US3712188A - Concrete joint sealing means - Google Patents

Concrete joint sealing means Download PDF

Info

Publication number
US3712188A
US3712188A US3712188DA US3712188A US 3712188 A US3712188 A US 3712188A US 3712188D A US3712188D A US 3712188DA US 3712188 A US3712188 A US 3712188A
Authority
US
United States
Prior art keywords
joint
sealing means
walls
channels
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
L Worson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EDOCO TECHNICAL PROD Inc
Original Assignee
EDOCO TECHNICAL PROD Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EDOCO TECHNICAL PROD Inc filed Critical EDOCO TECHNICAL PROD Inc
Priority to US8973170A priority Critical
Application granted granted Critical
Publication of US3712188A publication Critical patent/US3712188A/en
Anticipated expiration legal-status Critical
Application status is Expired - Lifetime legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/06Arrangement, construction or bridging of expansion joints
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C11/00Details of pavings
    • E01C11/02Arrangement or construction of joints; Methods of making joints; Packing for joints
    • E01C11/04Arrangement or construction of joints; Methods of making joints; Packing for joints for cement concrete paving
    • E01C11/10Packing of plastic or elastic materials, e.g. wood, resin
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C23/00Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces
    • E01C23/06Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road
    • E01C23/09Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road for forming cuts, grooves, or recesses, e.g. for making joints or channels for markings, for cutting-out sections to be removed; for cleaning, treating, or filling cuts, grooves, recesses, or fissures; for trimming paving edges
    • E01C23/0966Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road for forming cuts, grooves, or recesses, e.g. for making joints or channels for markings, for cutting-out sections to be removed; for cleaning, treating, or filling cuts, grooves, recesses, or fissures; for trimming paving edges for filling or priming, with or without working the surface of the filling or applying particulate material thereto, e.g. for filling the joints of stone-sett paving
    • E01C23/0986Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road for forming cuts, grooves, or recesses, e.g. for making joints or channels for markings, for cutting-out sections to be removed; for cleaning, treating, or filling cuts, grooves, recesses, or fissures; for trimming paving edges for filling or priming, with or without working the surface of the filling or applying particulate material thereto, e.g. for filling the joints of stone-sett paving with preformed elements, e.g. joint strips

Abstract

An elongated sealing means for sealing a joint in a concrete slab or the like. The sealing means includes a pair of elongated, upwardly open channels which extend substantially the complete depth of the sealing means and are located laterally inwardly of the outer side surfaces of the sealing means whereby the blades of a holding device can be inserted into the channels for laterally compressing the sealing means. Upon removal of the holding device, the sealing means expands to closely engage the adjacent portions of the slab defining the joint. Two embodiments are disclosed one in which the outer side surfaces are adapted for adhesive attachment to the walls of an already formed joint, and another in which the outer side surfaces incorporate integral, laterally extending wings which project into fresh or plastic concrete adjacent the sealing means and which are thereafter anchored in the joint upon setting of the concrete.

Description

United States Patent Worson 1 Jan. 23, 1973 CONCRETE JOINT SEALING MEANS 3,394,640 7/1968 Dreher ..94/18 Inventor: Lee worson Los g Calif 2,577,998 12/1951 Carter ..94/l8 [73] Assignee: Edoco Technical Products, Inc., Primary'Examiner-Nile C. Byers, Jr.

Long Beach, Calif. AttorneyFulwider, Patton, Rieber, Lee & Utecht [22] Filed: Nov. 16, 1970 Appl. No.: 89,731

Related U.S. Application Data IIIII':

[57] ABSTRACT An elongated sealing means for sealing a joint in a concrete slab or the like. The sealing means includes a pair of elongated, upwardly open channels which extend substantially the complete depth of the sealing means and are located laterally inwardly of the outer side surfaces of the sealing means whereby the blades of a holding device can be inserted into the channels for laterally compressing the sealing means. Upon removal of the holding device, the sealing means expands to closely engage the adjacent portions of the slab defining the joint. Two embodiments are disclosed one in which the outer side surfaces are adapted for adhesive attachment to the walls of an already formed joint, and another in which the outer side surfaces incorporate integral, laterally extending wings which project into fresh or plastic concrete adjacent the sealing means and which are thereafter anchored in the joint upon setting of the concrete.

4 Claims, 10 Drawing Figures CONCRETE JOINT SEALING MEANS The present application is a continuation-in-part of my application Ser. No. 850,384, filed Aug. 15, 1969, entitled Concrete Joint Sealing Means, and now abandoned.

BACKGROUND OF THE INVENTION 1. Field of the Invention:

The present invention relates to sealing means for joints in slabs of concrete or the like, and particularly to high excursion sealing means, that is, characterized by a relatively high capacity for lateral expansion in response to movement of the adjacent slab.

2. Description of the Prior Art:

In the construction of paved roads, airport runways, bridges, irrigation or water distribution canals and the like, it is conventional practice to deliberately form cracks or joints in the paving material to cause the usual expansion and contraction of the material to occur at these joints. The joints can then be sealed against intrusion of water and foreign matter.

