US3720551A - Method for making a dispersion strengthened alloy article - Google Patents
Method for making a dispersion strengthened alloy article Download PDFInfo
- Publication number
- US3720551A US3720551A US00006931A US3720551DA US3720551A US 3720551 A US3720551 A US 3720551A US 00006931 A US00006931 A US 00006931A US 3720551D A US3720551D A US 3720551DA US 3720551 A US3720551 A US 3720551A
- Authority
- US
- United States
- Prior art keywords
- alloy
- particles
- article
- particle
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title abstract description 14
- 229910045601 alloy Inorganic materials 0.000 title description 43
- 239000000956 alloy Substances 0.000 title description 43
- 239000006185 dispersion Substances 0.000 title description 6
- 239000002245 particle Substances 0.000 abstract description 28
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 16
- 239000000843 powder Substances 0.000 abstract description 14
- 150000001875 compounds Chemical class 0.000 abstract description 12
- 238000001953 recrystallisation Methods 0.000 abstract description 10
- 229910000601 superalloy Inorganic materials 0.000 abstract description 10
- 229910052742 iron Inorganic materials 0.000 abstract description 7
- 150000001247 metal acetylides Chemical class 0.000 abstract description 6
- 150000004767 nitrides Chemical class 0.000 abstract description 5
- 229910017052 cobalt Inorganic materials 0.000 abstract description 3
- 239000010941 cobalt Substances 0.000 abstract description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 abstract description 3
- 239000012634 fragment Substances 0.000 abstract description 3
- 239000011159 matrix material Substances 0.000 abstract description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 15
- 229910052759 nickel Inorganic materials 0.000 description 8
- 230000003647 oxidation Effects 0.000 description 7
- 238000007254 oxidation reaction Methods 0.000 description 7
- 238000012545 processing Methods 0.000 description 6
- 238000001125 extrusion Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 238000005728 strengthening Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 230000000930 thermomechanical effect Effects 0.000 description 3
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000007596 consolidation process Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910001092 metal group alloy Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- -1 oxides Chemical class 0.000 description 2
- 238000004663 powder metallurgy Methods 0.000 description 2
- 239000003870 refractory metal Substances 0.000 description 2
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 230000004584 weight gain Effects 0.000 description 1
- 235000019786 weight gain Nutrition 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/10—Alloys containing non-metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C32/00—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
- C22C32/001—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
- C22C32/0015—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
- C22C32/0026—Matrix based on Ni, Co, Cr or alloys thereof
Definitions
- the particles are then treated in an atmosphere which provides on the particle a film of from a small but elfective amount up to about 6 volume percent of the particle of a compound of the alloy selected from the compounds, nitrides, carbides and oxides.
- the particles so treated are then consolidated into an article, which can be a mill form, during which the film is fragmented and the fragments are dispersed throughout the matrix of the article. Further improved properties are obtained by additional working such as by ordinary means as rolling, forming, swaging, etc. to provide a deformation texture while preferably avoiding recrystallization during working.
- the nickel base superalloys In particularly wide use are the nickel base superalloys because they can be made to have good surface stability and high strength to temperatures up to about 80% of their absolute melting temperature. Iron and cobalt alloys continue to be used because of their excellent surface stability or hot corrosion resistance, although they are somewhat weaker than the nickel base superalloys. In any event, to meet various advancing design requirements, met-allurgists not only are seeking to find new compositions for such superalloys to provide them with improved mechanical properties along with surface stability but also they are seeking to improve the mechanical properties of known alloys by thermomechanical processing techniques.
- Another object is to provide such a method for making a gamma prime strengthened nickel base superalloy article, the mechanical strength properties of which are enhanced through improved dispersion strengthening.
- the present invention includes first treating the surface of an alloy particle, in the size range of about 0.0015- 0.03 and of the alloy to be strengthened, to provide a film, of a compound of elements of the alloy and selected from the compounds, oxides, nitrides, carbides and their combinations.
- particles can be oxidized, nitrided or carburized by methods currently used and known in the art.
