exhibited good shoulder formation.
  • the etch factor ratio (EFR) was about 40.
  • An etching bath was made up consisting of 10% by weight of (pure) nitric acid, 0.45% by weight of l-sulfooleic acid, 0.35% by weight of caprylic acid, 0.8% by weight of butyl Carbitol (the mono-butyl ether of diethylene glycol), 0.2% by Weight of citric acid, and the balance water.
  • This bath was used to etch magnesium printing plates having a typical, representative resist image thereon. Etching was carried out for 4 minutes at 100 F. in a bubble-etch machine conventional in the art. The quality of the etched plates was good with little lateral etching or side wall erosion being observed. The plate relief was open and the printing surface held well and exhibited good shoulder formation.
  • the etch factor ratio (EF R) was about 40.
  • compositions of the instant invention while providing outstanding etching performance, do not pose any pollution hazard contrary to certain conventional compositions.
  • our compositions are bio-degradable as demonstrated in actual tests in which samples containing the components of this invention were tested according to standard techniques [Standard Methods for the Examination of Water and Waste Water, 13th edition (1971), published by the American Public Health Association; tests conducted by the Bridgeport Testing Laboratory, Inc.] and it was found that such compositions were 91% biodegradable after 30 days of being in the test water.
  • Powderless aqueous nitric acid etching bath additive composition for etching printing plates of magnesium, zinc or alloys thereof comprising:
  • v(c) from 10 to 99 percent by weight of a polyhydric alcohol of from 2 to 10 carbon atoms or an ether derivative thereof, based on the total additive composition, wherein said composition is adapted for use at a concentration of from 1.5 to 220 grams per liter of the etching bath.
  • Powderless aqueous nitric acid etching bath additive composition for etching printing plates of magnesium, zinc or alloys thereof comprising water and, dissolved or dispersed therein, an additive comprising (a) from 0.5 to 90 percent by weight of a water-soluble or water-dispersible sulfonated fatty acid of from 8 to 24 carbon atoms, wherein the sulfur atom in the sulfonate group is directly bonded to a carbon atom,
  • composition as claimed in claim 2 additionally containing a neutralizing quantity of an alkali metal hydroxide or an amine and wherein the composition contains at least about 50 percent by weight of water.
  • composition as claimed in claim 2 additionally containing a neutralizing quantity of an amine and wherein the composition contains at least about 5 percent by weight of water.
  • composition as claimed in claim 1 wherein the sulfonated fatty acid component (a) is sulfo-oleic acid; the mono-carboxylic acid component (b) is caprylic, capric, lauric, myristic, palmitic, stearic, isostearic, behenic, lignoceric, undecylenic, myristoleic, palmitoleic, oleic, linoleic, linolenic, eleostearic, anarchidonic, ricinoleic, 9,10-dihydroxystearic, lO-chlorostearic, 9,10-dichlorostearic, betaphenylproprionic, lO-phenylundecanoic, or 9,10-dibenzylstearic acid; and the polyhydric alcohol or other component (c) is an alkyl ether, of from 1 to 4 carbon atoms on each alkyl group, of a polyhydric acid;
  • component (c) is an alkyl ether, having from 1 to 4 carbon atoms in each alkyl group, of a polyhydric ether alcohol wherein said polyhydric alcohol contains an oxygen atom interrupting its hydrocarbon chain.
  • component '(c) is selected from the group consisting of ethylene glycol, diethylene glycol, triethylene glycol, hexylene glycol, and mono-alkyl ethers thereof wherein each alkyl group contains from 1 to 8 carbon atoms.
  • component (c) is an ether of ethylene glycol, diethylene glycol or triethylene glycol.
  • Composition as claimed in claim 1 additionally containing from 0.5 to 90 percent by weight of a component (d) wherein (d) is at lea-st one saturated or olefinically unsaturated monocarboxylic acid of from 2 to 6 carbon atoms, or polycarboxylic acid of from 2 to carbon atoms.
  • Composition as claimed in claim 2 additionally containing from 0.5 to 90 percent by weight of a component (d) wherein (d) is at least one saturated or olefinically unsaturated mono-carboxylic acid of from 2 to 6 carbon atoms, or polycarboxylic acid of from 2 to 10 carbon atoms. 7
  • Composition as claimed in claim 7 additionally containing from 0.5 to 90 percent by weight of a component (d) wherein '(d) is at least one saturated or olefinical- 1y unsaturated mono-carboxylic acid of from 2 to 6 carbon atoms, or polycarboxylic acid of from 2 to 10 carbon atoms.
  • Etching bath for printing plates of magnesium, zinc, or alloys thereof comprising water and from 30 to 300 grams of nitric acid and (a) from 0.5 to 10 grams of a Water-soluble or waterdispersible sulfonated fatty acid of from 8 to 24 carbon atoms, wherein the sulfur atom in the sulfonated group is directly bonded to a carbon atom, and (b) from 0.5 to 10 grams of at least one saturated or olefinically unsaturated mono-carboxylic acid of from 8 to 24 carbon atoms, and
  • component (c) is an alkyl ether, having from 1 to 4 carbon atoms in each alkyl group, of a polyhydric alcohol wherein said polyhydric alcohol contains an oxygen atom interrupting its hydrocarbon chain.
  • component (c) is an ether of ethylene glycol.
  • component (c) is an ether of diethylene glycol.
  • fatty acid moiety of the sulfonated fatty acid of component (a) and the saturated or unsaturated mono-carboxylic acid of component (b) are individually selected from the group consisting of caprylic, capric, lauric, myristic, palmitic, stearic, isostearic, behenic, lignoceric, undecylenic, myristoleic, palmitoleic, oleic, linoleic, linolenic, eleostearic, arachidonic, ricinoleic, 9,10-dihydroxystearic, 10-chlorostearic, 9,10 dichlorostearic, beta phenylpropionic, IO-phenylundecanoic, or 9,10-dibenzylstearic acid.
  • component (c) is an ether derivative of a polyhydric alcohol of from 2 to 6 carbon atoms.
  • composition as claimed in claim 12 also containing up to 2 grams per liter of a water-immiscible organic liquid.
  • Method of etching a photoengraving plate of magnesium, zinc or alloys thereof which comprises bringing such plates into etching contact with the etchant bath of claim 12.