When the slot or joint is relatively narrow it can be sealed by inserting liquid mastic, fibrous material, or elongated resilient sealer strips. These keep out water and prevent lodging of foreign materials in the joint. Unless the joint is sealed in this manner, water can accumulate beneath the slab and wash away the subgrade or, in colder climates, freeze and cause undesirable spalling and cracking of the joint margins. Spalling also occurs when foreign material such as sand and small pebbles fall into the joint and prevent normal expansion of the concrete.

In certain instances the anticipated degree of expansion and contraction of the concrete slab is relatively great, and it is important to provide a relatively wide slot or joint to accommodate such excursions. Special joint strip materials known as compression seals are used in such applications. The problem with such joint materials is that they must be capable of being compressed to a very thin cross section when the slab is expanded to its greatest extent, and certain joint materials tend to extrude upwardly and pop out of the joint. Conversely, when the slab contracts at low temperatures, the joint opens up quite wide and the joint sealing material must be capable of expanding and pressing against the joint walls with sufficient force at all times tomaintain a good water seal. Unfortunately, it has proved to be difficult and often impossible to provide a compression seal stiff enough to resist extrusion and yet resilient enough to press against the joint walls when they are relatively far apart under extreme contraction of the slab. Also, most of the joint sealer materials of the prior art tend to take a set over a period of time, and lose their capability for expanding or moving outwardly to their original configuration. Consequently, water flows past such a sealer material.

Efforts have been made in the prior art to coat the usual compression seal and the joint walls with an adhesive to maintain the desired water seal. However, compression seals of the prior art are generally incapable of being coated with adhesive and easily compressed for insertion without disturbing the adhesive coating. Heretofore, pushing the sealing material into the joint simply wiped away the adhesive. The adhesive acted more as a lubricant to facilitate insertion of the sealing body. Therefore, there was not an adequate adhesive bond to assist in providing a water seal.

Although the foregoing applies to the lack of effective sealing of preformed joints, similar sealing problems existed where the sealing material was embedded in the plastic concrete during the forming of the joint. That is, the prior art did not provide an effective solution to the problem of how to compress and in sert in such a joint a sealing body having the requisite relatively high excursion characteristic without having the sealing body tear or separate away from the joint walls during extreme contraction of the slab.

SUMMARY According to the present invention, a relatively highly compressible and easily expansible joint sealing means is provided which, in alternative embodiments, can be either coatedon its sides with a suitable adhesive for adherence to the walls of a preformed joint, or can be provided with lateral sealing wings for embedment in the plastic concrete on initial formation of the joint.

The body of the sealing means includes a pair of elongated, laterally spaced apart, and generally vertically oriented gripping channels which are located laterally inwardly of the outside surfaces of the body. These channels extend almost the complete depth of the sealing body to receive the legs or blades of a holding device so that the intermediate portion of the joint sealing body between the blades is easily compressed for insertion into the joint. The intermediate portion of the body is not rigid or stiff like the compression seals of the prior art. Instead it is softly resilient so that it generally tends to expand in the absence of a compressing force but, more importantly, it is easily pulled apart and expanded with relatively little pulling force.

In one embodiment of the invention, the surfaces of the sealing means located laterally outwardly of the holding device are adapted to be coated with an adhesive. By virtue of the presence of the channels, the sealing body can then be compressed and inserted into a preformed joint without any contact between the adhesive coated surfaces and the joint walls. After the holding device is removed, the resilient character of the joint sealing body tends to press it against the joint walls to effect the desired water seal, but also, by virtue of the adhesive bond, the sealing body is easily stretched or expanded during any extreme contractions of the slab.

In the case of a non-preformed joint, that is, a joint which is formed by the joint sealing body itself, an alternative embodiment of the present sealing body is used which can be disposed in the concrete while it is in a plastic state. When the concrete cures, laterally oriented wings or water stops of this sealing body firmly anchor the body in position. The wings tend to pull or stretch the intermediate portion of the body as the joint walls move apart during contraction of the slab. As with the first embodiment, this intermediate portion is not stiff or rigid, as were the prior art compression seals, but is easily stretchable to move with the walls and therefore provides the desired seal against water intrusion.

Supplemental sealing of the joint against water in both embodiments is provided by virtue of the configuration of the upper portion of the present sealing means. This configuration defines elongated pockets with the joint walls so that continuous beads of mastic or like sealant material can be poured in the pockets to close the openings to the gripping channels.

The present sealing means also includes a central groove or channel which predisposes the upper central portion of the sealing means toward downward deformation during compression of the sealing means. This prevents the sealing means from extruding upwardly and out of the joint, minimizing abrasion of the sealing means by traffic and the like.

Other objects and features of the invention will become apparent from consideration of the following description taken in connection with the accompanying drawing.