- the amount of such film produced is an effective amount of about 0.1-6 volume percent of the particle. Above about 6 volume percent, the resulting alloy is too brittle whereas below about 0.1 volume percent microstructural control is more difficult and insufiicient strengthening is achieved.
- the particles are consolidated into an article, which as used herein can be a mill stock form or shape, in a manner well known in the art.
- they were placed in a steel container which then was provided with a vacuum.
- the container was heated and then worked by extrusion to consolidate the particles into a bar.
- One type of container which has been used successfully is about 5" in diameter and about 18" long of mild steel having a wall thickness of about 0.1".
- EXAMPLE 1 One alloy used in the evaluation of the present invention was an iron base alloy consisting norminally of, by weight, 25% Cr, 4% Al, 1% Y with the balance essentially iron and incidental impurities. Such an alloy has good ductility and excellent oxidation resistance to temperatures as high as 2600 F. However, it has relatively low tensile and creep properties at temperatures above about 50% of its absolute melting temperature. Therefore, it was considered an excellent example with which to show the improvement obtainable through the present invention without degradation of the excellent surface stability of this alloy system.
- Vacuum melted ingots of such iron base alloy were argon atomized and screened under argon to 60 mesh powder.
- the atomized powder was provided with a thin skin of oxide by heating in air in the range of from 1100- 1600 F.
- the resulting oxide was predominantly A1 but also included small amounts of such oxides as Fe, A1 0 and Cr O
- the volume fraction of oxide skin on the powder particle in this example was about 1 volume percent.
- the preoxidized powder particles were placed in a mild steel extrusion jacket which was sealed under vacuum. Extrusion was conducted at about 1800 F. to produce a final billet 1.6" by 0.5" by 8'.
- the surface stability characteristics of the alloy powder was substantially unaffected by its being oxidized prior to compaction and extrusion. However, its mechanical pronerties were greatly improved as a result of the combination of such preliminary oxidation and subsequent thermomechanical processing.
- the data of Table II compares the ordinary cast and wrought form of the alloy listed as Condition A with the alloy resulting from the present invention listed as Condition B and Condition C.
- the condition of Example B is the alloy in the as-extruded form previously described.
- the condition of Example C is the alloy after extrusion (primary working) and rolling (secondary working) at 1800 F. with multiple passes and intermediate soaks at 1200" F. until a total reduction from secondary working of at least 75% had been attained.
- the tensile specimens were heat treated in air at 2200 F. for 2 hours prior to testing.
- Condition D The ordinary condition and tensile properties for this alloy in its wrought condition is shown as Condition D.
- the alloy was worked at about 2050 F. to reduce it, without control of recrystallization. Therefore, the alloy was generally recrystallized between working steps.
- the alloy conditions resulting from practice of the present invention are shown by wrought forms E and F. These forms were extruded in steps to a 128/1 ratio in the range of 1900-2000 F., taking care during steps not to recrystallize. Then, after working, these forms were recrystallized at about 2200 F. Thus, aside from such care during working, the heat treatments for all conditions of Table III were the same.
- this Example 2 alloy is greatl improved by the combination of oxides or carbides or both, included through pretreatment, with thermomechanical processing which avoids recrystallization during working. Both the ultimate and 0.2% yield strengths are improved at least about 3 times.
- the alloy of this example currently used in production parts for gas turbine engines, is typical of the gamma prime strengthened, nickel base superalloys which are sensitive to recrystallization during working.
- a preferred form of this invention particularly as it relates to such Ni-base superalloys, includes the combination of compound addition and control of recrystallization during working.