Abstract

IMPROVED POWDERLESS ETCHING BATH ADDITIVE COMPOSITIONS, ESPECIALLY FOR ETCHING MAGNESIUM PHOTO-ENGRAVING PLATES, CONTAINING (A) AT LEAST ONE WATER-SOLUBLE OR WATER-DISPPERSIBLE SULFONATED FATTY ACID OF FROM 8 TO 24 CARBON ATOMS, WHEREIN THE SULFUR ATOM IN THE SULFONATE GROUP IS DIRECTLY BONDED TO A CARBON ATOM, AND (B) AT LEAST ONE SATURATED OR OLEFINICALLY UNSATURATED MONOCARBOXYLIC ACID OF FROM 7 TO 24 CARBON ATOMS, (C) AT LEAST ONE POLYHYDRIC ALCOHOL OF FROM 2 TO 10 CARBON ATOMS OR AN ETHER DERIVATIVE THEREOF, AND, OPTIONALLY, (D) AT LEAST ONE LOWER MONO-CARBOXYLIC ACID OF FROM 2 TO 6 CARBON ATOMS AND/OR POLYCARBOXYLIC ACID OF FROM 2 TO 10 CARBON ATOMS, AND ETCHING BATHS CONTAINING SUCH COMPOSITIONS AND NITRIC ACID AND WATER, GIVE GOOD ETCHING PERFORMANCE, PARTICULARLY IMPROVED DEFINITION OF THE PRINTABLE AREA OF THE PLATE, DEPTH, OF HALF-TONES, AND SIDE WALLS SMOOTHNESS.

