US3716898A - Lamp having improved press seal - Google Patents

Lamp having improved press seal Download PDF

Info

Publication number
US3716898A
US3716898A US00175306A US3716898DA US3716898A US 3716898 A US3716898 A US 3716898A US 00175306 A US00175306 A US 00175306A US 3716898D A US3716898D A US 3716898DA US 3716898 A US3716898 A US 3716898A
Authority
US
United States
Prior art keywords
ribbon
lamp
slot
wire
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00175306A
Inventor
J Anderson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GTE Sylvania Inc
Original Assignee
Sylvania Electric Products Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sylvania Electric Products Inc filed Critical Sylvania Electric Products Inc
Application granted granted Critical
Publication of US3716898A publication Critical patent/US3716898A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J5/00Details relating to vessels or to leading-in conductors common to two or more basic types of discharge tubes or lamps
    • H01J5/32Seals for leading-in conductors
    • H01J5/38Pinched-stem or analogous seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • H01J9/32Sealing leading-in conductors
    • H01J9/323Sealing leading-in conductors into a discharge lamp or a gas-filled discharge device
    • H01J9/326Sealing leading-in conductors into a discharge lamp or a gas-filled discharge device making pinched-stem or analogous seals

Definitions

  • This invention relates to lamps having a press seal at one or both ends thereof and having a refractory metal ribbon embedded within the press sea]. It particularly relates to the embedded connection between the ribbon and a lead-in wire or rod.
  • Lamp envelopes that have high operating temperatures are commonly made of a high melting point glass having a high silica content.
  • Such glasses can be quartz, fused silica, Vycor (a glass having appoximately 96% silica) and the like.
  • Such lamp envelopes are usually sealed by a press seal at one or both ends thereof.
  • the press seal is formed by heating the open end of a tubular lamp envelope to the softening point of the glass and pressing the softened end between a pair of jaws.
  • lamps having press seals of the type to which this invention relates are tungsten halogen lamps and the are tubes of arc discharge lamps, such as high pressure mercury vapor lamps and metal halide lamps.
  • the lamp envelopes of such lamps utilize press seals in order to prevent seal failures due either to thermal expansion of the glass or of the metal conductor embedded therein.
  • the high operating temperature of the lamps obviates the use of stem seals, such as are generally used in incandescent and fluorescent lamps, which have much lower operating temperatures.
  • the ribbon is connected to the lead-in wire by partial brazing or tacking.
  • a thin sheet of a suitable metal usually platinum
  • the assembly is placed between a pair of resistance welding electrodes.
  • the assembly is pressed between the electrodes and suflicient electric current passed there- "ice through to heat and tack the elements together, with at least partial melting of the platinum sheet.
  • the bond between the ribbon and lead-in wire may be improved during the press sealing operation if the silica glass is hot enough to melt additional platinum.
  • the brazing or tacking process may cause recrystallization of part of the molybdenum ribbon that is directly between the resistance welding electrodes. Recrystallization results in weakening of the ribbon which can then physically rupture because of thermal cycling that occurs during normal lamp operation. Or the recrystallization can cause high resistance electrical contact between the lead-in wire and the ribbon; the heat generated by the high resistance contact causes further degradation with resultant arcing and finally failure of the press seal.
  • a second disadvantage is that there may be insufficient flow of the brazing metal to insure an adequately low electrical contact resistance. Point contact, as distinguished from a desired area contact, can result in the failure mentioned above.
  • Still another disadvantage of the prior art seal is the possibility of reaction of the brazing metal with materials present in the lamp fill. Such a reaction is possible because the glass does not form a hermetic seal with the lead-in wires; the hermetic seal is formed only in the region of the thin ribbon. Consequently it is possible for materials in gaseous form to penetrate the minuscule passage that exists around the lead-in wire, as far as the ribbon connection at the end of the lead-in wire.
  • the arc tubes of metal halide lamps have a fill including light emitting metals such as are shown in US. Pats. 3,234,421, 3,334,261 and 3,407,327.
  • the metals are present in a gaseous state, as the halide.
  • the metallic halides can penetrate the seal and may react with the brazing metal to form an alloy having an eutectic temperature lower than the actual operating temperature of the seal.
  • a particular light emitting metal such as scandium iodide, could react with the glass to form silicon iodide, which, in turn, could react deleteriously with the platinum to form a platinum-silicon material. The latter material could cause seal failure in the manner mentioned above.
  • a lamp having a press seal in accordance with this invention has a refractory metal wire or rod, usually tungsten, disposed within a high silica glass enclosure which can be the lamp envelope of a high temperature incandescent lamp or the arc tube of an arc discharge lamp.
  • a refractory metal wire or rod usually tungsten
