US3722244A - Method of controlling continuous rolling of metal strips - Google Patents

Method of controlling continuous rolling of metal strips Download PDF

Info

Publication number
US3722244A
US3722244A US00119117A US3722244DA US3722244A US 3722244 A US3722244 A US 3722244A US 00119117 A US00119117 A US 00119117A US 3722244D A US3722244D A US 3722244DA US 3722244 A US3722244 A US 3722244A
Authority
US
United States
Prior art keywords
mill
rolling
varying
gauge
stands
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00119117A
Inventor
M Ishida
M Kamata
S Fujii
H Kuwamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Application granted granted Critical
Publication of US3722244A publication Critical patent/US3722244A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions
    • B21B37/24Automatic variation of thickness according to a predetermined programme
    • B21B37/26Automatic variation of thickness according to a predetermined programme for obtaining one strip having successive lengths of different constant thickness

Definitions

  • ABSTRACT In the continuous rolling of a metal strip by means of a plurality of tandem mill stands, the gauge of the strip is varied by varying the rolling speed of a particular mill stand and of suceeding and or preceding mill stands by the same increment when a gauge varying point of the strip reaches the particular mill stand, and then the rolling speeds of the succeeding and/or preceding mill stands are successively varied by the same increment, thereby finally varying the rolling speed of all stands to the speeds required to produce a strip of a given gauge.
  • metal strips are continuously rolled by successively welding the leading end of one strip to the trailing end of the preceding strip.
  • an object of this invention to provide a novel method of controlling the continuous rolling operation of a metal strip wherein the variation in the tension of the strip is minimized when the reduction rates are varied.
  • Another object of this invention is to provide a novel method for controlling the continuous rolling mill operation wherein the gauge or reduction rate may be safely varied during high speed operation.
  • a method controlling the continuous rolling of a metal strip by means of a plurality of tandem mill stands comprises the steps of varying the rolling speeds of a particular mill stand and of succeeding and/or preceding mill stands by the same increment when a gauge varying point of the metal strip reaches the particular mill stand, and then successively varying the rolling speeds of the succeeding and/or preceding mill stands by the same increment, thereby finally varying the rolling speeds of all mill stands to the speeds required to produce a strip of a given gauge. All variations are carried out during the continuous rolling process.
  • FIGS. 2a and 2b are graphs showing variations in the roll peripheral speeds at respective mill stands.
  • the rolling speed thereof is varied from V (V '/V to V
  • the rolling speed of the third and the last stands are varied from V (VJ/V to V (V /V2) and from V,,(V1/V to V" (Vi/V2); respectively.
  • the rolling speed of the first stand is still maintained at V
  • this adjustment varies the tension of the strip between the first and second stands by an amount corresponding to the difference in the reduction rates, it does not vary in any way the tension of the strip between the other stands.
  • the set data are given automatically from an independent electronic computer 21, a manually operated switch or other suitable device.
  • memories 6 to 10 for storing the rolling speeds at respective stands as determined, for example, by speed detectors, before varying the pass schedule.
  • dividers 11 Between respective pairs of speed setters l to and corresponding speed memories 6 to are connected dividers 11 to for providing outputs V '/V V '/V V '/V V /V and V /V respectively.
  • Relay con-. tacts 1P, 2P, 3P, 4P and SP are provided to be closed when the gauge varying point reaches respective mill stands.
  • Multipliers 16 to are connected between respectivepairs of dividers 11 to 15 and corresponding memories 6 to 10 for multiplying the outputs from the dividers with the outputs (speeds before schedule variation) from the memories upon receiving command signals from outside. These multipliers are constructed such that they maintain their outputs until the next command signals are supplied thereto when relay contacts IP to 5? are closed.
  • Said command signals are sent to multipliers 16 to 20 when either one of the contacts I? for the first stand, IP and 2P for the second stand, 1? to 3? for the third stand, I? to 4P for the fourth stand and IP to SP for the fifth stand acts.
  • the outputs from respective multipliers 16 to 20 are applied to speed control circuits 22 of respective mill 45 stands as the reference signals for speed setting.
  • Screw down control is achieved in a conventional manner as is illustrated in FIG. 1. Also, forward slip rate is taken into account in predetermining the pass schedule, that is, when predetermining V V V, and V V V,,'.
  • the rolling speed of a particular mill stand at which the gauge varying point reaches and the rolling speeds of the stands on the delivery side are varied but the rolling speeds of the mill stands on the entry side are not varied.
  • the same object can be attained either by varying at the same rate the rolling speeds of the stands on the entry side while maintaining unchanged the rolling speeds of a particular stand at which the gauge varying point reaches and the speeds of the stands on the delivery side or by varying the rolling speeds of the stands on both entry and delivery sides.
  • Table 1 above shows the speed setting pattern when the rolling speeds are varied on the delivery side whereas table 2 that when the rolling speeds are varied on the entry side.
  • said rolling mill comprises at least three mill stands, and the rolling speed of said three mill stands are varied by the same increment when said gauge varying point of said metal strip reaches the first of said mill stands, and the rolling speeds of the second and third mill stands being varied by the same increment which is different from the first-mentioned increment, when said gauge varying point of said metal strip reaches the second mill stand.
  • said rolling mill comprises at least three mill stands and wherein the rolling speeds of the first mill stand is varied by a given increment when said gauge varying point reaches said first mill stand, and the rolling speeds of said first and second mill stands are varied by the same increment which is different from said given increment when said gauge varying point reaches said second mill stand.
  • step of varying the rolling speeds comprises determining the rolling speed of the strip at a particular mill stand
  • step of varying the rolling speeds comprises determining the rolling speed of the strip at a particular mill stand; changing the speed at said particular mill stand to a new given value; dividing said new given value by the determined speed at said particular mill stand; multiplying the ratio obtained by said dividing step by the rolling speed at said successive mill stands; and controlling the motor speeds at said preceding mill stands to correspond to the value obtained by said multiplication.