Description

- U.S. Cl. 15614 United States Patent Ofi ice Patented May 29, 1973 3,736,197 POWDERLESS ETCHING BATH COMPOSITIONS AND ADDITIVES Harold J. Messerschmidt, Stockholm, Karl Heymau, Montclair, and Bernadou W. Johnsen II, Paterson, N.J., assignors to Mona Industries, Inc., Paterson, N]. No Drawing. Filed Mar. 29, 1972, Ser. No. 239,383 Int. Cl. B4411 3/02; (123g 1/26 26 Claims ABSTRACT OF THE DISCLOSURE Improved powderless etching bath additive compositrons, especially for etching magnesium photo-engraving plates, containing (a) at least one water-soluble or water-dispersible sulfonated fatty acid of from 8 to 24 carbon atoms, wherein the sulfur atom in the sulfonate group is directly bonded to a carbon atom, and
(b) at least one saturated or olefinically unsaturated monocarboxylic acid of from 8 to 24 carbon atoms,
(c) at least one polyhydric alcohol of from 2 to 10 car- 210m atoms or an ether derivative thereof; and, option- (d) at least one lower mono-carboxylic acid of from 2 to 6 carbon atoms and/or polycarboxylic acid of from 2 to 10 carbon atoms;
and etching baths containing such compositions and nitric acid and water, give good etching performance, particularly improved definition of the printable area of the plate, depth, of half-tones, and side wall smoothness.
This invention relates to powderless etching and is more specifically concerned with improved additive compositions, both anhydrous with water based, for use in powderless etching baths. In further aspect, the invention relates to etching baths as such, particularly for chemically dimensioning photoengraving plates, and with a method of etching such plates, especially magnesiumbased plates.
To make photoengraving plates a flat or cylindrical plate of an acid-soluble metal such as magnesium, zinc or one of their alloys, is coated with a light sensitive coating or enamel. This coated surface is exposed to light through a negative having an image thereon so as to produce an image on the coating. The exposed coated surface is then developed to form an acid-resistant coating corresponding to the image produced by exposure. This coating may be further hardened by heating and the final acid-resistant image is called the resist. Subsequently, the image bearing surface of the plate is subjected to etching by an acid to remove the metal which is not under the resist and thus to produce the image in relief.
In carrying out this etching process, techniques are employed to reduce lateral etching which undercuts the resist and/or the relief side walls, which undercutting may cause a weakening, distortion or complete loss of image.
A common method which the art formerly used for minimizing lateral etching consisted of powdering the sides of the relief with an acid-resistant powder, but this was a difficult and time-consuming operation which had to be repeated a number of times during the etching of each plate.
In recent years so-called powderless etching has been introduced and expanded. In this technique the etching bath is so formulated that the non-resist portion of the plate can be removed without the need for powdering the side walls.
Powderless etching is now a well-known, widely practiced technique. It is used to etch photoengraving plates and other similar shaped articles. Zinc, magnesium and alloys based thereon are generally used as the photoengraving plate metals.
In the growth of this art, it has been discovered that etching baths made up of aqueous solutions of nitric acid and one or more surfactants are quite suitable for powderless etching of zinc and/or magnesium. Many technological contributions have been made to this art, such as for example in U.S. Pats. 2,640,673; 2,640,764 and 2,640,766, according to which the aqueous nitric acid etching baths are modified by the incorporation therein of aliphatic acids, or esters of aliphatic acids with polyhydric aliphatic alcohols, or sulfonates of succinic acid diesters.
One characteristic of these etching baths is their tendenc'y to permit localized defilming 0n relief side walls. This results in a chipped surface which, in aggravated situations, causes poor printing plates. Another problem stems from the inability of these same baths to quickly form a protective film in the initial stage of etching that will protect the resist from lateral etching beneath it. Further as the etching action of the acid penetrates to greater depths, there is a problem of preventing lateral etching of relief side walls. Another problem of great importance is the capacity of the etching bath to produce proper depths of etch in all areas of a combination plate, i.e., a plate having both line and half tone image areas. This latter problem, for example, is most vexing because the use of filming additives which may be expected to increase or stabilize the filming tendency of the etching bath usually also results in the production of lesser depths of etch in half tone areas of combination plates. On the other hand while the use of smaller amounts of the filming additives might be expected to provide deeper etching in half tone areas, such modifications also tend to cause excessive etching and undercutting in open line areas of the same plate. These problems are often sufliciently serious to make the poor products which result therefrom readily apparent to even the casual observer, particularly as evidenced by a chewed appearance of the plate.
Many attempts have been made to remedy the situation and to formulate etching baths which will give acceptable etching speeds and good quality production. Thus, in more recent patents than those set rforth above, newer and improved formulations have been disclosed, which employ a water-immiscible organic liquid. Thus the modern etching bath technology is generally based on aqueous nitric acid, a water-immiscible organic liquid and a surfactant. These modern etching baths have reached a high degree of commercial success and are in wide use throughout the world. Unfortunately, these modern etching baths still have a problem in that they are ecologically undesirable. The water-immiscible organic liquid, which is generally a petroleum solvent, is a serious pollutant. It is therefore desirable to eliminate this component from etching bath compositions or at least to reduce the level thereof as much as possible.
The most commonly commercially used surfactant in the powderless etching art is a material which is usually referred to in the trade as sulfonated castor oil. This is a commercially available material which is chemically mis-named. The material referred to is actually a sufated castor-oil, mainly the sulfate ester of ricinoleic acid (that is, the hydroxyl group of ricinoleic acid is esterified with sulfuric acid to add a sulfate group thereon). Other surfactants which have been recommended in the patent literature in combination with the water-immiscible organic liquid are sulfosuccinates, petroleum sulfonates, al-kylaryl sulfonates, sulfated alcohols, sulfated fats and oils other than sulfated castor oil, phosphates,
esters, polyether non-ionic surfactants, and alkyaryl ether sulfonates.
It is, therefore, an object of this invention to provide a novel etching bath for zinc or magnesium based shaped articles such as photoengraving plates.
It is another object of this invention to provide an improved etching bath having markedly improved filming capacity and giving better side wall protection and decreased lateral etching.
It is a further object of this invention to provide a novel additive for use in aqueous nitric acid etching baths.
Other objects of this invention are to provide a novel etching bath capable of producing desired depths of etch in all kinds of image areas of combination plates, to provide an etching bath capable of forming a stable protective film to provent or retard lateral etching and chipping of relief side walls and a smooth, uniform side wall permitting easy release from a matrix, besides having visual appeal.
A still further object of this invention is to provide an improved etching bath for producing name plates, metal patterns, templates and the like.
In accordance with this invention there is provided an additive composition comprising (a) from about 0.5 to 90, preferably from to 80, percent by weight of a water-soluble or water dispersible anionic aliphatic sulfonated carboxylic acid containing at least one hydrophobic hydrcarbon group of from 8 to 24 carbon atoms attached to the carboxyl group and at least one sulfonate group attached to a carbon atom in said hydrophobic hydrocarbon group;
(b) fromabout 0.5 to 90, preferably from 5 to 80, percent by weight of at least one saturated or olefinically unsaturated monocarboxylic acid of from 8 to 24 carbon atoms;
(c) from about to 99, preferably from 10 to 60, percent by weight of a polyhydric alcohol of from 2 to 10 carbon atoms and/or an aliphatic, cycloaliphatic or aromatic ether derivative thereof.