  • One end of the refractory metal wire or rod is embedded within the press seal and the other end is connected to a filament or electrode within the enclosure.
  • the embedded end of the refractory metal wire or rod has a longitudinal slot therein; securely held within the slot is one end of a thin refractory metal ribbon, the ribbon itself being completely embedded within the press seal.
  • the ribbon is reld within the slot by clamping pressure exerted by the sides of the slot.
  • a longitudinal slot is formed in one end of the refractory metal wire.
  • the slot can be formed, for example, by grinding, machining, electrical disintegration, sonic cavitation or laser beam, although other methods may be equally suitable.
  • the slot must have a sufiicient opening to permit insertion of the ribbon therein and must have suflicient depth to provide adequate contact area between the sides of the slot and the ribbon. Adequate contact area is necessary in order to provide low electrical contact resistance.
  • the sides of the slot are physically pressed together, preferably with heat but at a temperature lower than the recrystallization temperature of the metals involved.
  • the pressure exerted must be suflicient to deform and close the slot but must not be so great as to crush or rupture the metal having the lower yield strength.
  • the metal having the higher yield strength is preferably heated to a higher temperature than the other metal.
  • the heating and joining are done in an inert or reducing atmosphere, in order to prevent oxidation of the metal.
  • FIGS. 1 and 2 are illustrations of an arc discharge tube and a tungsten halogen lamp, respectively, having press seals in accordance within this invention.
  • FIGS. 3 and 4 are expanded views of a slotted rod and a refractory metal ribbon, before and after the slot has been closed on the ribbon.
  • the lamp has a high silica glass envelope 1 having press seals 2 at either end thereof. Disposed within envelope 1 are electrodes 3 at either end thereof, the electrodes consisting of tungsten coils 6 mounted on tungsten rods 7. In addition, starter electrode 4 is disposed at one end of envelope 1 adjacent one electrode 3. Starter electrode 4 comprises the inwardly projecting end of a tungsten or tantalum rod 8.
  • Embedded within press seals 2 are thin molybdenum ribbons 5, one ribbon for each electrode. Connection between each ribbon and its respective tiungsten rod 7 is established, prior to formation of press seal 2, by inserting the end of ribbon 5 into a slot at the end of the rod and pressing the sides of the slot together. The other end of each ribbon can then be connected to external lead-in wires by the same method.
  • prior art brazing methods may also be used in connecting the ribbon to the external lead-in wire, since the operating temperature of the seal thereat may be low enough to permit such a connection. For the same reason, brazing may be used to connect the ribbon to the starter electrode 4.
  • envelope 1 is exhausted, filled and sealed by methods known to the art.
  • each tungsten rod 7 was 45 mils in diameter.
  • slot 9 was diametrically formed at one end of rod 7, the slot being 6 mils thick and about 60 to 80 mils deep.
  • Molybdenum ribbon 5 was rectangular, measuring about bi inch by inch, and was about 1.3 mils thick at its center. A long end of ribbon 5 was centrally inserted into slot 9 and the rod was then placed between two so-called welding electrodes. The welding electrodes were made of thoriated tungsten and had a diameter of their tip of abo'ut 5% inch.
  • Rod 7 was so aligned between the welding electrodes that when the latter were closed, they exerted a substantially normal closing force on each side 10 of slot 9.
  • a closing force of 7 pounds was applied between the welding electrodes while sufiicient electric current was passed therebetween to heat the slotted portion of rod 7 to about 00 or 1600 C.
  • the heat and pressure were sufficient to deform the sides of the slot and close them securely against the molybdenum ribbon, as shown in FIG. 4, while being insufficient to cause recrystallization in the tungsten rod.
  • the pressure suflicient to extrude or crack the molybdenum ribbon.
  • Prior to closure of the slot there was poor heat transfer between rod 7 and ribbon 5, dso ribbon 5 was not heated to the same extent as was r0 7.
  • the assembly was blanketed with forming gas 15% hydrogen, nitrogen) in order to prevent oxidation of any of the metal.
  • FIG. 2 shows an example of a tungsten halogen lamp utilizing a seal in accordance with the present invention.
  • the lamp has a high silica glass envelope 11 having a press seal 12 at one end thereof, a coiled tungsten filament 13 disposed within envelope 11 and a lamp fill including halogen.
  • Filament 13 has a coiled leg 14 at each end thereof, both legs 14 extending into press seal 12.
  • Each coiled leg 14 has a tungsten rod 16 securely inserted therein, the end of rod 16 protruding slightly beyond the end of leg 14 and being slotted.
  • Embedded with press seal 12 are two spaced apart molybdenum ribbons 15. Each ribbon 15 is fastened within the slot of a rod 16 in the manner described above. An external lead-in wire -18 is connected to each ribbon 15 in order to provide for connection to an external power source.
  • the slot shd uld not be so wide as to result in fracture of the metal when the sides of the slot are pressed and closed.
  • steps which comprise: forming a longitudinal slot in one end of a lead-in wire or rod; inserting one end of a refractory metal ribbon in said slot; closing the sides of said slot on said ribbon; and embedding said ribbon in a press seal of a lamp envelope.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