BRIEF DESCRIPTION OF THE DRAWING FIG. 1 is a vertical sectional view of the present joint sealing means compressed between the blades of a suitable holding device and located in a preformed concrete joint;

FIG. 2 is a view similar to FIG. l, but illustrating the joint sealing means pressing against the joint walls, and including beads of joint sealant at the sides of the sealing means;

FIG. 3 is a view similar to FIG. 2, but illustrating the joint sealing means in the expanded state resulting when the joint widens;

FIG. 4 is a view similar to FIG. 3, but without the joint sealant beads;

FIG. 5 is a top plan view of the joint sealing means of FIG. 2;

FIG. 6 is a view similar to FIG. 1, but illustrating an alternative form of joint sealing means having a pair of laterally oriented wings embedded in the adjacent walls;

FIG. 7 is a view similar to FIG. 6, but illustrating the holding device removed and beads of joint sealant placed at the upper side portions of the joint;

FIG. 8 is a view similar to FIG. 7, but illustrating the joint sealing means in the expanded state resulting when the joint widens;

FIG. 9 is a view similar to FIG. 8, but without the joint sealant beads; and

FIG. 10 is a top plan view of the joint sealing means of FIG. 7.

DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring now to FIGS. 1-5 of the drawings, there is illustrated a compression seal type of joint sealing means 10 adapted for insertion'within a preformed joint 12 defined by a pair of opposed or confronting joint walls 14 and 16 of adjacent portions of a slab 18 of concrete or the like.

The manner of formation of the joint 12 is not a part concrete slab portion poured the previous day; or it may be the result of some other operation. However, regardless of the manner of its formation, the sealing mean 10 is effective to seal the preformed joint against downward passage of water and entry of foreign materials.

The sealing means 10 moves with the walls 14 and 16 as the slab 18 expands and contracts, such as during environmental temperature changes. In the embodiment of FIGS. 1-5 the outside surfaces of the sealing means 10 and preferably also the walls 14 and 16 are coated with a suitable adhesive 20 to cause adherence of the sealing means to the walls 14 and 16 during such movement. This assures that the sealing means 10 will be expanded and move with the walls 14 and 16. Consequently, no gap ever exists between the sealing means 10 and the slab 18 as the slab expands and contracts.

The sealing means 10 includes an elongated body 22 which is made of laterally expansible and easily compressible material which is neither rigid nor stiff..lt is preferably light and spongy in nature, as will be seen, so that it can be easily squeezed from a width of perhaps 3% inches to 1% inches for insertion in the 2 inch joint opening. The outer partconstitutes a hollow casing or sheath 24 made of neoprene rubber or the like and enclosing a pair of inner sections 26 made of polyurethane foam material. The foam material is. of the open cell type for easy expansion and compression.

The sheath 24 includes a pair of integral, generally vertically oriented opposite side walls 28 which are each provided with an elongated upwardly opening and generally vertically oriented gripping channel 30 extending downwardly almost the complete depth of the sheath 24, leaving only a flexible web portion connecting the opposite or confronting halves or portions of each side wall 28. By reason of the location of the channels 30 inwardly of the outer surfaces of the side walls 28, the channels 30 can be utilized to compress the sealing means 10 without having to touch such outer surfaces. Compression of the sealing means 10 can be accomplished by an elongated U-shape holding device or insertion tool 34 whose legs or blades 32 can be inserted into the channels 30 to maintain the sealing means 10 in its compressed state.

The tool 34 may take any of a variety of configurations, so long as it is characterized by a pair of blades 32 which can be disposed in the channels 30 to maintain the sealing means 10 in the compressed state illustrated in FIG. 1. For example,the tool 34 could be of a type in which the blades are movable toward one another to effect such compression. However, the simpler type illustrated in FIG."1 is preferred, requiring only that the central portion of the joint sealing means 10 be compressed into the space between the blades 32. The tool 34'and the sealing means l0.are then pushed downwardly into the joint 12 by any suitable equipment (not shown), and the tool 34 thereafter removed or stripped away to leave the inserted sealing means 10 in position. With this arrangement the chan nels.30 enable the sealing means 10 to be compressed without any danger of wiping away adhesive 20 from the joint side walls 14 and 16. Moreover,.this also al-;

lows adhesive 20 to be applied to the outer surfaces of the side walls 28 of the sealing means 10. These side walls 28 also need not be touched by the blades 32 to effect compression, and the extra layer of adhesive 20 on the side walls 28 insures a good bond to the joint walls 14 and 16.

Adhesive 20 may be any material capable of providing an adhesive bond stronger than the resistance of the sealing means to lateral excursion or extension, and various suitable materials are presently available for this purpose. Preferably, although not necessarily, such materials should be elastomeric or resilient in character.

As best viewed in FIG. 2, removal of the insertion tool 34 allows the sealing means 10 to expand against the adjacent joint walls 14 and 16 for movement therewith. In this regard, the upper portion of the sheath 24 includes a central channel 35 defined by a pair of adjacent cap elements which are arcuate in transverse cross section. The upper, laterally outwardly located side portions of these elements define a pair of elongated channels or pockets 36 with the adjacent joint walls 14 and 16. These pockets 36 are provided to receive beads of extruded mastic or sealant material 38. This insures a good seal at the interfaces between the sealing means 10 and the joint side walls 14 and 16 and closes off the open channels 30. Suitable forms of waterproof sealant material 38 are readily available and well known to those skilled in the art. Preferably the material 38 is applied in a semi-liquid, highly viscous state, and sets up or cures in a short period of time to provide an impenetrable barrier to water.