While compositions containing components (a) and (b), as identified above, show substantial improvement relative to prior etching additives and bath compositions, the addition of component (c) significantly improves the etching characteristics, particularly the regularity of the side walls and the definition of the printable area of the etched plate. Thus, use of component (0) eliminates irregular erosion on the side wall and yields etch factor ratios (defined below) unexpectedly higher than those achievable by compositions not containing component (c).
Apart from providing the additive compositions described above, the instant invention provides etching bath compositions comprising components (a), (b), and (c) and, additionally, water and a mineral acid. In such a bath, component (a) is preferably contained) in an amount of from 0.5 to 10, most preferably from 2 to 6, grams per liter of final bath. Component (b) is preferably contained in an amount of from 0.5 to 10, most preferably from 2 to 8 grams, per liter of final bath. Component (c) is contained in an amount of from 1 to 200, more preferably 2 to 100, and, most preferably from 5 to 70, grams per liter of final bath.
The mineral acid of an etching bath is generally nitric acid, although mixtures of nitric acid and small quantities of sulfuric, hydrochloric or acetic acids can be beneficial. Suitable amounts of mineral acid range from about 30 to 300 grams per liter of bath with a preferred range from about 70 to 250 grams per liter of bath. The mineral acid component of the powderless etching bath of this invention is per se known.
The sulfonated carboxylic acids used as component (a) in this invention are true sulfonates as distinguished from the so called sulfonated oils like sulfonated castor oil which products are actually sulfates or esters of sulfuric acid. The true sulfonates of this inveniton differ from the sulfates by the fact that, in the sulfonate, sulfur is directly linked to a carbon atom rather than through an intermediary oxygen atom as in the sulfate.
Examples of fatty acids which in their sulfonated condition are useful in this invention are, for example, capyrlic, capric, lauric, myristic, palmitic, stearic, isostearic, behenic, ligonoceric acids, undecylenic, myristicoleic, palmitoleic, oleic, linoleic, linolenic, eleostearic, arachidonic acids and the like. Saturated and unsaturated fatty acids which have substituents on their hydrocarbon chains can also be sulfonated to add a sulfonate substituent bonded to a carbon atom thereof. Examples of such acids are ricinoleic, 9,10-dichlorostearic acids, beta-phenylpropionic, lO-phenylundecanoic and 9,10-debenzylstearic acids. In many cases the esters, amides and nitriles, chlorides and/or anhydrides of these fatty acids can be sulfonated with ease, and the sulfonation products thus produced are applicable in this invention provided there is a sulfur-carbon bond and provided they hydrolyze in an aqueous acid etching bath into the corresponding sulfonated carboxylic acids. The sulfonated acids of this invention can be based on pure fatty acids or can be mixtures of fatty acids and/ or esters or other derivatives thereof such as occur naturally in vegetable, animal or marine oils, fats and waxes or in synthetic fatty acids derived from petroleum, bituminous coal and natural gas. Where mixtures of sulfonated fatty acids are to be used, sulfonation of the fatty acids can be accomplished before and after mixing.
The sulfonation of fatty carboxylic acids is a well established procedure and can be accomplished by different means as the occasion demands. Saturated fatty acids can be sulfonated directly in the alpha-position by reaction thereof with chlor-sulfonic acid or sulfur trioxide, which may be dissolved in sulphur dioxide, dioxane or chlorinated hydrocarbons. Alpha-sulfonations can also be accomplished less directly by the Strecker reaction of an alphabromo fatty acid with sodium sulfite. Side chain sulfonation of phenylalkanoic acids like 4 phenylcaproic, 10- phenylundecanoic, phenylstearic and 9,10-dibenzylstearic acids can be performed with a dioxane-sulfur trioxide complex. The same method is used for the alpha-sulfonation of hydroxystearic and 9,10-dihydroxystearic acid. Monoand polyunsaturated fatty acids having hydrocarbon chains in the range of 8 to 24 carbon atoms can be sulfonated with sulfur trioxide dissolved in sulfur dioxide to yield truly sulfonated carboxylic acids e.g., oleic acid yields predominantly 8, 9-, 10-, or ll-sulfo-oleic and 9-hydroxy-lO-sulfostearic acids when reacted with a stoichiometric amount of sulfur trioxide (see U.S. Pat. 2,743,- 288 to Rueggeberg et al.). As taught in the Rueggeberg et al. patent, the sulfo group attaching to the fatty acid, e.g., oleic acid, may attach on one or more different positions; thus, in the case of the sulfo-oleic acid produced according to Rueggeberg et al., the reaction product appears to be a mixture of predominantly 8, 9-, 10-, or 11- sulfo-oleic acid (as well as some 9-hydroxy-l0-sulfostearic acid). For convenience hereinafter, the term 11- sulfo-oleic acid is sometimes used; in using this term We intend to refer to the mixed product obtained by following the teachings of the art. Truly sulfonated ricinoleic acid can also be obtained by sulfonation with acetyl sulfonic acid, which is itself obtained by reacting sulfur trioxide with glacial acid or acetic anhydride.
The mono-carboxylic acids used as component (b) in this invention may be straight-chain, linear, or branchedchain and preferably contain from 8 to 18 carbon atoms. Preferably, said acids have melting points below 50 C. and, most preferably, they are liquids at room temperature.
Exemplary of the mono-carboxylic acids which may be used are both saturated acids and unsaturated acids such as caprylic, capric, lauric, myristic palmitic, stearic, isostearic, behenic, lignoceric acids, undecylenic, oleic, linoleic, linolenic, eleostearic, arachidonic acids and the like.
, the unsaturated acids, oleic and linoleic (one olefinic double bond) and linolenic (two double bonds) are preferred.
While we generally prefer to use unsubstituted acids, it will be understood by those skilled in the art that operative acids may include one or more substituents which do not essentially alter the lipophilicity of the acid molecule;
1 thus, halogenated mono-carboxylic acids, such as bromo-,
chloro-, or fluoro-substituted acids, may be employed.
It has been found useful,'even preferable, to use mixtures of two or more acids, e.g., the combination of caprylic and oleic acids, or of caprylic and isostearic acids, as component (b) herein.
The water-soluble or water-dispersible polyhydric alcohols or ether derivatives thereof operative as component (c) herein may be saturated or olefinically unsaturated, and the ether portion, in the case of the ether derivatives, may be aliphatic (e.g., alkyl), cycloaliphatic, or aryl; the ether portions preferably do not decrease the water-solubility of the molecule to such an extent that it would no longer be soluble in the bath at the concentrations and conditions set forth herein as preferred.
The polyhydric alcohols usable herein are preferably dior tri-hydric but may contain more OH groups (as in sorbitol) and are preferably water-soluble over the range of 0.5 to 100 grams per liter. We prefer alcohols of from 2 to carbon atoms, most preferably from 2 to 6 carbon atoms, and also those alcohols whose carbon chain is interrupted by ether functions, i.e., oxygen atoms, as in certain (ether) glycols. Illustrative of operative alcohols under this invention are ethylene glycol, diethylene glycol, propylene glycol, triethylene glycol, hexylene glycol, diand tripropylene glycol, glycerine, and the like. As noted, the ether glycols are preferred.
As set forth above in the definition of component (c), there are also embraced herein ether derivatives of the aforementioned polyhydric alcohols, i.e. wherein one or more of the OH groups of the alcohols are replaced with an OR group where R is typically an aliphatic radical of up to, e.g., 12 carbon atoms, preferably from 1 to 8 carbon atoms, e.g. alkyl or substituted alkyl radicals. The mono-ether derivatives of the polyhydric alcohols, or, more precisely, molecules in which at least one OH- function is etherified and at least one is not etherified, i.e., where there is partial etherification, are in fact preferred for use herein, relative to the alcohols per se, and ether derivatives in which the total number of carbon atoms in the ether (i.e., OR) groups is from 1 to 4 for every etheric oxygen interrupting the carbon chain of the alcohpl, are most preferred. Thus, e.g., a mono-ether derivative of diethylene glycol (which contains one internal ether oxygen) preferably contains up to 4 carbon atoms in the ether (R) group:
as in, e.g., diethylene glycol mono-ethyl or mono-butyl ether.
