US3708661A - Corona discharge for electro-static charging - Google Patents

Corona discharge for electro-static charging Download PDF

Info

Publication number
US3708661A
US3708661A US00109120A US3708661DA US3708661A US 3708661 A US3708661 A US 3708661A US 00109120 A US00109120 A US 00109120A US 3708661D A US3708661D A US 3708661DA US 3708661 A US3708661 A US 3708661A
Authority
US
United States
Prior art keywords
electrode
insulating layer
ion source
corona discharge
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00109120A
Other languages
English (en)
Inventor
N Hansen
D Wadow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Philips Corp
Original Assignee
US Philips Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Philips Corp filed Critical US Philips Corp
Application granted granted Critical
Publication of US3708661A publication Critical patent/US3708661A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/02Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices
    • G03G15/0291Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices corona discharge devices, e.g. wires, pointed electrodes, means for cleaning the corona discharge device

Definitions

  • ABSTRACT Apparatus for charging an insulating layer comprising an ion source for simultaneously producing a corona discharge of positive and negative ions and an acceleration electrode for extracting negative ions to uniformly charge the insulating layer.
  • the ion source comprises at least one main electrode, an auxiliary electrode and a counter electrode coaxial to the main and auxiliary electrodes, and the accelerating electrode is arranged at the remote side of the layer to be charged.
  • the apparatus further comprises deflecting electrodes and a plate electrode further acting upon the distribution of charge across the insulating layer.
  • the invention relates to a device for charging an insulating layer, particularly for electro-photography, said device comprising an ion source having .at least one main electrode for coronadischarge and at least one counter-electrode and comprising furthermore a acceleration electrode on the side of the layer remote from the ion source. It is important for the charge applied by such a device to the insulating layer to be uniformly distributed across said layer.
  • FIG. 1 is a sectional view of a charging device embodying the invention
  • FIG. 2 is an enlarged plan view of the ion source of FIG. 1 and FIG. 3 illustrates the distribution of the ion flow across the insulating layer.
  • the charging device shown in FIG. 1 comprises an ion source 1 comprising needle-shaped main electrodes 3 see also FIG. 2 a cylindrical counter-electrode 5 and a needle-shaped auxiliary electrode 7, mounted in an insulating block 9.
  • the main electrodes 3, as is clearly shown in FIG. 2 are uniformly distributed along the sheath of a cylinder, which is coaxial to the counter-electrode 5, while the auxiliary electrode 7 coincides with the axes of the two cylinders.
  • the dimensions of the ion source 1 are preferably considerably smaller than its distance from a acceleration electrode 11, which is provided on its side facing the source with an insulating layer not shown for the sake of clarity Also by this large distance the operation of the ion source 1 is not affected by the potential of the acceleration electrode 11.
  • the electrodes are fed from highvoltage sources not shown for the sake of clarity which are all connected on one side to a common earth-connection point 13, to which is also connected the counter-electrode 5.
  • the main electrodes 3 receive from point 15 a negative voltage of, for example, 10 kV and the auxiliary electrode 7 receives a positive voltage of, for example, 8.5 kV from point 17.
  • the value of these voltages is chosen so that a corona discharge occurs at all needle-shaped electrodes, so that negative ions emerge from the main electrodes 3 and positive ions from the auxiliary electrode 7. It is thus avoided that relatively repelling space charge concentrations of identical ions are produced; a homogeneous ion cloud is formed which contains both positive and negative ions. Since the acceleration electrode 11 receives a positive voltage of, for example, 13 kV from point 19, it is capable of extracting negative ions from the cloud so that the insulating layer is charged negatively. This charge is continuously distributed across the layer and it is not, as in said known devices, concentrated in a number of discrete charge regions. In the arrangement shown in FIG.