The present sealing means 10 exerts a mild pressure against the slab walls, but this pressure, particularly during slab contraction, is not depended upon to provide a good seal. Instead, as shown in FIG. 3, the adhesive provides the seal.

If desired, the sealant material 38 can be omitted, as

in FIG. 4, to allow the channels 30 to spread open laterally for extraordinary excursion or contraction of the adjacent portions of the slab 18. However, in most 4 instances this isnot desirable because of the potential ingress of foreign material into the open channels 30.

The casing or sheath 24 includes a central, longitudinally extending, and generally vertically oriented central wall which divides the space between the side walls 28 into two compartments to receive the two elongated foam sections 26. The central wall is integral with the central upper portion of the sheath 24 to constrain such portion against upward bulging upon transverse compression of the sealing means 10. Consequently, even when compressed, only a minimum portion of the sealing means 10 projects above the upper surface of the slab 18. This reduces possible abrasion of the sealing means 10 by traffic or the like.

The foam sections 26 are preferably adhesively secured to the adjacent surfaces of the side walls 28 and the central wall 40, but not to the top or arcuate portion of the sheath 24. This facilitates movement of the sheath 24 relative to the foam sections 26 during expansion and contraction of the joint sealing means.

In summary, the joint sealing means 10 can be adhesively coated on its side walls 28, and includes gripping channels 30 inwardly of its side walls 28 to permit transverse compression of the sealing means 10 without touching of the adhesively coated'walls 28. The sealing means 10 are easily compressed for insertion within joint 12, without disturbing adhesive 20 located on the joint walls 14 and 16, and thereafter the adhesive strength of the bond is depended upon to expand the sealing means on contraction of the slab. This contrasts with the completely different approach of the prior art in which high spring rate of stifi, rigid materials were used which were under high compression on insertion so that they could still exert adequate sealing pressure when expanded to their maximum.

The particular material of the sheath 24 is not critical to the present invention, so long as it is flexible for transverse expansion and compression. Likewise, the foam material of the sections 26 could, if desired, be replaced by an integral, collapsible web structure. In either event, the material must be comparatively easily compressible, non-stiff and non-rigid. Typically the material easily compresses to one-third of its normal or open width, although this particular ratio is not critical.

Referring now to FIGS. 610, there is illustrated the alternative joint sealing means 42, which may be used in forming as well as in sealing a joint in the slab 18, the means 42 being particularly characterized by a pair of integral, oppositely located, and laterally extending fins or wings 44. The joint sealing means 42 is otherwise identical to the joint sealing means 10 previously described.

With this arrangement, instead of utilizing a coating of adhesive 20 to adhere or secure the outer surfaces of the sealing means to the adjacent walls of the joint 12, the wings 44 accomplish such securement. Each wing 44 is located approximately midway between the top and bottom of the sealing means, extends longitudinally thereof, and includes a rounded or bulbous edge extremity to facilitate anchorage in the concrete, as will be apparent.

The joint sealing means 42 preferably is part of the conventional wood or steel form (not shown) against which the fresh or plastic concrete is poured to form the slab 18. Thus, the sealing means 42 also serves to form the joint in the concrete, as well as seal it.

Once the concrete sets up or cures, the embedded wings 44 are firmly held within the cured concrete so that the wings 44 move with the slab 18 as it contracts and expands, carrying the associated portions of the joint with them. Consequently, despite the fact that the joint sealing means 42 is greatly compressed on expansion of the concrete slab l8, and despite the fact that little compressive force is exerted by the sealing means 42 against the slab walls on extreme contraction of the slab, nevertheless a good seal is always present because the anchored wings 44 insure that the joint sealing means will move with the moving joint walls 14 and 16. Although adhesive could be utilized to further enhance securement of the sealing means 42 to the joint walls 14 and 16, it is usually unnecessary.

Sealant material 38 is utilized to seal the upper openings to the gripping channels 30, as before, to prevent unwanted entry of dirt and other foreign material into the channels.

Since the joint sealing means 42 is identical to the sealing means 10 except in the respects just mentioned, like reference numerals are applied throughout the drawings to indicate like parts or components.

A holding device or insertion tool 34a is used to compress the sealing means 42 on initial formation of the joint. The insertion tool 34a is identical in every respect to the insertion tool 34 previously described in connection with the embodiments of FIGS. 1-5, except that the upper extremity of the tool 34a is flat so that it can lay flush with the adjacent surfaces of the slab 18. This facilitates finishing of the slab margins defining the 'oint.

J In operation, the insertion tool 34a is inserted into the channels 30 of the joint sealing means 42, compressing the foam sections 26, as best viewed in FIG. 6. After plastic concrete poured about the sealing means 42 and the associated form (not shown) has cured, the insertion tool 34a is removed. Beads of sealant material 38 are next applied to the upper outer edges of the joint, as best seen in FIG. 7.

The sealing means 42 is shown in its compressed state in FIG. 7 and its expanded state in FIG. 8. If desired, the beads of sealant material 38 can be omitted, as seen in FIG. 9, to enable even greater expansion of the sealing means 42.

Various modifications and changes may be made with regard to the foregoing detailed description without departing from the spirit of the invention.