As noted above, the ether moiety of the ether derivatives of the polyhydric alcohols contemplated herein may be cycloaliphatic or aromatic as well aliphatic. Illustrative of suitable aromatic ethers are those wherein the ether moiety is benzene, naphthalene or higher aryl, and substituted aryl moieties such as the alkylaryl, e.g., alkylbenzene (for instance tolyl) groups; other substitutents on the aryl ring may be alkoxy, halogen, e.g., chloro or bromo, nitro, cyano, sulfo and the like. The term cycloaliphatic as used herein is intended to embrace not only the usual, e.g., cycloalkyl radicals such as cyclobutyl, cyclopentyl, or cyclohexyl, but also cyclic moieties containing a hetero atom, e.g., a nitrogen atom as in pyrrolidinyl, or oxygen atom as in tetrahydrofuryl. The cycloaliphatic moieties contemplated herein may, of course, be substituted with the substituents envisioned above for the aryl moieties. Thus, within the compass of component (c) there are the monocyclobutyl ethers of ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol and butylene glycol, it having been found that those ethers wherein the ether moiety is relatively bulky are preferably ethers of glycols, as opposed to polyhydric alcohol having no internal oxygen atom. The same can be said of the aryl ethers, i.e., there are embraced herein the monophenyl ethers of the aforementioned glycols, e.g., monophenyl Cellosolve and monophenyl Carbitol, which are commercially available products.
Generally the amount of .component (c) in the final bath compositions contemplated herein will range from 1 to 200 grams per liter of bath as noted above and it can readily be appreciated that optimum amounts Will depend on many factors, e.g., nitric acid content and the amount and identity of components (a) and (b) used, and is readily determinable by those skilled in the art.
In a separate and especially preferred embodiment of this invention, the additive compositions and ultimate etching baths contain, in addition to components (a), (b),
and (c), described hereinabove, a further component (d).
Component ((1) as contemplated herein is at least one saturated or olefinically unsaturated (i) lower monocarboxylic acid of from 2 to 6 carbon atoms and/or (ii) lower poly-carboxylic acid of from 2 to 10 carbon atoms. The addition of component (d) yields not only the advantages set forth above as being due to the presence of component (d) use of components, (a) to (d), inclusive, results in a particularly Well-defined printable area and improved depth of half-tones.
The monoor poly carboxylic acids operative as component (d) herein are, optionally substituted, saturated or olefinically unsaturated mono-carboxylic acids of from 2 to 6 carbon atoms, or poly-, especially diand tri-, carboxylic acids of from 2 to 10 carbon atoms.
Thus, Within the compass of the component (d) definition, there are simple saturated mono-carboxylic acids, preferably of from 2 to 4 carbon atoms, such as acetic and butanoic, but also hexanoic, acids, as well as unsaturated monocarboxylic acids such as acrylic, crotonic or isocrotonic (butenoic) acid, and saturated or unsaturated monoacids also containing a substitutent, e.g., halogen, such as chloro, fluoro, bromo, or iodo, or hydroxy or sulfoor cyano, which preferably does not substantially decrease the water-solubility of the molecule; chloro-acetic acid is illustrative. For instance, glycolic acid,
OHCH2COOH,
may be employed and, interestingly, we have found that less of the hydroxy-substituted acid is needed to give the same results as the corresponding unsubstituted acid, i.e., acetic acid, although the same final result could be achieved by use of greater amounts of the acetic acid.
Of the poly-carboxylic acids within the compass of component (d), were prefer the di-and tri-carboxylic materials of 2 to 10, preferably 4 to 6, carbon atoms and we prefer the triover and di-acids. In addition, we prefer the triand di-materials over the mono-carboxylic acids because of the particularly excellent results achieved by use of the poly-acids. Illustrative of the dicarboxylic acids are oxalic acid, malonic, succinic acid, glutaric acid, adipic acid, suberic acid, azaleic acid, and sebacic acid; hydroxy malonic acid and malic acid (which are hydroxy substituted); tartaric acid (which is a di-OH acid); and maleic acid and itaconic acid (which are unsaturated di-acids).
Also included are, e.g., 2-hydr0xyhexen-3-1,6-dioic acid, i.e., molecules having substitution and unsaturation. Of the tri-carboxylic acids, there may be mentioned as illustrative citric acid, and aconitic acid (which is unsaturated) and 4-hydroxy-1,2,6-heXatrioic acid. The unsaturation and substitution described above for the monoacids is thus also applicable to the di-and triacids of component (d).
The acids of component (d) may, of course, be supplied in the form of salts thereof, e.g., sodium or other alkali metal salts, or ammonium or amine salts, thereof; these are then split to the free acid in the ultimate bath composition. Thus, there are contemplated as within the compass of inventive component ((1) sodium succinate or ammonium ita conate, or where the acid is substituted, e.g., sodium sulfosuccinic acid and tri-sodium sulfo-itaconate.
While the specific optimum amount, within the range above set forth, of component (d) in a particular use application is readily determinable by the skilled artisan we find that with regard to the additive composition aspect of this invention, 0.5 to 90 percent by weight of component (d) are desirably added; with regard to the bath compositions 0.5 to 100 grams of component (d) per liter of final bath, preferably 1 to 60 grams/liter and, most preferably, 2 to 30 grams per liter, are used. In general, more of the mono-acid is needed for the same results as of the di-acid, and more of the di-acid than of the tri-acid except when substitutions, e.g. OH substitution, lessen the amount required, as noted above. In relation to components (a) and (b), above, few hardand-fast generalizations may be made but we have found that, as the amount of component (a) or (b) is increased, the amount of component (d) must also be increased, assuming other factors, especially nitric acid concentration, are constant. An increased nitric acid content generally requires use of less carboxylic acid (d) assuming a constant concentration of components (a) and (b), for similar results.
We have found that the ratio of component (c) to the combined total weight of components (a) and (b) in the compositions used herein is desirably from about 0.5 :1 to 20:1 and will more generally be found to be more optimum at 1:1 to :1; (most preferred when using the preferred species of components (a), (b) and (c) are ratios of 2:1 to 3:1). We have additionally found that in the preferred aspect of this invention wherein the additive also contains component (d), the preferred amounts of (c) in relation to (a) and (b) are not substantially altered, i.e., they remain as stated above. As regards component (d) this is desirably added in a ratio of 0.111 to 3:1 (in relation to the total weight of (a) and (b)). More preferably we find that a weight ratio of 0.1 :1 to 2:1 will be found optimum when using the preferred species of components (a), (b), (c), and (d).
It will be understood by those skilled in the art that, with regard to the additive compositions which are one aspect of this invention, i.e., those compositions not containing the mineral acid and water used in the final etching bath, may desriably contain, in addition to the components (a) to (c) or ((1) set forth above, a neutralizing agent such as a basic amine, e.g., diethanol amine, monoisopropanol amine and the ethylene glycol amines, for the purpose of neutralizing the acid components included within (a) to (c) or (d) above. In further aspect of the additive compositions contemplated herein, components (a) to (c) or (d) are combined with water, and, as a neutralizing agent, appropriate amounts of an alkali metal hydroxide such as potassium hydroxide. Such additive compositions either non-aqueous or aqueous, can be transported per so as articles of commerce and constitute an embodiment ofthis invention different from the ultimate etching bath compositions which also contain a mineral etching acid, e.g., nitric acid, which is a separate composition claimed herein.
It will also be understood that a number of additional.
ingredients may desirably be incorporated into either the additive compositions or the ultimate bath compositions envisioned herein. Thus, e.g., foam suppressants such as Triton CF 21 may desirably be added, certain mineral oils may be added as cleansing agents but care must be taken that any water immiscible organic liquid be added only in amounts of less than two grams per liter of final bath because use of greater amounts deleteriously effects etching performance when using the compositions of the instant invention. In fact, it appears that, as regards the instant invention, so-called water immiscible organic liquids are desirably only added at concentration ranges at which such liquid is in fact miscible, i.e., at very low concentrations. When used in such very small amounts it has been found that the liquid in question, e.g., white mineral oil, actually mixes with the final bath and thus can no longer be regarded as a water immiscible organic liquid.