A THIN REFRACTORY METAL RIBBON IS COMPLETELY EMBEDDED IN THE PRESS SEAL OF A HIGH SILICA GLASS LAMP ENVELOPE. ONE END OF THE RIBBON IS SECURELY HELD WITHIN A LONGITUDINAL SLOT OF LAMP LEAD-IN WIRE, THEREBY ESTABLISHING PHYSICAL AND ELETICAL CONNECTION BETWEEN THE RIBBON AND THE LEADIN WIRE.

Description

Feb. 20, 1973 J, w. ANDERSON LAIP HAVING IllPROVED PRESS SEAL Original Filea Aug. 28. 1970 FIGJ FIG. 3
" FIG. 5
United States Patent O US. Cl. 29-2513 4 Claims ABSTRACT OF THE DISCLOSURE A thin refractory metal ribbon is completely embedded in the press seal of a high silica glass lamp envelope. One end of the ribbon is securely held within a longitudinal slot of a lamp lead-in wire, thereby establishing physical and electical connection between the ribbon and the leadin wire.
This is a division of application Ser. No. 67,699, filed Aug. 28, 1970 now U.S. Pat. No. 3,668,456.
BACKGROUND OF THE INVENTION Field of the invention This invention relates to lamps having a press seal at one or both ends thereof and having a refractory metal ribbon embedded within the press sea]. It particularly relates to the embedded connection between the ribbon and a lead-in wire or rod.
Description of the prior art Lamp envelopes that have high operating temperatures are commonly made of a high melting point glass having a high silica content. Such glasses can be quartz, fused silica, Vycor (a glass having appoximately 96% silica) and the like.
Such lamp envelopes are usually sealed by a press seal at one or both ends thereof. The press seal is formed by heating the open end of a tubular lamp envelope to the softening point of the glass and pressing the softened end between a pair of jaws.
Examples of lamps having press seals of the type to which this invention relates are tungsten halogen lamps and the are tubes of arc discharge lamps, such as high pressure mercury vapor lamps and metal halide lamps.
The lamp envelopes of such lamps utilize press seals in order to prevent seal failures due either to thermal expansion of the glass or of the metal conductor embedded therein. The high operating temperature of the lamps obviates the use of stem seals, such as are generally used in incandescent and fluorescent lamps, which have much lower operating temperatures.
It is known, in the art of lamp envelopes having press seals, to employ a thin refractory metal ribbon to establish electrical connection between the external lead-in wires and the internal filaments or electrodes. The use of thin metal ribbons, and the reasons therefor, are shown in US. Pats. 1,271,245 and 2,667,595, although the ribbons shown therein are flattened portions of a single conductor extending completely through the seal. Generally, however, the ribbon and wire are made of dissimilar metals, the ribbon metal being selected for its ductility, usually molybdenum, and the internal wire metal being selected for its refractoriness, usually tungsten.
Generally, the ribbon is connected to the lead-in wire by partial brazing or tacking. In order to make such a connection, a thin sheet of a suitable metal, usually platinum, is placed between the ribbon and the lead-in wire, and the assembly is placed between a pair of resistance welding electrodes. The assembly is pressed between the electrodes and suflicient electric current passed there- "ice through to heat and tack the elements together, with at least partial melting of the platinum sheet. The bond between the ribbon and lead-in wire may be improved during the press sealing operation if the silica glass is hot enough to melt additional platinum.
Although such a brazed or tacked connection is satisfactory for some applications, it has some disadvantages, which are alleviated by this invention.
First, the brazing or tacking process may cause recrystallization of part of the molybdenum ribbon that is directly between the resistance welding electrodes. Recrystallization results in weakening of the ribbon which can then physically rupture because of thermal cycling that occurs during normal lamp operation. Or the recrystallization can cause high resistance electrical contact between the lead-in wire and the ribbon; the heat generated by the high resistance contact causes further degradation with resultant arcing and finally failure of the press seal.
A second disadvantage is that there may be insufficient flow of the brazing metal to insure an adequately low electrical contact resistance. Point contact, as distinguished from a desired area contact, can result in the failure mentioned above.