I claim:

1. In combination with the confronting walls of a joint in a concrete slab, a sealing means for said joint and comprising:

an elongated, laterally expansible and compressible a pair of opposite, generally vertically oriented pair of side walls, each of said side walls including an elongated generally vertically oriented and upwardly open gripping channel, each said channel extending downwardly substantially the complete depth of the associated side wall, the opposite portions of each pair of said side walls defining said channel and being connected only by a relatively narrow web portion, whereby water is prevented from passing downwardly through said channels, and whereby substantially all of said body between said channels is compressible by the blades of a holding device inserted into said channels; and means on said side walls of said body secured to said joint walls and providing a .water seal between said side walls and said joint walls.

2. Sealing means according to claim 1 and wherein said last-mentioned means include adhesive material.

3. Sealing means according to claim 1 wherein said last-mentioned means include longitudinally extending, laterally projecting anchoring means extending into the concrete of said joint walls.

4. Sealing means according to claim 3 wherein the lateral extremities of said anchoring means terminate in portions of enlarged cross section.

UNHED STATES PATENT omits QER'HHQATE @F QQRREQTWN Patent No. 3,712,188 Dated January 23, 1973 Inventor-(s) Lee WOrsOn It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

In Claim 1,, line 7, before "side" 4 (first occurrence) delete "pair of", and before "side" (second occurrence) insert pair of Signed and sealed this 19th day of February 197b,.

(SEAL) Attest: I

W R M-FLETCHERJR- c. MARSHALL DANN Attesting Officer Commissioner of Patents FORM PO-IOSO (10-69) USCOMM-DC 60376-P69 u.s. GOVERNMENT PRINTING OFFICE: I959 0-366-334;

Claims (4)

1. In combination with the confronting walls of a joint in a concrete slab, a sealing means for said joint and comprising: an elongated, laterally expansible and compressible body having a water impermeable cap portion and a pair of opposite, generally vertically oriented pair of side walls, each of said side walls including an elongated generally vertically oriented and upwardly open gripping channel, each said channel extending downwardly substantially the complete depth of the associated side wall, the opposite portions of each pair of said side walls defining said channel and being connected only by a relatively narrow web portion, whereby water is prevented from passing downwardly through said channels, and whereby substantially all of said body between said channels is compressible by the blades of a holding device inserted into said channels; and means on said side walls of said body secured to said joint walls and providing a water seal between said side walls and said joint walls.
2. Sealing means according to claim 1 and wherein said last-mentioned means include adhesive material.
3. Sealing means according to claim 1 wherein said last-mentioned means include longitudinally extending, laterally projecting anchoring means extending into the concrete of said joint walls.
4. Sealing means according to claim 3 whErein the lateral extremities of said anchoring means terminate in portions of enlarged cross section.
US3712188D 1970-11-16 1970-11-16 Concrete joint sealing means Expired - Lifetime US3712188A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US8973170A true 1970-11-16 1970-11-16

Publications (1)

Publication Number Publication Date
US3712188A true US3712188A (en) 1973-01-23

Family

ID=22219320

Family Applications (1)

Application Number Title Priority Date Filing Date
US3712188D Expired - Lifetime US3712188A (en) 1970-11-16 1970-11-16 Concrete joint sealing means

Country Status (1)

Country Link
US (1) US3712188A (en)