It is truly surprising that when a typical aqueous solution of nitric acid, in a concentration which is conventionally used for zinc or magnesium plate etching, is modified by the admixture thereof with the composition comprising components (a), (b), (c) and, optionally, (d) as set forth herein, the resultant etching bath is suitable for use with no water-immiscible organic liquid required in the composition which liquids are called for in certain prior art compositions. Although very small amounts of such liquid may be added, e.g., up to about 2 grams per liter of the final bath, use of greater amounts deleteriously affects etching performance.
In accordance with one aspect of this invention, etching baths are provided having the following composition:
Grams per liter Nltrlc ld CarboXylic acid [optional component (a)] 0100 Waterimmiscible organic liquid 02.0 Water Balance In etching with the baths of the present invention it has been found to be desirable to impinge the bath against the surface to be etched, as by splashing. In theory at least, the etching bath forms a partially acid-resistant film on the resist-free metal surfaces, and when the bath 1s impinged against the surface to be etched in a direct1on normal to that surface, the film is broken. On the other hand when the bath hits the sides of the relief, the film is generally not broken because of insufficient strikmg force and etching of the sides (or under-cutting) is substantially reduced.
An etching machine of the type disclosed in US. Pat. No. 2,669,048, issued Feb. 16, 1954, and entitled Etchmg Machine, or the so-called bubble-etc machines as described in, e.g. US. Pat. Nos. 3,227,166, 3,136,323, 3,136,621 (all to C. Marz) can be used. In the machine described in the above patent US. 2,669,048, elongated paddles dipping into the bath composition intermittently throw, by splashing, the etching bath composition in sheets up wardly against the image bearing side of the object being etched, e.g., a plate. The bubble-etch machine described in the latter group of three US. patents comprises a manifold having multiple orifices in the manifold pipes immersed in the etching bath wherein compressed air is forced through the manifold to produce bubbles which then rise upwards through the etching bath into which the plate to be etched is immersed and rotated. Other types of etching machines known to the art are also applicable.
As used in this specification, the term etch factor ratio (EFR) is defined as the ratio of (1) the depth of the etch adjacent to a line of resist divided by one-half of the loss in width of metal immediately beneath the resist using a particular additive to (2) the depth of the etch adjacent to a line of resist divided by one-half of the loss in width of metal immediately beneath the resist when only nitric acid is used in the exact concentration as was used with the particular additive:
Da/Wa 2 Dn Wn' where Dr: is the etch depth with additive Dn is the etch depth Without addtive Wa is the under cutting loss with additive Wn is the under cutting loss without additive.
An etching bath was made up consisting of 16% by Weight of (pure) nitric acid, 0.45% by weight of 11- sulfo-oleic acid, 0.35% by weight of caprylic acid, 0.6 percent by weight glycerine, and the balance water. This bath was used to etch magnesium printing plates having a typical, representative resist image thereon. Etching was carried out for 4 minutes at 100 F. in a bubble-etch machine conventional in the art as described above. The quality of the etched plates was good with little lateral etching or side wall erosion being observed. The plate relief Was open and the printing surface held well. The etch factor ratio (EFR) was about 30.
EXAMPLE II An etching bath was made up consisting of 8% by weight of (pure) nitric acid, 0.1% by weight of ll-sulfooleic acid, 0.25% by weight of maleic acid, 0.65% by weight isobutyl Cellosolve (the mono-isobutyl ether of ethylene glycol), and the balance water. This bath was used to etch magnesium printing plates having a typical, representative resist image thereon. Etching was carried out for 4 minutes at 100 F. in a bubble-etch machine conventional in the art. The quality of the etched plates was good with little lateral etching or side wall erosion being observed. The plate relief was open and the printing surface held well. The etch factor ratio (EFR) was about 30.
EXAMPLE III etch machine conventional in the art. The quality of the etched plates was good with little lateral etching or side wall erosion being observed. The plate relief was open and the printing surface held well. The etch factor ratio (EFR) was about 30.
EXAMPLE IV An etching bath was made up consisting of 10% by weight of (pure) nitric acid, 0.1% by weight 1l-sulfooleic acid, 0.25% by weight oleic acid and 4.5% by weight hexylene glycol, and the balance water. This bath was used to etch magnesium printing plates having a typical, representative resist image thereon. Etching was carried out for 4 minutes at 100 F. in a bubble-etch machine conventional in the art. The quality of the etched plates was good with little lateral etching or side wall erosion being observed. The plate relief was open and the printing surface held well. The etch factor ratio (EFR) was about 30.
Examples V and VI, below, are illustrative of the special embodiment of this invention wherein the additive also contains component (d) as defined hereinabove.
10 EXAMPLE v An etching bath was made up consisting of 12% by weight of (pure) nitric acid, 0.15% by weight ll-sulfooleic acid, 0.30% by weight oleic acid, 0.50% by weight methyl Carbitol (the mono-methyl ether of diethylene glycol), 0.10% by weight citric acid and the balance water. This bath was used to etch magnesium printing plates having a typical, representative resist image thereon. Etching was carried out for 4 minutes at 100 F. in a bubble-etch machine conventional in the art. The quality of the etched plates was good with little lateral etching or side wall erosion being observed. The plate relief was open and the printing surface held well and exhibited good shoulder formation. The etch factor ratio (EFR) was about 40.
EXAMPLE Vii An etching bath was made up consisting of 10% by weight of (pure) nitric acid, 0.45% by weight of l-sulfooleic acid, 0.35% by weight of caprylic acid, 0.8% by weight of butyl Carbitol (the mono-butyl ether of diethylene glycol), 0.2% by Weight of citric acid, and the balance water. This bath was used to etch magnesium printing plates having a typical, representative resist image thereon. Etching was carried out for 4 minutes at 100 F. in a bubble-etch machine conventional in the art. The quality of the etched plates was good with little lateral etching or side wall erosion being observed. The plate relief was open and the printing surface held well and exhibited good shoulder formation. The etch factor ratio (EF R) was about 40.
It is particularly noteworthy that the compositions of the instant invention, while providing outstanding etching performance, do not pose any pollution hazard contrary to certain conventional compositions. Thus, our compositions are bio-degradable as demonstrated in actual tests in which samples containing the components of this invention were tested according to standard techniques [Standard Methods for the Examination of Water and Waste Water, 13th edition (1971), published by the American Public Health Association; tests conducted by the Bridgeport Testing Laboratory, Inc.] and it was found that such compositions were 91% biodegradable after 30 days of being in the test water.
It will be understood that the specification and examples are illustrative but not limitative of the present invention and that other embodiments within the spirit and scope of the invention will suggest themselves to those skilled in the art.
What is claimed is:
1. Powderless aqueous nitric acid etching bath additive composition for etching printing plates of magnesium, zinc or alloys thereof comprising:
(a) from 0.5 to percent by weight of a water-soluble or water-dispersible sulfonated fatty acid of from 8 to 24 carbon atoms, wherein the sulfur atom in the sulfonate group is directly bonded to a carbon atom,
(b) from 0.5 to 90 percent by weight of at least one saturated or olefinically unsaturated mono-carboxylic acid of from 8 to M carbon atoms, and
v(c) from 10 to 99 percent by weight of a polyhydric alcohol of from 2 to 10 carbon atoms or an ether derivative thereof, based on the total additive composition, wherein said composition is adapted for use at a concentration of from 1.5 to 220 grams per liter of the etching bath.