Still another disadvantage of the prior art seal is the possibility of reaction of the brazing metal with materials present in the lamp fill. Such a reaction is possible because the glass does not form a hermetic seal with the lead-in wires; the hermetic seal is formed only in the region of the thin ribbon. Consequently it is possible for materials in gaseous form to penetrate the minuscule passage that exists around the lead-in wire, as far as the ribbon connection at the end of the lead-in wire.
For example, the arc tubes of metal halide lamps have a fill including light emitting metals such as are shown in US. Pats. 3,234,421, 3,334,261 and 3,407,327. During lamp operation, the metals are present in a gaseous state, as the halide. In the gaseous form, the metallic halides can penetrate the seal and may react with the brazing metal to form an alloy having an eutectic temperature lower than the actual operating temperature of the seal. Or else a particular light emitting metal, such as scandium iodide, could react with the glass to form silicon iodide, which, in turn, could react deleteriously with the platinum to form a platinum-silicon material. The latter material could cause seal failure in the manner mentioned above.
SUMMARY OF THE INVENTION A lamp having a press seal in accordance with this invention has a refractory metal wire or rod, usually tungsten, disposed within a high silica glass enclosure which can be the lamp envelope of a high temperature incandescent lamp or the arc tube of an arc discharge lamp. One end of the refractory metal wire or rod is embedded within the press seal and the other end is connected to a filament or electrode within the enclosure.
The embedded end of the refractory metal wire or rod has a longitudinal slot therein; securely held within the slot is one end of a thin refractory metal ribbon, the ribbon itself being completely embedded within the press seal. The ribbon is reld within the slot by clamping pressure exerted by the sides of the slot.
In the manlufacture of a press seal in accordance with this invention, a longitudinal slot is formed in one end of the refractory metal wire. The slot can be formed, for example, by grinding, machining, electrical disintegration, sonic cavitation or laser beam, although other methods may be equally suitable.
The slot must have a sufiicient opening to permit insertion of the ribbon therein and must have suflicient depth to provide adequate contact area between the sides of the slot and the ribbon. Adequate contact area is necessary in order to provide low electrical contact resistance.
After the ribbon has been inserted into the slot, the sides of the slot are physically pressed together, preferably with heat but at a temperature lower than the recrystallization temperature of the metals involved. The pressure exerted must be suflicient to deform and close the slot but must not be so great as to crush or rupture the metal having the lower yield strength.
In joining metals having different yield strengths, the metal having the higher yield strength is preferably heated to a higher temperature than the other metal. Preferably, also, the heating and joining are done in an inert or reducing atmosphere, in order to prevent oxidation of the metal.
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 and 2 are illustrations of an arc discharge tube and a tungsten halogen lamp, respectively, having press seals in accordance Within this invention.
FIGS. 3 and 4 are expanded views of a slotted rod and a refractory metal ribbon, before and after the slot has been closed on the ribbon.
DESCRIPTION OF THE PREFERRED EMBODIMENTS In one example of an arc discharge lamp having press seals in accordance with this invention, as shown in FIG. 1, the lamp has a high silica glass envelope 1 having press seals 2 at either end thereof. Disposed within envelope 1 are electrodes 3 at either end thereof, the electrodes consisting of tungsten coils 6 mounted on tungsten rods 7. In addition, starter electrode 4 is disposed at one end of envelope 1 adjacent one electrode 3. Starter electrode 4 comprises the inwardly projecting end of a tungsten or tantalum rod 8.
Embedded within press seals 2 are thin molybdenum ribbons 5, one ribbon for each electrode. Connection between each ribbon and its respective tiungsten rod 7 is established, prior to formation of press seal 2, by inserting the end of ribbon 5 into a slot at the end of the rod and pressing the sides of the slot together. The other end of each ribbon can then be connected to external lead-in wires by the same method. However, prior art brazing methods may also be used in connecting the ribbon to the external lead-in wire, since the operating temperature of the seal thereat may be low enough to permit such a connection. For the same reason, brazing may be used to connect the ribbon to the starter electrode 4.