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4126090C1 (en) * 1991-08-07 1993-01-28 Strabag Bau-Ag, 2000 Hamburg, De Seal for seams in concrete road surfaces - includes elastically deformable seam band which is placed in seam in U=shape
US6682260B2 (en) 2002-06-03 2004-01-27 Ronald L. Peltz Roller compacted concrete paving sealing method
EP1503022A1 (en) * 2003-07-24 2005-02-02 VWS-Befestigungstechnik GmbH Joint strip for buildings
WO2011008285A3 (en) * 2009-07-15 2012-12-06 Construction Research & Technology Gmbh Expansion joint sealing system
US9404581B1 (en) 2014-02-28 2016-08-02 Schul International Company, LLC Joint seal system
US9528262B2 (en) 2008-11-20 2016-12-27 Emseal Joint Systems Ltd. Fire and water resistant expansion joint system
US9631362B2 (en) 2008-11-20 2017-04-25 Emseal Joint Systems Ltd. Precompressed water and/or fire resistant tunnel expansion joint systems, and transitions
US9637915B1 (en) 2008-11-20 2017-05-02 Emseal Joint Systems Ltd. Factory fabricated precompressed water and/or fire resistant expansion joint system transition
US9670666B1 (en) 2008-11-20 2017-06-06 Emseal Joint Sytstems Ltd. Fire and water resistant expansion joint system
US9689158B1 (en) 2009-03-24 2017-06-27 Emseal Joint Systems Ltd. Fire and water resistant expansion and seismic joint system
US9689157B1 (en) 2009-03-24 2017-06-27 Emseal Joint Systems Ltd. Fire and water resistant expansion and seismic joint system
US9739050B1 (en) 2011-10-14 2017-08-22 Emseal Joint Systems Ltd. Flexible expansion joint seal system
US9745738B2 (en) 2015-12-30 2017-08-29 Schul International Company, LLC Expansion joint for longitudinal load transfer
US9765486B1 (en) 2016-03-07 2017-09-19 Schul International Company, LLC Expansion joint seal for surface contact applications
US9803357B1 (en) 2016-07-22 2017-10-31 Schul International Company, LLC Expansion joint seal system providing fire retardancy
US9915038B2 (en) 2016-03-07 2018-03-13 Schul International Company, LLC Durable joint seal system with detachable cover plate and rotatable ribs
US9963872B2 (en) 2012-11-16 2018-05-08 Emseal Joint Systems LTD Expansion joint system
US9982429B2 (en) 2015-03-10 2018-05-29 Schul International Company, LLC Expansion joint seal system
US9982428B2 (en) 2015-12-30 2018-05-29 Schul International Company, LLC Expansion joint seal with surface load transfer, intumescent, and internal sensor
US10017936B1 (en) 2010-11-24 2018-07-10 Innovations & Ideas, Llc Casing bead control joint
US10060122B2 (en) 2015-03-10 2018-08-28 Schul International Company, LLC Expansion joint seal system
US10066386B2 (en) 2015-12-30 2018-09-04 Schul International Company, LLC Expansion joint seal with surface load transfer and intumescent
US10081939B1 (en) 2016-07-22 2018-09-25 Schul International Company, LLC Fire retardant expansion joint seal system with internal resilient members and intumescent members
US10087620B1 (en) 2016-07-22 2018-10-02 Schul International Company, LLC Fire retardant expansion joint seal system with elastically-compressible body members, resilient members, and fire retardants
US10087619B1 (en) 2016-07-22 2018-10-02 Schul International Company, LLC Fire retardant expansion joint seal system with elastically-compressible members and resilient members
US10087621B1 (en) 2015-03-10 2018-10-02 Schul International Company, LLC Expansion joint seal system with isolated temperature-activated fire retarding members
US10125490B2 (en) 2016-07-22 2018-11-13 Schul International Company, LLC Expansion joint seal system with internal intumescent springs providing fire retardancy
US10145130B1 (en) * 2017-09-08 2018-12-04 Ruentex Engineering & Construction Co., Ltd. Sealing structure for the bottom of a beam space between precast panels
US10213962B2 (en) 2015-12-30 2019-02-26 Schul International Company, LLC Expansion joint seal with load transfer and flexion
US10227734B1 (en) 2017-12-26 2019-03-12 Veloxion, Inc. Helically-packaged expansion joint seal system
US10240302B2 (en) 2016-03-07 2019-03-26 Schul International Company, LLC Durable joint seal system with detachable cover plate and rotatable ribs
WO2019074789A1 (en) * 2017-10-09 2019-04-18 Schul International Company, LLC Durable expansion joint seal core
US10280611B1 (en) 2016-07-22 2019-05-07 Schul International Company, LLC Vapor permeable water and fire-resistant expansion joint seal
US10280610B1 (en) 2016-07-22 2019-05-07 Schul International Company, LLC Vapor-permeable water and fire-resistant expansion joint seal
US10316661B2 (en) 2008-11-20 2019-06-11 Emseal Joint Systems, Ltd. Water and/or fire resistant tunnel expansion joint systems
US10323409B1 (en) 2018-07-12 2019-06-18 Schul International Company, LLC Expansion joint system with flexible sheeting
US10323407B1 (en) 2016-07-22 2019-06-18 Schul International Company, LLC Water and fire-resistant expansion joint seal
US10323408B1 (en) 2016-07-22 2019-06-18 Schul International Company, LLC Durable water and fire-resistant tunnel expansion joint seal
US10344471B1 (en) 2016-07-22 2019-07-09 Schull International Company, LLC Durable water and fire-resistant expansion joint seal
US10352039B2 (en) 2016-03-07 2019-07-16 Schul International Company, LLC Durable joint seal system with cover plate and ribs
US10352003B2 (en) 2016-03-07 2019-07-16 Schul International Company, LLC Expansion joint seal system with spring centering
US10358813B2 (en) 2016-07-22 2019-07-23 Schul International Company, LLC Fire retardant expansion joint seal system with elastically-compressible body members, internal spring members, and connector
US10480654B2 (en) 2014-02-28 2019-11-19 Schul International Co., Llc Joint seal system having internal barrier and external wings

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2577998A (en) * 1946-10-01 1951-12-11 John E Carter Vertical joint sealing strip for concrete slab road pavements
US3073065A (en) * 1958-01-20 1963-01-15 Frank E Alderman Expansion joint unit and method of installing the same
US3218941A (en) * 1960-12-30 1965-11-23 Daum Josef Joint-filling bodies
US3255680A (en) * 1962-10-22 1966-06-14 Joint Controls Inc Means for and method of forming an expansion joint
US3276334A (en) * 1961-04-05 1966-10-04 Cecil E Rhodes Joint filler strip and method of making sealed joint
US3276336A (en) * 1964-04-16 1966-10-04 Acme Highway Prod Sealing devices for grooves between structural blocks
US3394640A (en) * 1966-08-16 1968-07-30 Donald F. Dreher Sealing inserts for joints in concrete
US3434401A (en) * 1967-06-20 1969-03-25 Us Interior Sealing strips for concrete slabs
US3455215A (en) * 1967-06-20 1969-07-15 Brewer Titchener Corp Seal for expansion joints