  • probes 29 are provided, which are connected to point 19 through measuring instruments 31 for very low currents, for example, electrometers.
  • FIG. 3 is a graph made by means of said probes 29, in which the probe current is plotted as a function of the distance from the center of a circular suction electrode having a diameter of 36.5 cms.
  • the ion source was at a distance of 28 cms from the suction electrode and had a diameter of 12 cms. It will be apparent that practically throughout the layer the ion flow and hence the charge substantially does not change.
  • Apparatus for charging an insulating layer comprising an ion source for simultaneously producing a homogeneous ion cloud of positive and negative ions adjacent to but spaced from one side of said insulating layer, said ion source comprising at least two electrodes for producing a corona discharge of negative and positive ions, respectively, means for supplying potentials to said electrodes, an accelerating electrode on the side of said insulating layer remote from said ion source, and means to supply a potential to said accelerating electrode at which only negative ions are extracted from said ion cloud thereby uniformly distributing negative charges on said insulating layer.
  • Apparatus as claimed in claim 1 wherein said two electrodes for producing a corona discharge of negative and positive ions comprises at least one main electrode for producing a corona discharge of negative ions and an auxiliary electrode for producing a corona discharge of positive ions within said corona discharge of negative ions.
  • said ion source is of given dimensions and further comprises a counter electrode for forming said corona discharge into an ion cloud, the distance between said ion source and said acceleration electrode being substantially greater than the dimensions of said ion source so that the potential of said acceleration electrode has no effect on said ion source, the potential supplied to said accelerating electrode being positive relative to said counter electrode.
  • said two electrodes for producing a corona discharge of negative and positive ions comprises at least one main electrode for producing a corona discharge of negative ions and an auxiliary electrode for producing a corona discharge of positive ions within said corona discharge of negative ions, said main electrode and said auxiliary electrode comprising needle-shaped,.parallel conductors and said counter-electrode being shaped as a tube surrounding said conductors.
  • Apparatus as claimed in claim 1 further comprising at least one deflecting electrode positioned between said ion source and said insulating layer outside of the paths of the ions from said ion source for influencing the distribution of charge across said layer.
  • Apparatus as claimed in claim 1 further comprising a flat plateelectrode positioned on the side of the acceleration electrode remote from the ion source, said plate electrode having lateral dimensions substantially larger than those of said accelerating electrode and extending parallel to said acceleration electrode for mfluencing the charge distribution across the insulating layer.
  • Apparatus as claimed in claim 1 further comprising probes coupled to said acceleration electrode to measure very low currents indicative of the ion HOW to different parts of said insulating layer.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Elimination Of Static Electricity (AREA)
  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Preliminary Treatment Of Fibers (AREA)
US00109120A 1970-02-21 1971-01-25 Corona discharge for electro-static charging Expired - Lifetime US3708661A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL7002477A NL7002477A (enrdf_load_stackoverflow) 1970-02-21 1970-02-21