After press seals 2 have been formed, envelope 1 is exhausted, filled and sealed by methods known to the art.
In one example of a 1000 watt arc tube, 94 mm. long, made in accordance with this invention, each tungsten rod 7 was 45 mils in diameter. As shown in FIG. 3, slot 9 was diametrically formed at one end of rod 7, the slot being 6 mils thick and about 60 to 80 mils deep. Molybdenum ribbon 5 was rectangular, measuring about bi inch by inch, and was about 1.3 mils thick at its center. A long end of ribbon 5 was centrally inserted into slot 9 and the rod was then placed between two so-called welding electrodes. The welding electrodes were made of thoriated tungsten and had a diameter of their tip of abo'ut 5% inch.
Rod 7 was so aligned between the welding electrodes that when the latter were closed, they exerted a substantially normal closing force on each side 10 of slot 9. A closing force of 7 pounds was applied between the welding electrodes while sufiicient electric current was passed therebetween to heat the slotted portion of rod 7 to about 00 or 1600 C. The heat and pressure were sufficient to deform the sides of the slot and close them securely against the molybdenum ribbon, as shown in FIG. 4, while being insufficient to cause recrystallization in the tungsten rod. Nor was the pressure suflicient to extrude or crack the molybdenum ribbon. Prior to closure of the slot there was poor heat transfer between rod 7 and ribbon 5, dso ribbon 5 was not heated to the same extent as was r0 7. t
Throughout the process, the assembly was blanketed with forming gas 15% hydrogen, nitrogen) in order to prevent oxidation of any of the metal.
The more uniform joint of the present invention, as contrasted with a prior art brazed connection. where there are irregular surfaces between the rod and theribbon results in several unexpected advantages. First, the stresses exerted on the glass by the connection are reduced. Second, the speed of evacuation of the lamp envelope, during the exhalusting and filling process, is increased.
FIG. 2 shows an example of a tungsten halogen lamp utilizing a seal in accordance with the present invention. The lamp has a high silica glass envelope 11 having a press seal 12 at one end thereof, a coiled tungsten filament 13 disposed within envelope 11 and a lamp fill including halogen. Filament 13 has a coiled leg 14 at each end thereof, both legs 14 extending into press seal 12. Each coiled leg 14 has a tungsten rod 16 securely inserted therein, the end of rod 16 protruding slightly beyond the end of leg 14 and being slotted.
Embedded with press seal 12 are two spaced apart molybdenum ribbons 15. Each ribbon 15 is fastened within the slot of a rod 16 in the manner described above. An external lead-in wire -18 is connected to each ribbon 15 in order to provide for connection to an external power source.
It may be desirable, in order to minimize electrical contact resistance between a slotted rod and the metal ribbon,
' to fold the end of the ribbon upon itself and insert the folded end into the slot prior to closure. The length of the folded portion would only have to be about equal to the depth of the slot. Also, the slot would have to be widened somewhat to permit insertion of the folded end. However, the slot shd uld not be so wide as to result in fracture of the metal when the sides of the slot are pressed and closed.
I claim:
1. In the manufacture of a lamp, the steps which comprise: forming a longitudinal slot in one end of a lead-in wire or rod; inserting one end of a refractory metal ribbon in said slot; closing the sides of said slot on said ribbon; and embedding said ribbon in a press seal of a lamp envelope.
2. The process of claim 1 including the step of folding said end of said ribbon prior to insertion thereof in said slot.
3. The process of claim 1 wherein said closing is accomplished by pressing the sides of said slot together while heat is applied thereto.X
4. The process of claim 1 including the step of connecting the other end of said ribbon to an external lead-in wire prior to said embedding step, and where said embedding is accomplished by inserting the ribbon and lead-in wire assembly into the open end of a high silica glass envelope, heating said open end of said envelope to its softening point and pressing said softened end between 'a pair of jaws to form a press seal.
References Cited UNITED STATES PATENTS 3,668,391 6/1972 Kimball 313-315 CHARLES W. LANHAM, Primary Examiner I. W. DAVIE, Assistant Examiner
US00175306A 1971-08-26 1971-08-26 Lamp having improved press seal Expired - Lifetime US3716898A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US17530671A 1971-08-26 1971-08-26