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2577998A (en) * 1946-10-01 1951-12-11 John E Carter Vertical joint sealing strip for concrete slab road pavements
US3073065A (en) * 1958-01-20 1963-01-15 Frank E Alderman Expansion joint unit and method of installing the same
US3218941A (en) * 1960-12-30 1965-11-23 Daum Josef Joint-filling bodies
US3276334A (en) * 1961-04-05 1966-10-04 Cecil E Rhodes Joint filler strip and method of making sealed joint
US3255680A (en) * 1962-10-22 1966-06-14 Joint Controls Inc Means for and method of forming an expansion joint
US3276336A (en) * 1964-04-16 1966-10-04 Acme Highway Prod Sealing devices for grooves between structural blocks
US3394640A (en) * 1966-08-16 1968-07-30 Donald F. Dreher Sealing inserts for joints in concrete
US3434401A (en) * 1967-06-20 1969-03-25 Us Interior Sealing strips for concrete slabs
US3455215A (en) * 1967-06-20 1969-07-15 Brewer Titchener Corp Seal for expansion joints

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4126090C1 (en) * 1991-08-07 1993-01-28 Strabag Bau-Ag, 2000 Hamburg, De Seal for seams in concrete road surfaces - includes elastically deformable seam band which is placed in seam in U=shape
US6682260B2 (en) 2002-06-03 2004-01-27 Ronald L. Peltz Roller compacted concrete paving sealing method
EP1503022A1 (en) * 2003-07-24 2005-02-02 VWS-Befestigungstechnik GmbH Joint strip for buildings
US10179993B2 (en) 2008-11-20 2019-01-15 Emseal Joint Systems, Ltd. Water and/or fire resistant expansion joint system
US10519651B2 (en) 2008-11-20 2019-12-31 Emseal Joint Systems Ltd. Fire resistant tunnel expansion joint systems
US9528262B2 (en) 2008-11-20 2016-12-27 Emseal Joint Systems Ltd. Fire and water resistant expansion joint system
US9631362B2 (en) 2008-11-20 2017-04-25 Emseal Joint Systems Ltd. Precompressed water and/or fire resistant tunnel expansion joint systems, and transitions
US9637915B1 (en) 2008-11-20 2017-05-02 Emseal Joint Systems Ltd. Factory fabricated precompressed water and/or fire resistant expansion joint system transition
US9644368B1 (en) 2008-11-20 2017-05-09 Emseal Joint Systems Ltd. Fire and water resistant expansion joint system
US9670666B1 (en) 2008-11-20 2017-06-06 Emseal Joint Sytstems Ltd. Fire and water resistant expansion joint system
US10316661B2 (en) 2008-11-20 2019-06-11 Emseal Joint Systems, Ltd. Water and/or fire resistant tunnel expansion joint systems
US9689158B1 (en) 2009-03-24 2017-06-27 Emseal Joint Systems Ltd. Fire and water resistant expansion and seismic joint system
US9689157B1 (en) 2009-03-24 2017-06-27 Emseal Joint Systems Ltd. Fire and water resistant expansion and seismic joint system
WO2011008285A3 (en) * 2009-07-15 2012-12-06 Construction Research & Technology Gmbh Expansion joint sealing system
US10017936B1 (en) 2010-11-24 2018-07-10 Innovations & Ideas, Llc Casing bead control joint
US10352040B1 (en) * 2010-11-24 2019-07-16 Innovations & Ideas, Llc Casing bead control joint
US9739050B1 (en) 2011-10-14 2017-08-22 Emseal Joint Systems Ltd. Flexible expansion joint seal system
US9963872B2 (en) 2012-11-16 2018-05-08 Emseal Joint Systems LTD Expansion joint system
US10544582B2 (en) 2012-11-16 2020-01-28 Emseal Joint Systems Ltd. Expansion joint system
US9404581B1 (en) 2014-02-28 2016-08-02 Schul International Company, LLC Joint seal system
US10480654B2 (en) 2014-02-28 2019-11-19 Schul International Co., Llc Joint seal system having internal barrier and external wings
US10203035B1 (en) 2014-02-28 2019-02-12 Schul International Company, LLC Joint seal system
US10087621B1 (en) 2015-03-10 2018-10-02 Schul International Company, LLC Expansion joint seal system with isolated temperature-activated fire retarding members
US9982429B2 (en) 2015-03-10 2018-05-29 Schul International Company, LLC Expansion joint seal system
US9995036B1 (en) 2015-03-10 2018-06-12 Schul International Company, LLC Expansion joint seal system with top and side intumescent members
US10060122B2 (en) 2015-03-10 2018-08-28 Schul International Company, LLC Expansion joint seal system
US9982428B2 (en) 2015-12-30 2018-05-29 Schul International Company, LLC Expansion joint seal with surface load transfer, intumescent, and internal sensor
US9856641B2 (en) 2015-12-30 2018-01-02 Schul International Company, LLC Expansion joint for longitudinal load transfer
US9745738B2 (en) 2015-12-30 2017-08-29 Schul International Company, LLC Expansion joint for longitudinal load transfer
US9951515B2 (en) 2015-12-30 2018-04-24 Schul International Company, LLC Expansion joint seal with surface load transfer and intumescent
US10213962B2 (en) 2015-12-30 2019-02-26 Schul International Company, LLC Expansion joint seal with load transfer and flexion
US10066386B2 (en) 2015-12-30 2018-09-04 Schul International Company, LLC Expansion joint seal with surface load transfer and intumescent
US10240302B2 (en) 2016-03-07 2019-03-26 Schul International Company, LLC Durable joint seal system with detachable cover plate and rotatable ribs
US10358777B2 (en) 2016-03-07 2019-07-23 Schul International Company, LLC Durable joint seal system without cover plate and with rotatable ribs
US10352003B2 (en) 2016-03-07 2019-07-16 Schul International Company, LLC Expansion joint seal system with spring centering
US9840814B2 (en) 2016-03-07 2017-12-12 Schul International Company, LLC Expansion joint seal for surface contact applications
US9765486B1 (en) 2016-03-07 2017-09-19 Schul International Company, LLC Expansion joint seal for surface contact applications
US10352039B2 (en) 2016-03-07 2019-07-16 Schul International Company, LLC Durable joint seal system with cover plate and ribs
US9915038B2 (en) 2016-03-07 2018-03-13 Schul International Company, LLC Durable joint seal system with detachable cover plate and rotatable ribs
US10000921B1 (en) 2016-07-22 2018-06-19 Schul International Company, LLC Expansion joint seal system with internal intumescent springs providing fire retardancy
US10280611B1 (en) 2016-07-22 2019-05-07 Schul International Company, LLC Vapor permeable water and fire-resistant expansion joint seal
US10280610B1 (en) 2016-07-22 2019-05-07 Schul International Company, LLC Vapor-permeable water and fire-resistant expansion joint seal
US10081939B1 (en) 2016-07-22 2018-09-25 Schul International Company, LLC Fire retardant expansion joint seal system with internal resilient members and intumescent members
US10125490B2 (en) 2016-07-22 2018-11-13 Schul International Company, LLC Expansion joint seal system with internal intumescent springs providing fire retardancy
US10323407B1 (en) 2016-07-22 2019-06-18 Schul International Company, LLC Water and fire-resistant expansion joint seal
US10323408B1 (en) 2016-07-22 2019-06-18 Schul International Company, LLC Durable water and fire-resistant tunnel expansion joint seal
US10344471B1 (en) 2016-07-22 2019-07-09 Schull International Company, LLC Durable water and fire-resistant expansion joint seal
US10087620B1 (en) 2016-07-22 2018-10-02 Schul International Company, LLC Fire retardant expansion joint seal system with elastically-compressible body members, resilient members, and fire retardants
US10087619B1 (en) 2016-07-22 2018-10-02 Schul International Company, LLC Fire retardant expansion joint seal system with elastically-compressible members and resilient members
US9803357B1 (en) 2016-07-22 2017-10-31 Schul International Company, LLC Expansion joint seal system providing fire retardancy
US10358813B2 (en) 2016-07-22 2019-07-23 Schul International Company, LLC Fire retardant expansion joint seal system with elastically-compressible body members, internal spring members, and connector
US10145130B1 (en) * 2017-09-08 2018-12-04 Ruentex Engineering & Construction Co., Ltd. Sealing structure for the bottom of a beam space between precast panels
WO2019074789A1 (en) * 2017-10-09 2019-04-18 Schul International Company, LLC Durable expansion joint seal core
US10227734B1 (en) 2017-12-26 2019-03-12 Veloxion, Inc. Helically-packaged expansion joint seal system
US10323409B1 (en) 2018-07-12 2019-06-18 Schul International Company, LLC Expansion joint system with flexible sheeting