2. Powderless aqueous nitric acid etching bath additive composition for etching printing plates of magnesium, zinc or alloys thereof comprising water and, dissolved or dispersed therein, an additive comprising (a) from 0.5 to 90 percent by weight of a water-soluble or water-dispersible sulfonated fatty acid of from 8 to 24 carbon atoms, wherein the sulfur atom in the sulfonate group is directly bonded to a carbon atom,
'(b) from 0.5 to 90 percent by weight of at least one saturated or olefinically unsaturated mono-carboxylic acid of from 8 to 24 carbon atoms, and (c) from 10 to 99 percent by weight of a polyhydric alcohol of from 2 to 10 carbon atoms or an ether derivative thereof, based on the total additive wherein the total of the components [(a)+(b)+-(c)] is adapted for use at a concentration of 1.5 to 220 grams per liter of the etching bath. 3. Composition as claimed in claim 2 additionally containing a neutralizing quantity of an alkali metal hydroxide or an amine and wherein the composition contains at least about 50 percent by weight of water.
4. Composition as claimed in claim 2 additionally containing a neutralizing quantity of an amine and wherein the composition contains at least about 5 percent by weight of water.
5. Composition as claimed in claim 1 wherein the sulfonated fatty acid component (a) is sulfo-oleic acid; the mono-carboxylic acid component (b) is caprylic, capric, lauric, myristic, palmitic, stearic, isostearic, behenic, lignoceric, undecylenic, myristoleic, palmitoleic, oleic, linoleic, linolenic, eleostearic, anarchidonic, ricinoleic, 9,10-dihydroxystearic, lO-chlorostearic, 9,10-dichlorostearic, betaphenylproprionic, lO-phenylundecanoic, or 9,10-dibenzylstearic acid; and the polyhydric alcohol or other component (c) is an alkyl ether, of from 1 to 4 carbon atoms on each alkyl group, of a polyhydric ether alcohol.
6. Composition as claimed in claim 1 wherein component (c) is an alkyl ether, having from 1 to 4 carbon atoms in each alkyl group, of a polyhydric ether alcohol wherein said polyhydric alcohol contains an oxygen atom interrupting its hydrocarbon chain.
7. Composition as claimed in claim 1 wherein component '(c) is selected from the group consisting of ethylene glycol, diethylene glycol, triethylene glycol, hexylene glycol, and mono-alkyl ethers thereof wherein each alkyl group contains from 1 to 8 carbon atoms.
8. Composition as claimed in claim 1 wherein component (c) is an ether of ethylene glycol, diethylene glycol or triethylene glycol.
9. Composition as claimed in claim 1 additionally containing from 0.5 to 90 percent by weight of a component (d) wherein (d) is at lea-st one saturated or olefinically unsaturated monocarboxylic acid of from 2 to 6 carbon atoms, or polycarboxylic acid of from 2 to carbon atoms.
10. Composition as claimed in claim 2, additionally containing from 0.5 to 90 percent by weight of a component (d) wherein (d) is at least one saturated or olefinically unsaturated mono-carboxylic acid of from 2 to 6 carbon atoms, or polycarboxylic acid of from 2 to 10 carbon atoms. 7
11. Composition as claimed in claim 7 additionally containing from 0.5 to 90 percent by weight of a component (d) wherein '(d) is at least one saturated or olefinical- 1y unsaturated mono-carboxylic acid of from 2 to 6 carbon atoms, or polycarboxylic acid of from 2 to 10 carbon atoms.
12. Etching bath for printing plates of magnesium, zinc, or alloys thereof comprising water and from 30 to 300 grams of nitric acid and (a) from 0.5 to 10 grams of a Water-soluble or waterdispersible sulfonated fatty acid of from 8 to 24 carbon atoms, wherein the sulfur atom in the sulfonated group is directly bonded to a carbon atom, and (b) from 0.5 to 10 grams of at least one saturated or olefinically unsaturated mono-carboxylic acid of from 8 to 24 carbon atoms, and
(c) 1 to 200 grams by weight of a polyhydric alcohol of from 2 to 10 carbon atoms or an ether derivative thereof, per liter of bath.
13. Etching bath as claimed in claim 12 wherein the sulfonated fatty acid component (a) is sulfo-oleic acid; the saturated or unsaturated mono-carboxylic acid component (b) is selected from the group consisting of caprylic, capric, lauric, myristic, palmitic, stearic, isostearic, behenic, lignoceric, undecylenic, myristoleic, pal-mitoleic, oleic, linoleic, eleostearic, arachidonic, ricinoleic, 9,10-dihydroxystearic, l0 chlorostearic, 9,10 dichlorostearic, beta-phenylpropionic, 10-phenylundecanoic, or 9,10 dibenzylstearic acid; and the polyhydric alcohol or ether component (0) is an alkyl ether, of from 1 to 4 carbon atoms on each alkyl group, of a polyhydric ether alcohol; and wherein component (a) is contained in an amount of from 2 to 6 grams per liter of bath, component (b) is contained in an amount of from 2 to 8 grams per liter of bath, and component (c) is contained in an amount of from 2 to grams per liter of bath; and wherein the weight ratio of component (c) to components (a-|-b) is from about 0.1: 1 to 20: 1.
14. Etching bath as claimed in claim 12 wherein component -(c) is an ether derivative of a polyhydric alcohol of from 2 to 6 carbon atoms.
15. Etching bath as claimed in claim 12, wherein component (c) is an alkyl ether, having from 1 to 4 carbon atoms in each alkyl group, of a polyhydric alcohol wherein said polyhydric alcohol contains an oxygen atom interrupting its hydrocarbon chain.
16. Etching bath as claimed in claim 12, wherein component (c) is an ether of ethylene glycol.
17. Etching bath as claimed in claim 12, wherein component (c) is an ether of diethylene glycol.
18. Etching bath as claimed in claim 12, wherein component (0) is an ether of triethylene glycol.
19. Etching bath as claimed in claim 12, additionally containing from 0.5 to 100 grams per liter of a component (d) wherein component (d) is at least one saturated or olefinically unsaturated mono-carboxylic acid of from 2 to 6 carbon atoms, or polycarboxylic acid of from 2 to 10 carbon atoms.
20. Etching bath as claimed in claim 19 wherein the fatty acid moiety of the sulfonated fatty acid of component (a) and the saturated or unsaturated mono-carboxylic acid of component (b) are individually selected from the group consisting of caprylic, capric, lauric, myristic, palmitic, stearic, isostearic, behenic, lignoceric, undecylenic, myristoleic, palmitoleic, oleic, linoleic, linolenic, eleostearic, arachidonic, ricinoleic, 9,10-dihydroxystearic, 10-chlorostearic, 9,10 dichlorostearic, beta phenylpropionic, IO-phenylundecanoic, or 9,10-dibenzylstearic acid.
21. Etching bath as claimed in claim 19 wherein component (c) is an ether derivative of a polyhydric alcohol of from 2 to 6 carbon atoms.
22. Composition as claimed in claim 12, also containing up to 2 grams per liter of a water-immiscible organic liquid.
23. Composition as claimed in claim 1 for etching photoengraving plates based on magnesium or alloys thereof.
24. Etching bath as claimed in claim 12, wherein at least one of components (a) to (d) is formed in situ in the bath.
25. Etching bath as claimed in claim 12, wherein about 30 to 100 parts by weight of nitric acid are present per part of [.(a) plus (b)].
26. Method of etching a photoengraving plate of magnesium, zinc or alloys thereof which comprises bringing such plates into etching contact with the etchant bath of claim 12.
References Cited UNITED STATES PATENTS 3,234,137 2/1966 Lemaire et al 25279.4 3,436,283 4/1969 Chrisley 156-l4 FOREIGN PATENTS 1,074,979 4/1954 France 156-14 JACOB H. STEINBERG, Primary Examiner US. Cl. X.R.
' UNITED STATES PA'll'lN'iOFFICE CERTIFICATE OF CORRECTION Patent No. 3,136,197 m May 29, 1973 inventoflg) Harold J. Messerschmidt, Jr. et 31 It is certified that error zippears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
001. 2 line 64- For I v 'Ysufated" read I I sulfated Col. 3 line For i I "provent" read v pre x rent' 7 Col 6, line 38 C after "component (d)" insert 7 1 Y but further improves the 7 quality of the etched plate.
Thus,
C01. 7 line 62 for "acid" read acidic FORM po'wso 7 USCOMk-DC bean-m9 ILSv GOVERNMENY RINIING OFFICE: 19. O-Jii-JJ ,Q. UNIIED s'rA'm-zs PA'lirzwr ()FFKIE BEBE-1Y2 CERTIFICATE OF COILKRECTEOINI Patent No. 3,73 ,197 I Dated May 29, 1973 Inventorfis) Harold J. Messerschmidt, Jr. et al It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
@201. 1o line 19'. I
For C "1-su1fo-" read I v ll-su lfo- Signed and sealed this 20th day of August 1974.
(SEAL) Attest: MCCOY M. GIBSON, JR. c. MARSHALL DANN Atte'scing Officer Commissioner of Patents USCOMM-DC 60376-1 69 i u.s. covuumgm mnmm; ornc: In" O-lSi-SJA Disclaimer 3,736,197.-Ha1-0ld J. Messersalzmidt, Stockholm, Karl Heymam, Montclair, and Bernaclou W. J olmsen II, Paterson, NJ. POWDERLESS ETOHING BATH COMPOSITIONS AND ADDITIVES. Patent dated May 29, 1973. Disclaimer filed July 10, 1973, by the assignee, Mona lndusm'es, I no. Hereby disclaims the term of this patent subsequent to Apr. 3, 1990.
[Oficz'al Gazette Jwne 10, 1975.]
US00239383A 1972-03-29 1972-03-29 Powderless etching bath compositions and additives Expired - Lifetime US3736197A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US23938372A 1972-03-29 1972-03-29

