US3712371A - Method for heat recovery from synthesis gas - Google Patents
Method for heat recovery from synthesis gas Download PDFInfo
- Publication number
- US3712371A US3712371A US00087451A US3712371DA US3712371A US 3712371 A US3712371 A US 3712371A US 00087451 A US00087451 A US 00087451A US 3712371D A US3712371D A US 3712371DA US 3712371 A US3712371 A US 3712371A
- Authority
- US
- United States
- Prior art keywords
- tubes
- straight
- cooling
- gases
- tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 18
- 230000015572 biosynthetic process Effects 0.000 title description 10
- 238000003786 synthesis reaction Methods 0.000 title description 9
- 238000011084 recovery Methods 0.000 title description 3
- 239000007789 gas Substances 0.000 claims abstract description 54
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 238000001816 cooling Methods 0.000 abstract description 16
- 239000004071 soot Substances 0.000 abstract description 13
- 238000002485 combustion reaction Methods 0.000 abstract description 7
- 229930195733 hydrocarbon Natural products 0.000 abstract description 7
- 150000002430 hydrocarbons Chemical class 0.000 abstract description 7
- 239000002826 coolant Substances 0.000 description 16
- 230000008021 deposition Effects 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000110 cooling liquid Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 239000002918 waste heat Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005381 potential energy Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D51/00—Auxiliary pretreatment of gases or vapours to be cleaned
- B01D51/10—Conditioning the gas to be cleaned
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/44—Carbon
- C09C1/48—Carbon black
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/005—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for only one medium being tubes having bent portions or being assembled from bent tubes or being tubes having a toroidal configuration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/02—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
- F28D7/024—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of only one medium being helically coiled tubes, the coils having a cylindrical configuration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/0006—Controlling or regulating processes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/0075—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for syngas or cracked gas cooling systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S165/00—Heat exchange
- Y10S165/355—Heat exchange having separate flow passage for two distinct fluids
- Y10S165/40—Shell enclosed conduit assembly
- Y10S165/427—Manifold for tube-side fluid, i.e. parallel
- Y10S165/436—Bent conduit assemblies
- Y10S165/437—Coiled
- Y10S165/438—Helical
Definitions
- This invention relates to an improved method and apparatus for cooling and abstracting heat from gases which have extremely high temperatures and which contain matter subject to deposition in heat exchanger tubes through which the gases flow.
- This invention is particularly applicable to the generation of high pressure steam, e.g., steam having a pressure of 50l50 atmospheres, using the sensible heat from gases obtained by the partial combustion of hydrocarbons with oxygen or oxygen-enriched air, e.g., synthesis gas obtained from a pressure oil gasification process.
- Crude synthesis gas produced by the partial combustion of hydrocarbons generally is discharged from the reactor at a temperature of from 1,300 to 1,400C or higher, thus making it an obvious source of potential energy.
- the thermal energy in synthesis gas can be recovered only with great difficulty utilizing conventional heat exchangers, because of the presence in such gases of large amounts of soot (i.e., free carbon), often up to 5 percent or more, which tends to deposit on the inside of heat exchanger tubes.
- soot i.e., free carbon
- helically coiled tubes While effective in overcoming the soot deposition problem, the use of helically coiled tubes places certain other limitations on the process, particularly in respect to permissible pipewall temperatures and the pressure differential between the cooling medium and the gases to be cooled. These limitations result from the lower mechanical strength of helically coiled tubes due to their method of manufacture. (Generally coiled tubes are formed by winding straight tubes which results in unroundness which in turn appreciably reduces the mechanical strength of the coiled tube.) Because of this decreased strength, helically coiled tubes are not wellsuited for the generation steam at high pressures, e.g., 50 to 150 atmospheres or higher, from hot gases obtained at moderate pressures. Under such conditions, the pressure of the coolant on the outside of the coiled tube considerably exceeds that of the hot gases flowing through the tube. Moreover, high tubewall temperatures are often experienced which also contribute to tube failures.
- helically coiled tubes can be safely and effectively used for the cooling of high temperature soot-containing gases with the concomitant generation of high pressure steam, if the gases prior to being passed through the coiled tubes are first partly cooled by flowing them through one or more straight tubes under the critical conditions hereinafter described.