- heating of the particles is conducted in the range of about 1100-1600 F.; the film is in an amount of about 1-3 volume percent; the consolidation is conducted in the range of about 1800-2000 F.; the article is secondarily worked in the range of about 1900-2000 F.; and recrystallization is conducted in the range of about References Cited UNITED STATES PATENTS 6 3,026,200 3/ 1962 Gregory 75206 3,315,342 4/ 1967 Roberts 75206 3,189,989 6/1965 Ebdon 75-206 3,343,952 9/1967 Delgrosso et al 75212 3,322,536 5/1967 Stoddard et a1 75212 3,216,824 11/1965 Boghen et al 75212 3,073,698 1/ 1963 Arbiter 75--212 FOREIGN PATENTS 866,082 4/ 1961 Great Britain 75206 CARL D. QUARFORTH, Primary Examiner B. HUNT, Assistant Examiner U.S. C1. X.R.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Powder Metallurgy (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US693170A | 1970-01-29 | 1970-01-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3720551A true US3720551A (en) | 1973-03-13 |
Family
ID=21723328
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00006931A Expired - Lifetime US3720551A (en) | 1970-01-29 | 1970-01-29 | Method for making a dispersion strengthened alloy article |
Country Status (6)
Country | Link |
---|---|
US (1) | US3720551A (enrdf_load_stackoverflow) |
JP (1) | JPS5014206B1 (enrdf_load_stackoverflow) |
BE (1) | BE756885A (enrdf_load_stackoverflow) |
DE (1) | DE2049546C3 (enrdf_load_stackoverflow) |
FR (1) | FR2074904A5 (enrdf_load_stackoverflow) |
GB (1) | GB1285098A (enrdf_load_stackoverflow) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3982904A (en) * | 1973-06-27 | 1976-09-28 | Viking Metallurgical Corporation | Metal rings made by the method of particle ring-rolling |
US3989559A (en) * | 1973-03-22 | 1976-11-02 | Gte Sylvania Incorporated | Superalloys containing nitrides and process for producing same |
US3992161A (en) * | 1973-01-22 | 1976-11-16 | The International Nickel Company, Inc. | Iron-chromium-aluminum alloys with improved high temperature properties |
US4004891A (en) * | 1973-03-22 | 1977-01-25 | Gte Sylvania Incorporated | Superalloys containing nitrides and process for producing same |
US4030946A (en) * | 1976-04-13 | 1977-06-21 | Carpenter Technology Corporation | Eliminating prior particle boundary delineation |
US4710425A (en) * | 1985-12-17 | 1987-12-01 | Gte Laboratories Inc. | Abrasion resistant articles and composition utilizing a boron-doped refractory particle |
US4921665A (en) * | 1988-03-11 | 1990-05-01 | Scm Metal Products, Inc. | Process for preparing powder metal parts with dynamic properties |
US5209772A (en) * | 1986-08-18 | 1993-05-11 | Inco Alloys International, Inc. | Dispersion strengthened alloy |
JPH06128705A (ja) * | 1992-01-13 | 1994-05-10 | Kobe Steel Ltd | 耐酸化性に優れたヒータ材 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2255975C2 (de) * | 1972-11-15 | 1985-02-07 | Eastman Kodak Co., Rochester, N.Y. | Anwendung des Verfahrens der Nitridierung von Eisen-Legierungsteilchen auf bestimmte Legierungspulver für die Herstellung von Polhörnern von Magnetköpfen |
AT339060B (de) * | 1973-08-02 | 1977-09-26 | Vmw Ranshofen Berndorf Ag | Kriechfeste und hochwarmfeste dispersionsverfestigte werkstoffe auf basis von aluminium bzw. von al-legierungen |
CS204329B1 (en) * | 1978-09-22 | 1981-04-30 | Milan Slesar | Method of making the sintered iron pressings of the hardened iron oxides |
-
0
- BE BE756885D patent/BE756885A/xx unknown
-
1970
- 1970-01-29 US US00006931A patent/US3720551A/en not_active Expired - Lifetime
- 1970-08-26 GB GB41082/70A patent/GB1285098A/en not_active Expired
- 1970-08-31 JP JP45075634A patent/JPS5014206B1/ja active Pending