Abstract

In the continuous rolling of a metal strip by means of a plurality of tandem mill stands, the gauge of the strip is varied by varying the rolling speed of a particular mill stand and of suceeding and or preceding mill stands by the same increment when a gauge varying point of the strip reaches the particular mill stand, and then the rolling speeds of the succeeding and/or preceding mill stands are successively varied by the same increment, thereby finally varying the rolling speed of all stands to the speeds required to produce a strip of a given gauge.

Description

United States Patent 1191 Fujii et al.
METHOD OF CONTROLLING CONTINUOUS ROLLING OF METAL STRIPS Inventors: Seiji Fujii; Hiroshi Kuwamoto;
Masayuki Ishida, Fukuyama; Masamoto Kamata, Kawasaki, all of Japan Assignee: Nippon Kokan Kabushiki Kaisha Filed: Feb. 26, 1971 Appl. No.: 119,117
Foreign Application Priority Data Mar. 7, 1970 Japan ..45/l92ll us. c1 "72/16, 72/240 1m. (:1. ..B2lb 37/00 Field ofSearch ..72/8,9, 10,19,11,7,16
References Cited UNITED STATES PATENTS 5/1962 Schwab ..72/ll X STAND 2 STAND 1 GAUG VARYI POINT SENSOR COMPUTER MOTOR SPEED CONTROL Mar. 27, 1973 3,457,747 7/1969 Yeomans ..72 234 3,603,124 9/1971 3,332,263 7/1967 3,531,961 10 1970 3,552,170 1/1971 Pfiefier etal ..72/209 Primary Examiner-Milton S. Mehr Attorney-Flynn & Frishauf [57] ABSTRACT In the continuous rolling of a metal strip by means of a plurality of tandem mill stands, the gauge of the strip is varied by varying the rolling speed of a particular mill stand and of suceeding and or preceding mill stands by the same increment when a gauge varying point of the strip reaches the particular mill stand, and then the rolling speeds of the succeeding and/or preceding mill stands are successively varied by the same increment, thereby finally varying the rolling speed of all stands to the speeds required to produce a strip of a given gauge.
10 Claims, 3 Drawing Figures STANDS SENSOR SPEED MOYOR DETECTORS SPEED SETTERS DIVIDERS SPEED MEMORIES X MULTIPLIERS PATENTEDHARZYISH 3,722,244
SHEET 10F 3 STAND 2 STAND 1 STAND 5 SENSOR NG SPEED DETECTORS POINT SENSOR MOTORS STAND MOTOR S COMPUTER PEED CONTROL STAND ST ND SPEED SETTERS DIVIDERS SPEED MEMORIES 3P 5 SWITCHES MULTIPLI ERS METHOD OF CONTROLLING CONTINUOUS ROLLING OF METAL STRIPS BACKGROUND OF THE INVENTION tandem mill stands wherein when the pass schedule is modified during the rolling operation for varying the gauge of the product. Variations in the tension of the strip are minimized at the transit state during the modification of the pass schedule, thus greatly reducing the possibility of the variations in the plate gauge and the tendency of breaking the plate or sheet.
With the conventional rolling mill control system, in order to perform the so-called stepped rolling, that is to roll different portions of a single coil to have different gauges, the operator is required to manually adjust the gauge settings after either stopping the rolling mill or after slowing down the rolling speed to an extremely low speed.
In modern cold rolling mills, metal strips are continuously rolled by successively welding the leading end of one strip to the trailing end of the preceding strip.
With such a continuous rolling system it is often desirable to change or modify the rolling schedule during the rolling operation.
In order to operate such a continuous rolling mill at the highest efficiency it is not only necessary to increase, as far as possible, the rolling speed but also to modify the rolling schedule without stopping the operation of the rolling mill. For this reason, where the gauge of the starting strip varies or the product gauge is to be varied by varying the reduction rate it is desirable to vary the reduction rate while maintaining the speed of the rolling mill at as high a speed as possible.
Although it is necessary to vary the pass schedule for the purpose of varying the reduction rate, if the rolling schedule were varied quickly when the strip passes through respective mill stands, the tension of the strip will vary greatly and produce a large quantity of offgauge products as well as rupture of the strip.
Also in the stepped rolling, it is essential to vary the reduction rate at a high rolling speed so as to minimize the variation in the tension of the strip in order to improve the rolling efficiency and to reduce off-gauge products.
It is, therefore, an object of this invention to provide a novel method of controlling the continuous rolling operation of a metal strip wherein the variation in the tension of the strip is minimized when the reduction rates are varied.
Another object of this invention is to provide a novel method for controlling the continuous rolling mill operation wherein the gauge or reduction rate may be safely varied during high speed operation.
SUMMARY OF THE INVENTION According to this invention, a method controlling the continuous rolling of a metal strip by means of a plurality of tandem mill stands, comprises the steps of varying the rolling speeds of a particular mill stand and of succeeding and/or preceding mill stands by the same increment when a gauge varying point of the metal strip reaches the particular mill stand, and then successively varying the rolling speeds of the succeeding and/or preceding mill stands by the same increment, thereby finally varying the rolling speeds of all mill stands to the speeds required to produce a strip of a given gauge. All variations are carried out during the continuous rolling process.