Publications (1)

Publication Number Publication Date
US3716898A true US3716898A (en) 1973-02-20

Family

ID=22639777

Family Applications (1)

Application Number Title Priority Date Filing Date
US00175306A Expired - Lifetime US3716898A (en) 1971-08-26 1971-08-26 Lamp having improved press seal

Country Status (1)

Country Link
US (1) US3716898A (en)

Similar Documents

Publication Publication Date Title
US3668391A (en) Tungsten halogen lamp having improved seal of molybdenum aluminide
US3668456A (en) Lamp having improved press seal
US4074167A (en) Halogen incandescent lamp
US3742283A (en) Press seal for lamp having fused silica envelope
JPH1173921A (en) Metal halide lamp with ceramic discharge tube
JP3665510B2 (en) Arc tube for discharge lamp equipment
US4703221A (en) Electric lamp and method of making
US2786882A (en) Lead-in seal for electrical discharge devices
US4539509A (en) Quartz to metal seal
US4354137A (en) Incandescent lamp having seal-anchored filament mount, and method of making such lamp
US3588315A (en) Quartz-to-metal seal
US4132922A (en) Gas-filled incandescent lamp with integral fuse assembly
EP0160316B1 (en) Single-ended high intensity discharge lamp and manufacture
US4668204A (en) Single-ended high intensity discharge lamp and manufacture
US3716898A (en) Lamp having improved press seal
US4419602A (en) Electric lamp
US2675496A (en) High-pressure discharge lamp and seal therefor
US3621111A (en) Lead-in conductor for electrical devices
US2123015A (en) Seal for discharge lamps
US2667595A (en) Ribbon lead construction
JPH02183961A (en) Halogen incandescent lamp and manufacture thereof
US4370589A (en) Filament connector means for electric incandescent lamp
US3448321A (en) Electric incandescent lamp and method of manufacture
US3502932A (en) Incandescent lamp and method of manufacture
US4661739A (en) Welded tungsten filament to lead joint