- a coolant preferably water
- the length of the tube and velocity are selected so the gases passing through the straight tube are cooled to a temperature not exceeding 1,200C.
- the temperature of the gases discharging from the straight tube will be between 1,200 and l,000C.
- the gases are subsequently further cooled, e.g., to a final temperature of about 200-400C, by flowing them through one or more helically coiled tubes which are also in contact with the coolant and which are connected to the straight tubes.
- soot deposits which normally form more rapidly in straight cooling tubes than in helical tubes, occur to a surprisingly small extent and do not interfer with the operation of the process as would be expected.
- the upper limit of the mass velocity of the gases is governed primarily by permissible tubewall temperatures.
- mass velocities of above 500 kglm lsec are avoided since at these high velocities the temperature of the tubewalls become so high that resistance to the erosive effect of soot particles rapidly diminishes.
- the mass velocity of the gases in the straight tube should be from 100 to about 500 kg/mlsec, and more preferably from 200-350 kg/mlsec.
- the straight tube For cooling to a temperature not exceeding 1,200C it is as a rule sufiicient for the straight tube to have a length of about 2 meters. If it is desirable for the heat transmission to be increased, the gas velocity may be increased and the tube length may be chosen longer than two meters to obtain a sufficiently long residence time. It is also possible to use several straight tubes arranged in parallel, each connected to a helical coilas defined.
- the length of the straight tube may be chosen up to ten meters. As a rule, however, this length will not be adopted on account of the consequent height of the heat exchanger. For this reason, the tube length will preferably be kept smaller by using several straight tubes arranged in parallel, each connected to a helical coil.
- the longitudinal axis of the coils may form a small angle with the extension of the longitudinal axis of the straight tube.
- the connection of the straight tube to the helically coiled tube may be such that the longitudinal axis of the said coils is, at least substantially, in the extension of the longitudinal axis of the straight tube, or such that the longitudinal axis of the said coils is, at least substantially, parallel with the extension of the longitudinal axis of the straight tube.
- the helically coiled tube may consist of two parts, the arrangement being such that the first part extends in the direction of the straight tube and connects to a second part, the coils of which have the same longitudinal axis but have a different radius relative to the longitudinal axis.
- This second part can be situated inside or outside the first part, preferably on the inside. In this way concentric helically coiled tubes are form ed.
- the length of the straight tube is preferably chosen larger than 2 meters, for example 4-6 meters.
- the mass velocity in this case is preferably 200-350 kglm lsec.
- the cooling liquid is preferably introduced in such a way that the straight tube (tubes) is (are) cooled in parallel flow with the gases flowing in this tube (these tubes). During the cooling, at least part of the cooling liquid is evaporated and a mixture of coolant liquid and generated vapors formed. The same coolant also cools the helical coils where additional quantities of vapor (steam) are formed. It is generally advantageous (in view of the rate of flow and turbulence of the cooling medium) to ensure that the free cross sectional area of the space accommodating the straight tubes is not more than 30 percent of the cross sectional area of the space accommodating the helical coil (coils).
- baffle plates provided in the space accommodating the straight tube (tubes).
- baffle plates having the shape of a curved shield arranged symmetrically along the wall of the space, the concave side being turned towards the wall, are very suitable.
- FIG. I is a diagrammatic representation of an ap* paratus for the partial combustion of hydrocarbons and the cooling thereof.
- FIG. II is a diagrammatic representation of an embodiment of the heat exchanger.
- FIG. III shows a cross-section of an embodiment of the heat exchanger, through the space accommodating the straight tubes, and in which the heat exchanger is provided with four straight tubes, four helical coils and with baffle plates which are arranged in the space accommodating the straight tubes.
- part A represents the actual reactor which is provided with fuel supply line q leading to burner A of the reactor, and with oxygen supply line b. If steam is used, it may be supplied through either line q or line b.
- Part B is a connection between the reactor and connecting piece C.