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 2a and 2b are graphs showing variations in the roll peripheral speeds at respective mill stands.
DESCRIPTION OF THE PREFERRED EMBODIMENT Assume now that rolling speeds of respective mill stands are expressed by V V V V, before varying the pass schedule and by V V V V after varying the pass schedule. The rolling speed of the first mill stand is varied from V to V, when the gauge varying point reaches the first mill stand. Similarly, the rolling speeds of the second, third and the last mill stand are varied from V to V (VJ/V from V to V (VJ/V1) and from V to Vn(V,/V,), respectively. By such adjustments, the rolling speeds of all mill stands are varied by an equal increment, that is V,/V so that the tension of the strip is never varied at any point.
Then, when the gauge varying point reaches the second mill stand, the rolling speed thereof is varied from V (V '/V to V In the same manner, the rolling speed of the third and the last stands are varied from V (VJ/V to V (V /V2) and from V,,(V1/V to V" (Vi/V2); respectively. However, at this time, the rolling speed of the first stand is still maintained at V Although this adjustment varies the tension of the strip between the first and second stands by an amount corresponding to the difference in the reduction rates, it does not vary in any way the tension of the strip between the other stands.
When the gauge varying point arrives at the third mill stand the rolling speeds of the third and last mill stands are varied from V (V '/V to V and from Vn(V '/V to Vn(V /V respectively, but the rolling speeds at the first and second stands are not varied. This adjustment changes the tension of the strip between the second and third stands by an amount proportional to the difference in the reduction rates but does not vary the tension between the other stands.
Generally speaking, when a gauge varying point reaches the No. i mill stand the rolling speeds of the No. i mill stand and of the mill stands on the delivery side are varied as follows.
However, the rolling speeds of the rolling stands on the entry side are not varied. By this adjustment, although thetension of the strip between No. i l stand and No.i stand is varied by an amount proportional to the difference in the reduction rates at these two stands, the tension of the strip between the other stands is not varied.
' schedule. The set data are given automatically from an independent electronic computer 21, a manually operated switch or other suitable device. There are also provided memories 6 to 10 for storing the rolling speeds at respective stands as determined, for example, by speed detectors, before varying the pass schedule. Between respective pairs of speed setters l to and corresponding speed memories 6 to are connected dividers 11 to for providing outputs V '/V V '/V V '/V V /V and V /V respectively. Relay con-. tacts 1P, 2P, 3P, 4P and SP are provided to be closed when the gauge varying point reaches respective mill stands. When the gauge varying point reaches the first stand, relay contact IP is closed to select the output V V1 from divider 11, but outputs from the other dividers are not selected. In the same manner, upon arrival of the gauge varying point at the second, third, fourth and fifth mill stands, respectively, outputs V 'IV V3I/V3, V4,/V4 and V5I/V5 be selected, respectively.
Multipliers 16 to are connected between respectivepairs of dividers 11 to 15 and corresponding memories 6 to 10 for multiplying the outputs from the dividers with the outputs (speeds before schedule variation) from the memories upon receiving command signals from outside. These multipliers are constructed such that they maintain their outputs until the next command signals are supplied thereto when relay contacts IP to 5? are closed.
Said command signals are sent to multipliers 16 to 20 when either one of the contacts I? for the first stand, IP and 2P for the second stand, 1? to 3? for the third stand, I? to 4P for the fourth stand and IP to SP for the fifth stand acts.
The outputs from respective multipliers 16 to 20 are applied to speed control circuits 22 of respective mill 45 stands as the reference signals for speed setting.
Screw down control is achieved in a conventional manner as is illustrated in FIG. 1. Also, forward slip rate is taken into account in predetermining the pass schedule, that is, when predetermining V V V, and V V V,,'.
In the above described system, the rolling speed of a particular mill stand at which the gauge varying point reaches and the rolling speeds of the stands on the delivery side are varied but the rolling speeds of the mill stands on the entry side are not varied. The same object can be attained either by varying at the same rate the rolling speeds of the stands on the entry side while maintaining unchanged the rolling speeds of a particular stand at which the gauge varying point reaches and the speeds of the stands on the delivery side or by varying the rolling speeds of the stands on both entry and delivery sides.