Similar Documents

Publication Publication Date Title
US3394639A (en) Expansion joint
US3411260A (en) Control seal and fracturing member
US3508369A (en) Closure for an expansion joint
US3455077A (en) Joint sealing tape
US2230688A (en) Expansion joint
US2947040A (en) Wall construction
US4018539A (en) Modular elastomeric expansion seal
US1673630A (en) Paving construction
US2937065A (en) Water stop
US9840814B2 (en) Expansion joint seal for surface contact applications
US3854246A (en) Threshold weatherstrip
EP0454216B1 (en) Extruded thermoplastic elastomer expansion joint
US3656260A (en) Channel held weather seal
US6948716B2 (en) Waterstop having improved water and moisture sealing features
US20020014046A1 (en) Gap seal on a building structure
US3880539A (en) Expansion joint and seal
CA2087936C (en) Expansion joint method and system
US4648739A (en) Load transfer cell assembly for concrete pavement transverse joints
US3372521A (en) Floor joint cover assembly
CA1334268C (en) Joint sealants
CA1074143A (en) Injection sealable waterstop and method of installing same
US3667174A (en) Expansible reveal with frontal tear strip for plaster walls
US3375763A (en) Elastomeric expansion joint
US3432966A (en) Combination interlock and weather seal strip arrangement for relatively slidable closure members
US3100658A (en) Pipe joint sealing wrapper