- 1970-10-09 DE DE2049546A patent/DE2049546C3/de not_active Expired
- 1970-10-28 FR FR7038895A patent/FR2074904A5/fr not_active Expired
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3992161A (en) * | 1973-01-22 | 1976-11-16 | The International Nickel Company, Inc. | Iron-chromium-aluminum alloys with improved high temperature properties |
US3989559A (en) * | 1973-03-22 | 1976-11-02 | Gte Sylvania Incorporated | Superalloys containing nitrides and process for producing same |
US4004891A (en) * | 1973-03-22 | 1977-01-25 | Gte Sylvania Incorporated | Superalloys containing nitrides and process for producing same |
US3982904A (en) * | 1973-06-27 | 1976-09-28 | Viking Metallurgical Corporation | Metal rings made by the method of particle ring-rolling |
US4030946A (en) * | 1976-04-13 | 1977-06-21 | Carpenter Technology Corporation | Eliminating prior particle boundary delineation |
US4710425A (en) * | 1985-12-17 | 1987-12-01 | Gte Laboratories Inc. | Abrasion resistant articles and composition utilizing a boron-doped refractory particle |
US5209772A (en) * | 1986-08-18 | 1993-05-11 | Inco Alloys International, Inc. | Dispersion strengthened alloy |
US4921665A (en) * | 1988-03-11 | 1990-05-01 | Scm Metal Products, Inc. | Process for preparing powder metal parts with dynamic properties |
JPH06128705A (ja) * | 1992-01-13 | 1994-05-10 | Kobe Steel Ltd | 耐酸化性に優れたヒータ材 |
Also Published As
Publication number | Publication date |
---|---|
DE2049546A1 (enrdf_load_stackoverflow) | 1972-01-27 |
DE2049546C3 (de) | 1974-10-24 |
GB1285098A (en) | 1972-08-09 |
BE756885A (fr) | 1971-03-30 |
DE2049546B2 (de) | 1974-03-21 |
FR2074904A5 (enrdf_load_stackoverflow) | 1971-10-08 |
JPS5014206B1 (enrdf_load_stackoverflow) | 1975-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3746581A (en) | Zone annealing in dispersion strengthened materials | |
US3902862A (en) | Nickel-base superalloy articles and method for producing the same | |
US2823988A (en) | Composite matter | |
US5354351A (en) | Cr-bearing gamma titanium aluminides and method of making same | |
US4066449A (en) | Method for processing and densifying metal powder | |
US4297136A (en) | High strength aluminum alloy and process | |
US5746846A (en) | Method to produce gamma titanium aluminide articles having improved properties | |
US5891272A (en) | Nickel-base superalloy having improved resistance to abnormal grain growth | |
US3837930A (en) | Method of producing iron-chromium-aluminum alloys with improved high temperature properties | |
US3159908A (en) | Dispersion hardened metal product and process | |
US3720551A (en) | Method for making a dispersion strengthened alloy article | |
EP0013798A1 (en) | Hot working process for aluminium-magnesium alloys and aluminium-magnesium alloy | |
JPS608296B2 (ja) | 液体金属高速中性子増殖炉用の分散強化フエライト型合金 | |
US3776704A (en) | Dispersion-strengthened superalloys | |
US3562024A (en) | Cobalt-nickel base alloys containing chromium and molybdenum | |
US3723109A (en) | Extrusion of canned metal powders using graphite follower block | |
US3874938A (en) | Hot working of dispersion-strengthened heat resistant alloys and the product thereof | |
US3713788A (en) | Powder metallurgy sintered corrosion and heat-resistant, age hardenable nickel-chromium refractory carbide alloy | |
US2966736A (en) | Aluminum base alloy powder product | |
US3000734A (en) | Solid state fabrication of hard, high melting point, heat resistant materials | |
US3702791A (en) | Method of forming superalloys | |
US2588007A (en) | Titanium-molybdenum-chromium alloys | |
US3658604A (en) | Method of making a high-speed tool steel | |
US2678270A (en) | Molybdenum-tantalum alloys | |
US3700434A (en) | Titanium-nickel alloy manufacturing methods |