TAB LE 1 Table 1 above shows the speed setting pattern when the rolling speeds are varied on the delivery side whereas table 2 that when the rolling speeds are varied on the entry side.
TABLE 2 Stand at Stand number which gauge varying point arrives 1 Before arrival V Thus, according to this invention, it is possible to vary the gauge of the product while a continuous rolling mill is operating at a high speed, thus greatly improving the operating efficiency. Moreover, it is possible to decrease the possibility of breakage of the strip due to variation in tension.
What is claimed is:
1. In the continuous rolling of a metal strip by means of a plurality of tandem mill stands, a method of controlling the rolling operation comprising the steps of:
detecting a gauge varying point of the metal strip at a given mill stand; varying the rolling speeds of said given mill stand and of succeeding mill stands in the direction of strip movement by the same increment when said gauge varying point of said metal strip reaches said given mill stand;
and then successively varying the rolling speeds of said succeeding mill stands in order by the same increment upon said gauge varying point reaching respective successive mill stands, the rolling speeds of the preceding mill stands not being varied as a function of said gauge varying point reaching said successive mill stands, thereby finally varying the rolling speeds of all mill stands to the speeds required to produce a strip of a given gauge.
2. In the continuous rolling of a metal strip by means of a plurality of tandem mills, a method of controlling the rolling operation comprising the steps of:
detecting a gauge varying point of the metal strip at a given mill stand;
varying the rolling speeds of said given mill stand and of preceding mill stands in the direction opposite to the direction of strip movement by the same increment when said gauge varying point of said metal strip reaches said given mill stand;
and then successively varying the rolling speeds of said preceding mill stands in order by the same increment upon said gauge varying reaching respective successive mill stands, the rolling speeds of the succeeding mill stands in the direction of strip movement not being varied as a function of said gauge varying point reaching each successive mill stand, thereby finally varying the rolling speeds of all stands to the speeds required to produce a strip of a given gauge.
3. The method according to claim 1 comprising detecting said gauge varying point at each mill stand, and varying said speeds responsive to said detection of gauge varying point.
4. The method according to claim 2 comprising detecting said gauge varying point at each mill stand, and
varying said speeds responsive to said detections of gauge varying point.
5. The method according to claim 1 wherein said rolling mill comprises at least three mill stands, and the rolling speed of said three mill stands are varied by the same increment when said gauge varying point of said metal strip reaches the first of said mill stands, and the rolling speeds of the second and third mill stands being varied by the same increment which is different from the first-mentioned increment, when said gauge varying point of said metal strip reaches the second mill stand.
6. The method according to claim 5 wherein the rolling speed of the third mill stand is varied by an increment which is different from the previously mentioned increments when said gauge varying point of said metal strip reaches said third mill stand.
7. The method according to claim 2 wherein said rolling mill comprises at least three mill stands and wherein the rolling speeds of the first mill stand is varied by a given increment when said gauge varying point reaches said first mill stand, and the rolling speeds of said first and second mill stands are varied by the same increment which is different from said given increment when said gauge varying point reaches said second mill stand.
8. The method according to claim 7 wherein the rolling speeds of said three mill stands are varied by the same increment which is different from said previously mentioned increments when said gauge varying point reaches said third mill stand.
9. The method according to claim I wherein the step of varying the rolling speeds comprises determining the rolling speed of the strip at a particular mill stand;
changing the speed at said particular mill stand to a new given value; dividing said new given value'by the determined speed at said particular mill stand; multiplying the ratio obtained by said dividing step by the rolling speed at said successive mill stands; and c0ntrolling the motor speeds at said successive mill stands to correspond to the value obtained by said multiplication.
10. The method according to claim 2 wherein the step of varying the rolling speeds comprises determining the rolling speed of the strip at a particular mill stand; changing the speed at said particular mill stand to a new given value; dividing said new given value by the determined speed at said particular mill stand; multiplying the ratio obtained by said dividing step by the rolling speed at said successive mill stands; and controlling the motor speeds at said preceding mill stands to correspond to the value obtained by said multiplication.