- the hot gases are passed through connection B and connecting piece C into heat exchanger D comprising a vertical outer shell including top and bottom closures which is provided with a straight tube and a helical coil, and further with discharge 0 for the cooled gases and an inlet and outlet for the coolant, d and e, respectively.
- the straight tube which has a length of at least 2 meters is designated by f, and the helical coil by g.
- FIG. II is a partial longitudinal cross-section of an embodiment of the heat exchanger.
- the heat exchanger comprises a cylindrical vessel l3.having a bottom plate 3, placed on a connecting piece 5, which is provided with a gas supply line 4.
- the heat exchanger further comprises discharges 8 and 9 for the cooled gas, a coolant supply line 10, the bottom end of which is provided with a spray nozzle 11, helical coils 6 and 7 connected to straight tubes 1 and 2, respectively, the length of which is at least 2 meters.
- the coolant preferably water, is supplied through the line 10 and is sprayed against the bottom plate subsequently flowing upwards, thereby cooling straight tubes 1 and 2 and helical coils 6 and 7.
- the helical coils are arranged in annular space 14 formed by the wall of the supply line and the shell of the cylindrical vessel.
- the helical coils have a common longitudinal axis which coincides with the longitudinal axis of the supply line.
- the heat exchanger further has two baffle plates for the cooling water which extend from the bottom plate to substantially the place where the helical coils connect to the straight tubes. The location of these baffle plates is not shown.
- a hot-soot containing gas at a temperature of 1,300 to 1,400C or higher e.g., crude synthesis gas
- the hot gas is flowed through straight tubes 1 and 2 at a mass velocity of at least kglm lsec.
- the gas in the straight tubes is cooled to a temperature between l,000l,200CC by means of a coolant liquid, in this case water, supplied through line 10 and sprayed against bottom plate 3 by means of spray nozzle 11.
- a coolant liquid in this case water
- FIG. III is a cross-section through the space accommodating the straight tubes of an embodiment of a heat exchanger having the configuration shown in FIG. II, but which has four helical coils connected to four straight tubes.
- the cross-section shows the baffle plates for the coolant, the four straight tubes and the coolant supply line.
- the reference numerals 20, 21, 22 and 23'designate the straight tubes 24 is the coolant supply line
- 25 is the shell of the heat exchanger
- 26 is the space accommodating the tubes 20-23
- 27, 28, 29 and 30 are shield-shaped baffle plates for the coolant, which are secured to the shell 25.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Steroid Compounds (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL6916941.A NL163968C (nl) | 1969-11-11 | 1969-11-11 | Werkwijze voor het koelen van roet bevattende gassen door deze door een of meer rechte pijpen en daarna door een of meer schroefvormig gewonden pijpen te leiden. |
Publications (1)
Publication Number | Publication Date |
---|---|
US3712371A true US3712371A (en) | 1973-01-23 |
Family
ID=19808363
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00087451A Expired - Lifetime US3712371A (en) | 1969-11-11 | 1970-11-06 | Method for heat recovery from synthesis gas |
Country Status (18)
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3788281A (en) * | 1972-03-27 | 1974-01-29 | Shell Oil Co | Process and waste-heat boiler for cooling soot-containing synthesis gas |