Publications (1)

Publication Number Publication Date
US3736197A true US3736197A (en) 1973-05-29

Family

ID=22901926

Family Applications (1)

Application Number Title Priority Date Filing Date
US00239383A Expired - Lifetime US3736197A (en) 1972-03-29 1972-03-29 Powderless etching bath compositions and additives

Country Status (1)

Country Link
US (1) US3736197A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3922229A (en) * 1973-11-12 1975-11-25 Dow Chemical Co Powderless etching bath for magnesium printing plates
US3960741A (en) * 1974-08-28 1976-06-01 General Electric Company Etchant for removing metals from glass substrates
EP0095172A2 (en) * 1982-05-24 1983-11-30 Kangyo Denkikiki Kabushiki Kaisha Chemical etching method
US4855198A (en) * 1986-08-21 1989-08-08 The Dow Chemical Company Photoengraving articles of zinc-free magnesium-based alloys
EP0794269A1 (en) * 1996-03-05 1997-09-10 MEC CO., Ltd. Composition for microetching copper or copper alloy

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3922229A (en) * 1973-11-12 1975-11-25 Dow Chemical Co Powderless etching bath for magnesium printing plates
US3960741A (en) * 1974-08-28 1976-06-01 General Electric Company Etchant for removing metals from glass substrates
EP0095172A2 (en) * 1982-05-24 1983-11-30 Kangyo Denkikiki Kabushiki Kaisha Chemical etching method
EP0095172A3 (en) * 1982-05-24 1985-06-19 Kangyo Denkikiki Kabushiki Kaisha Chemical etching method
US4855198A (en) * 1986-08-21 1989-08-08 The Dow Chemical Company Photoengraving articles of zinc-free magnesium-based alloys
EP0794269A1 (en) * 1996-03-05 1997-09-10 MEC CO., Ltd. Composition for microetching copper or copper alloy
US5885476A (en) * 1996-03-05 1999-03-23 Mec Co., Ltd. Composition for microetching copper or copper alloy

Similar Documents

Publication Publication Date Title
US3684720A (en) Removal of scale from surfaces
EP1797926B1 (en) Surfactant composition
US2456947A (en) Corrosion resistant coating for metal surfaces
US3725158A (en) Multi-component powderless etching bath additive
US3736197A (en) Powderless etching bath compositions and additives
US3725159A (en) Powderless etching bath compositions
US3728180A (en) Powderless etching bath compositions
US2540003A (en) Nonferrous metal burnishing composition and burnishing process
US3412032A (en) Etching bath composition
US3925229A (en) Cleaning composition containing phosphoric acid, a process for its manufacture and its uses
US3312625A (en) Pickling inhibitor composition
US3935118A (en) Nitric acid system for etching magnesium plates
US3240715A (en) Alkylolamide surface active compositions soluble in aqueous solutions of electrolytes
US3458372A (en) Powderless etching
US3730899A (en) Powderless etching bath additive
US2831814A (en) Acid pickling of metals and compositions therefor
US3810797A (en) Aluminum etch bath additive
US3922229A (en) Powderless etching bath for magnesium printing plates
US3214378A (en) Composition for magnetic particle testing
US2073464A (en) Detergent
US3458371A (en) Composition and process for powderless etching
US3778377A (en) Protecting metal during acid contact
US2640763A (en) Etching
US4032379A (en) Nitric acid system for etching magnesium plates
US3431209A (en) Solvent degreasing,self-emulsifying cleaning composition