Claims (10)

1. In the continuous rolling of a metal strip by means of a plurality of tandem mill stands, a method of controlling the rolling operation comprising the steps of: detecting a gauge varying point of the metal strip at a given mill stand; varying the rolling speeds of said given mill stand and of succeeding mill stands in the direction of strip movement by the same increment when said gauge varying point of said metal strip reaches said given mill stand; and then successively varying the rolling speeds of said succeeding mill stands in order by the same increment upon said gauge varying point reaching respective successive mill stands, the rolling speeds of the preceding mill stands not being varied as a function of said gauge varying point reaching said successive mill stands, thereby finally varying the rolling speeds of all mill stands to the speeds required to produce a strip of a given gauge.
2. In the continuous rolling of a metal strip by means of a plurality of tandem mills, a method of controlling the rolling operation comprising the steps of: detecting a gauge varying point of the metal strip at a given mill stand; varying the rolling speeds of said given mill stand and of preceding mill stands in the direction opposite to the direction of strip movement by the same increment when said gauge varying point of said metal strip reaches said given mill stand; and then successively varying the rolling speeds of said preceding mill stands in order by the same increment upon said gauge varying reaching respective successive mill stands, the rolling speeds of the succeeding mill stands in the direction of strip movement not being varied as a function of said gauge varying point reaching each successive mill stand, thereby finally varying the rolling speeds of all stands to the speeds required to produce a strip of a given gauge.
3. The method according to claim 1 comprising detecting said gauge varying point at each mill stand, and varying said speeds responsive to said detection of gauge varying point.
4. The method according to claim 2 comprising detecting said gauge varying point at each mill stand, and varying said speeds responsive to said detections of gauge varying point.
5. The method according to claim 1 wherein said rolling mill comprises at least three mill stands, and the rolling speed of said three mill stands are varied by the same increment when said gauge varying point of said metal strip reaches the first of said mill stands, and the rolling speeds of the second and third mill stands being varied by the same increment which is different from the first-mentioned increment, when said gauge varying point of said metal strip reaches the second mill stand.
6. The method according to claim 5 wherein the rolling speed of the third mill stand is varied by an increment which is different from the previously mentioned increments when said gauge varying point of said metal strip reaches said third mill stand.
7. The method according to claim 2 wherein said rolling mill comprises at least three mill stands and wherein the rolling speeds of the first mill stand is varied by a given increment when said gauge varying point reaches said first mill stand, and the rolling speeds of said first and second mill stands are varied by the same increment which is different from said given increment when said gauge varying point reaches said second mill stand.
8. The method according to claim 7 wherein the rolling speeds of said three mill stands are varied by the same increment which is different from said prevIously mentioned increments when said gauge varying point reaches said third mill stand.
9. The method according to claim 1 wherein the step of varying the rolling speeds comprises determining the rolling speed of the strip at a particular mill stand; changing the speed at said particular mill stand to a new given value; dividing said new given value by the determined speed at said particular mill stand; multiplying the ratio obtained by said dividing step by the rolling speed at said successive mill stands; and controlling the motor speeds at said successive mill stands to correspond to the value obtained by said multiplication.
10. The method according to claim 2 wherein the step of varying the rolling speeds comprises determining the rolling speed of the strip at a particular mill stand; changing the speed at said particular mill stand to a new given value; dividing said new given value by the determined speed at said particular mill stand; multiplying the ratio obtained by said dividing step by the rolling speed at said successive mill stands; and controlling the motor speeds at said preceding mill stands to correspond to the value obtained by said multiplication.
US00119117A 1970-03-07 1971-02-26 Method of controlling continuous rolling of metal strips Expired - Lifetime US3722244A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP45019211A JPS4817145B1 (en) 1970-03-07 1970-03-07