JPS53109850U (enrdf_load_stackoverflow) * | 1977-02-10 | 1978-09-02 | ||
DE3114556A1 (de) * | 1981-03-10 | 1982-09-30 | Injecta AG, Teufenthal, Aargau | Fluessigkeitsgekuehlte elektrische baugruppe sowie verfahren zu deren herstellung |
US4564067A (en) * | 1982-02-24 | 1986-01-14 | L. & C. Steinmuller Gmbh | Waste-heat tank |
US4852644A (en) * | 1986-11-29 | 1989-08-01 | Man Gutehoffnungshuette Gmbh | Tubular heat exchanger |
US5004374A (en) * | 1990-02-28 | 1991-04-02 | Bettie Grey | Method of laying out a pathway for piping |
US5099916A (en) * | 1990-03-12 | 1992-03-31 | Man Gutehoffnungshutte Ag | Cooler for particle-laden gases |
KR20110128850A (ko) * | 2009-03-09 | 2011-11-30 | 지멘스 악티엔게젤샤프트 | 연속 흐름식 증발기 |
US20110315095A1 (en) * | 2009-03-09 | 2011-12-29 | Brueckner Jan | Continuous evaporator |
CN106940019A (zh) * | 2017-04-17 | 2017-07-11 | 东北师范大学 | 基于负反馈控制的多环芳烃减排装置 |
US20200248087A1 (en) * | 2019-02-05 | 2020-08-06 | Saudi Arabian Oil Company | Producing Synthetic Gas |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL7309228A (nl) * | 1973-07-03 | 1975-01-07 | Shell Int Research | Inrichting en werkwijze voor het koelen van hete gassen. |
GB2115129B (en) * | 1982-02-15 | 1984-10-31 | Shell Int Research | Process for the cooling of small particles-containing gases |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2967515A (en) * | 1956-12-21 | 1961-01-10 | Shell Oil Co | Waste-heat boiler |
CA634687A (en) * | 1962-01-16 | Shell Oil Company | Helical-tube waste-heat boiler |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1213923A (enrdf_load_stackoverflow) * |
-
0
- BE BE758344D patent/BE758344A/nl not_active IP Right Cessation
-
1969
- 1969-11-11 NL NL6916941.A patent/NL163968C/xx not_active IP Right Cessation
-
1970
- 1970-11-06 US US00087451A patent/US3712371A/en not_active Expired - Lifetime
- 1970-11-09 DE DE2055059A patent/DE2055059B2/de not_active Ceased
- 1970-11-09 FR FR7040194A patent/FR2067089B1/fr not_active Expired
- 1970-11-09 CS CS7526A patent/CS166019B2/cs unknown
- 1970-11-09 DK DK567470AA patent/DK128202B/da not_active IP Right Cessation
- 1970-11-09 GB GB5314970A patent/GB1332809A/en not_active Expired
- 1970-11-09 IE IE1421/70A patent/IE34711B1/xx unknown
- 1970-11-09 SE SE7015082A patent/SE370690B/xx unknown
- 1970-11-09 FI FI3004/70A patent/FI53830C/fi active
- 1970-11-09 CH CH1657870A patent/CH543298A/de not_active IP Right Cessation
- 1970-11-09 ES ES385349A patent/ES385349A1/es not_active Expired
- 1970-11-09 CA CA097,739A patent/CA941364A/en not_active Expired
- 1970-11-09 NO NO4256/70A patent/NO132558C/no unknown
- 1970-11-09 ZA ZA707557A patent/ZA707557B/xx unknown
- 1970-11-09 TR TR17154A patent/TR17154A/xx unknown
- 1970-11-09 AT AT1006870A patent/AT323710B/de not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA634687A (en) * | 1962-01-16 | Shell Oil Company | Helical-tube waste-heat boiler | |
US2967515A (en) * | 1956-12-21 | 1961-01-10 | Shell Oil Co | Waste-heat boiler |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3788281A (en) * | 1972-03-27 | 1974-01-29 | Shell Oil Co | Process and waste-heat boiler for cooling soot-containing synthesis gas |
JPS53109850U (enrdf_load_stackoverflow) * | 1977-02-10 | 1978-09-02 | ||
DE3114556A1 (de) * | 1981-03-10 | 1982-09-30 | Injecta AG, Teufenthal, Aargau | Fluessigkeitsgekuehlte elektrische baugruppe sowie verfahren zu deren herstellung |
US4564067A (en) * | 1982-02-24 | 1986-01-14 | L. & C. Steinmuller Gmbh | Waste-heat tank |
US4852644A (en) * | 1986-11-29 | 1989-08-01 | Man Gutehoffnungshuette Gmbh | Tubular heat exchanger |
US5004374A (en) * | 1990-02-28 | 1991-04-02 | Bettie Grey | Method of laying out a pathway for piping |
US5099916A (en) * | 1990-03-12 | 1992-03-31 | Man Gutehoffnungshutte Ag | Cooler for particle-laden gases |
KR20110128850A (ko) * | 2009-03-09 | 2011-11-30 | 지멘스 악티엔게젤샤프트 | 연속 흐름식 증발기 |
US20110315094A1 (en) * | 2009-03-09 | 2011-12-29 | Brueckner Jan | Continuous Evaporator |
US20110315095A1 (en) * | 2009-03-09 | 2011-12-29 | Brueckner Jan | Continuous evaporator |
CN106940019A (zh) * | 2017-04-17 | 2017-07-11 | 东北师范大学 | 基于负反馈控制的多环芳烃减排装置 |
US20200248087A1 (en) * | 2019-02-05 | 2020-08-06 | Saudi Arabian Oil Company | Producing Synthetic Gas |
US11807822B2 (en) * | 2019-02-05 | 2023-11-07 | Saudi Arabian Oil Company | Producing synthetic gas |
Also Published As
Publication number | Publication date |
---|---|
FR2067089A1 (enrdf_load_stackoverflow) | 1971-08-13 |
NO132558C (enrdf_load_stackoverflow) | 1975-11-26 |
NL163968B (nl) | 1980-06-16 |
BE758344A (nl) | 1971-05-03 |
DK128202B (da) | 1974-03-18 |
AT323710B (de) | 1975-07-25 |
NL6916941A (enrdf_load_stackoverflow) | 1971-05-13 |
NL163968C (nl) | 1980-11-17 |
FI53830B (fi) | 1978-05-02 |
FI53830C (fi) | 1978-08-10 |
DE2055059A1 (de) | 1971-05-19 |
FR2067089B1 (enrdf_load_stackoverflow) | 1974-02-01 |
DE2055059B2 (de) | 1979-10-31 |
SE370690B (enrdf_load_stackoverflow) | 1974-10-28 |
CS166019B2 (enrdf_load_stackoverflow) | 1976-01-29 |
GB1332809A (en) | 1973-10-03 |
CH543298A (de) | 1973-10-31 |
ES385349A1 (es) | 1973-08-16 |
IE34711B1 (en) | 1975-07-23 |
TR17154A (tr) | 1974-04-25 |
IE34711L (en) | 1971-05-11 |
CA941364A (en) | 1974-02-05 |
NO132558B (enrdf_load_stackoverflow) | 1975-08-18 |
ZA707557B (en) | 1971-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3712371A (en) | Method for heat recovery from synthesis gas | |
US3788281A (en) | Process and waste-heat boiler for cooling soot-containing synthesis gas | |
US4247302A (en) | Process for gasification and production of by-product superheated steam | |
US4248604A (en) | Gasification process | |
US4270493A (en) | Steam generating heat exchanger | |
KR880000048B1 (ko) | 합성가스의 폐열로 부터의 증기발생을 위한 열교환기 | |
US4328006A (en) | Apparatus for the production of cleaned and cooled synthesis gas | |
US4251228A (en) | Production of cleaned and cooled synthesis gas | |
US5233943A (en) | Synthetic gas radiant cooler with internal quenching and purging facilities | |
US4377394A (en) | Apparatus for the production of cleaned and cooled synthesis gas | |
US4098324A (en) | Water-cooled, high-temperature gasifier and method for its operation | |
US4493291A (en) | Gas cooler arrangement | |
US4289502A (en) | Apparatus for the production of cleaned and cooled synthesis gas | |
US4326856A (en) | Production of cleaned and cooled synthesis gas | |
US4359448A (en) | Fluidized bed reactor for exothermic reactions | |
JP2007501373A (ja) | 高温ガスの冷却装置及び方法 | |
US4482363A (en) | Process for the cooling and separating of small particle-containing gases | |
US3215502A (en) | Reformer furnace | |
EP0722999B1 (en) | An apparatus for cooling solids laden hot gases | |
AU681978B2 (en) | Apparatus for cooling hot gas | |
US3662717A (en) | Waste-heat boiler | |
JPH04506561A (ja) | 垂直型蒸気発生器内の流体の流れを組織するための方法及び装置 | |
US4445463A (en) | Waste heat boiler | |
US3867907A (en) | Steam generator | |
GB2053262A (en) | Process and Apparatus for Producing Gaseous Mixtures including H2 and CO |