Publications (1)

Publication Number Publication Date
US3722244A true US3722244A (en) 1973-03-27

Family

ID=11993016

Family Applications (1)

Application Number Title Priority Date Filing Date
US00119117A Expired - Lifetime US3722244A (en) 1970-03-07 1971-02-26 Method of controlling continuous rolling of metal strips

Country Status (6)

Country Link
US (1) US3722244A (en)
JP (1) JPS4817145B1 (en)
DE (1) DE2110639A1 (en)
ES (1) ES389003A1 (en)
FR (1) FR2081772B1 (en)
GB (1) GB1294414A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3852983A (en) * 1973-04-25 1974-12-10 Westinghouse Electric Corp Work strip gauge change during rolling in a tandem rolling mill
US4011743A (en) * 1976-04-20 1977-03-15 Westinghouse Electric Corporation Stand speed reference circuit for a continuous tandem rolling mill
US4063438A (en) * 1975-12-10 1977-12-20 Tokyo Shibaura Denki Kabushiki Kaisha Method of controlling tandem rolling mills
DE2944035A1 (en) * 1978-11-01 1980-05-14 Mitsubishi Electric Corp METHOD FOR CHANGING A ROLLING PLAN
US4771622A (en) * 1986-03-12 1988-09-20 International Rolling Mill Consultants Inc. Strip rolling mill apparatus
US20070068210A1 (en) * 2005-09-29 2007-03-29 University Of Pittsburgh - Of The Commonwealth System Of Higher Education System for controlling a rolling mill and method of controlling a rolling mill
US20100163205A1 (en) * 2007-08-04 2010-07-01 Seidel Juergen Method for the production of a strip made of steel
US9095886B2 (en) 2011-06-27 2015-08-04 University Of Central Florida Research Foundation, Inc. Mill control system and method for control of metal strip rolling

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH637047A5 (en) * 1978-12-29 1983-07-15 Lauener W F Ag METHOD FOR CONTROLLING THE SPEED OF A BELT CASTING AND ROLLING MACHINE AND SYSTEM CONTROLLED BY THIS METHOD.
NL7905404A (en) * 1979-07-11 1981-01-13 Estel Hoogovens Bv ADJUSTING A MULTI-VEHICLE ROLLER FOR COLD ROLLING METAL BELTS.
JPS5822640U (en) * 1981-08-05 1983-02-12 エムケ−精工株式会社 bath equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3036480A (en) * 1957-07-10 1962-05-29 Electron Machine Corp Automatic control of multi-stand rolling mills
US3332263A (en) * 1963-12-10 1967-07-25 Gen Electric Computer control system for metals rolling mill
US3457747A (en) * 1965-12-28 1969-07-29 British Iron Steel Research Rolling mills
US3531961A (en) * 1968-03-13 1970-10-06 Westinghouse Electric Corp Method and system for controlling strip thickness in a tandem reduction mill
US3552170A (en) * 1968-02-01 1971-01-05 Mannesmann Roehren Werke Ag Method of treating hollow blooms in rolling mills
US3603124A (en) * 1968-05-09 1971-09-07 Nippon Kokan Kk Computer control system for rolling metal strips using feed-forward and prediction

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3036480A (en) * 1957-07-10 1962-05-29 Electron Machine Corp Automatic control of multi-stand rolling mills
US3332263A (en) * 1963-12-10 1967-07-25 Gen Electric Computer control system for metals rolling mill
US3457747A (en) * 1965-12-28 1969-07-29 British Iron Steel Research Rolling mills
US3552170A (en) * 1968-02-01 1971-01-05 Mannesmann Roehren Werke Ag Method of treating hollow blooms in rolling mills
US3531961A (en) * 1968-03-13 1970-10-06 Westinghouse Electric Corp Method and system for controlling strip thickness in a tandem reduction mill
US3603124A (en) * 1968-05-09 1971-09-07 Nippon Kokan Kk Computer control system for rolling metal strips using feed-forward and prediction

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3852983A (en) * 1973-04-25 1974-12-10 Westinghouse Electric Corp Work strip gauge change during rolling in a tandem rolling mill
US4063438A (en) * 1975-12-10 1977-12-20 Tokyo Shibaura Denki Kabushiki Kaisha Method of controlling tandem rolling mills
US4011743A (en) * 1976-04-20 1977-03-15 Westinghouse Electric Corporation Stand speed reference circuit for a continuous tandem rolling mill
DE2944035A1 (en) * 1978-11-01 1980-05-14 Mitsubishi Electric Corp METHOD FOR CHANGING A ROLLING PLAN
US4335435A (en) * 1978-11-01 1982-06-15 Mitsubishi Denki Kabushiki Kaisha Method of changing rolling schedule during rolling in tandem rolling mill
US4771622A (en) * 1986-03-12 1988-09-20 International Rolling Mill Consultants Inc. Strip rolling mill apparatus
US20070068210A1 (en) * 2005-09-29 2007-03-29 University Of Pittsburgh - Of The Commonwealth System Of Higher Education System for controlling a rolling mill and method of controlling a rolling mill
US20100163205A1 (en) * 2007-08-04 2010-07-01 Seidel Juergen Method for the production of a strip made of steel
US8327918B2 (en) * 2007-08-04 2012-12-11 SMS Seimag AG Method for the production of a strip made of steel
US9095886B2 (en) 2011-06-27 2015-08-04 University Of Central Florida Research Foundation, Inc. Mill control system and method for control of metal strip rolling

Also Published As

Publication number Publication date
ES389003A1 (en) 1974-02-01
FR2081772A1 (en) 1971-12-10
FR2081772B1 (en) 1973-12-28
DE2110639A1 (en) 1971-09-30
GB1294414A (en) 1972-10-25
JPS4817145B1 (en) 1973-05-26

Similar Documents

Publication Publication Date Title
US2851911A (en) Rolling mills
US3722244A (en) Method of controlling continuous rolling of metal strips
GB982232A (en) Improvements in or relating to automatic strip gauge control for a rolling mill
GB1292845A (en) Predictive gauge control method and apparatus with adaptive plasticity determination for metal rolling mills
US2883895A (en) Rolling mill thickness control system
US3457747A (en) Rolling mills
US3507134A (en) Interstand tension control for tandem cold rolling mills
GB2133182A (en) Method of control mill motors speeds in a cold tamdem mill
US3603124A (en) Computer control system for rolling metal strips using feed-forward and prediction
GB1487743A (en) Method and apparatus for controlling roll gaps of cold rolling mills
US3695075A (en) Correction system for continuous rolling mill
GB1326157A (en) Control of strip tension in rolling mills
US3618348A (en) Method of controlling rolling of metal strips
US3852983A (en) Work strip gauge change during rolling in a tandem rolling mill
US4063438A (en) Method of controlling tandem rolling mills
US3101016A (en) Rolling mills
EP0109235B1 (en) Rolling mill control for tandem rolling
US3212310A (en) Automatic gauge and tension control system
US3750437A (en) Method and apparatus for controlling continuous tandem rolling mills
US3913363A (en) Method and apparatus for shape control of metal products in continuous rolling mill
US3996776A (en) Strip thickness control
US3807206A (en) Strip gage change during rolling in a tanden rolling mill
US3677045A (en) Method of feed-forwardly controlling a tandem rolling mill
JPH09295020A (en) Flying thickness changing method of metal plate in continuous type tandem rolling mill
US3766762A (en) Control method of tension in rolling mills (2)