Publications (1)

Publication Number Publication Date
US3708661A true US3708661A (en) 1973-01-02

Family

ID=19809393

Family Applications (1)

Application Number Title Priority Date Filing Date
US00109120A Expired - Lifetime US3708661A (en) 1970-02-21 1971-01-25 Corona discharge for electro-static charging

Country Status (9)

Country Link
US (1) US3708661A (enrdf_load_stackoverflow)
JP (1) JPS5335456B1 (enrdf_load_stackoverflow)
CA (1) CA919246A (enrdf_load_stackoverflow)
CH (1) CH523524A (enrdf_load_stackoverflow)
DE (1) DE2103113C3 (enrdf_load_stackoverflow)
FR (1) FR2078770A5 (enrdf_load_stackoverflow)
GB (1) GB1330424A (enrdf_load_stackoverflow)
NL (1) NL7002477A (enrdf_load_stackoverflow)
SE (1) SE362153B (enrdf_load_stackoverflow)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0011203A1 (de) * 1978-11-13 1980-05-28 Hoechst Aktiengesellschaft Vorrichtung zum elektrostatischen Aufladen einer dielektrischen Schicht
US4271451A (en) * 1976-07-20 1981-06-02 Hercules Incorporated Method and apparatus for controlling static charges
US20060193657A1 (en) * 2005-02-28 2006-08-31 Xerox Corporation Xerographic charging device having three pin arrays
US8008617B1 (en) 2007-12-28 2011-08-30 Science Applications International Corporation Ion transfer device
US8071957B1 (en) * 2009-03-10 2011-12-06 Science Applications International Corporation Soft chemical ionization source
US8123396B1 (en) 2007-05-16 2012-02-28 Science Applications International Corporation Method and means for precision mixing
CN101609063B (zh) * 2009-07-16 2014-01-08 复旦大学 一种用于电化学免疫检测的微电极阵列芯片传感器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104752148B (zh) * 2013-12-30 2017-10-10 同方威视技术股份有限公司 电晕放电组件、离子迁移谱仪、利用电晕放电组件进行电晕放电的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2885556A (en) * 1955-08-01 1959-05-05 Haloid Xerox Inc Simultaneous charging device and method
US3163753A (en) * 1961-09-12 1964-12-29 Du Pont Process and apparatus for electrostatically applying separating and forwarding forces to a moving stream of discrete elements of dielectric material
US3196270A (en) * 1962-07-31 1965-07-20 Union Carbide Corp Treating of plastic surfaces
US3332396A (en) * 1963-12-09 1967-07-25 Xerox Corp Xerographic developing apparatus with controlled corona means
US3358289A (en) * 1963-05-23 1967-12-12 Burroughs Corp Electrostatic transducer apparatus
US3489895A (en) * 1966-02-02 1970-01-13 Du Pont Regulated electrostatic charging apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2885556A (en) * 1955-08-01 1959-05-05 Haloid Xerox Inc Simultaneous charging device and method
US3163753A (en) * 1961-09-12 1964-12-29 Du Pont Process and apparatus for electrostatically applying separating and forwarding forces to a moving stream of discrete elements of dielectric material
US3196270A (en) * 1962-07-31 1965-07-20 Union Carbide Corp Treating of plastic surfaces
US3358289A (en) * 1963-05-23 1967-12-12 Burroughs Corp Electrostatic transducer apparatus
US3332396A (en) * 1963-12-09 1967-07-25 Xerox Corp Xerographic developing apparatus with controlled corona means
US3489895A (en) * 1966-02-02 1970-01-13 Du Pont Regulated electrostatic charging apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4271451A (en) * 1976-07-20 1981-06-02 Hercules Incorporated Method and apparatus for controlling static charges
EP0011203A1 (de) * 1978-11-13 1980-05-28 Hoechst Aktiengesellschaft Vorrichtung zum elektrostatischen Aufladen einer dielektrischen Schicht
US4353970A (en) * 1978-11-13 1982-10-12 Hoechst Aktiengesellschaft Method and apparatus for electrostatically charging a dielectric layer
US4415947A (en) * 1978-11-13 1983-11-15 Hoechst Aktiengesellschaft Method and apparatus for electrostatically charging a dielectric layer
US20060193657A1 (en) * 2005-02-28 2006-08-31 Xerox Corporation Xerographic charging device having three pin arrays
US7149458B2 (en) * 2005-02-28 2006-12-12 Xerox Corporation Xerographic charging device having three pin arrays
US8123396B1 (en) 2007-05-16 2012-02-28 Science Applications International Corporation Method and means for precision mixing
US8308339B2 (en) 2007-05-16 2012-11-13 Science Applications International Corporation Method and means for precision mixing
US8008617B1 (en) 2007-12-28 2011-08-30 Science Applications International Corporation Ion transfer device
US8071957B1 (en) * 2009-03-10 2011-12-06 Science Applications International Corporation Soft chemical ionization source
CN101609063B (zh) * 2009-07-16 2014-01-08 复旦大学 一种用于电化学免疫检测的微电极阵列芯片传感器

Also Published As

Publication number Publication date
JPS5335456B1 (enrdf_load_stackoverflow) 1978-09-27
DE2103113C3 (de) 1979-07-26
DE2103113A1 (de) 1971-09-09
CA919246A (en) 1973-01-16
DE2103113B2 (de) 1978-11-23
NL7002477A (enrdf_load_stackoverflow) 1971-08-24
SE362153B (enrdf_load_stackoverflow) 1973-11-26
FR2078770A5 (enrdf_load_stackoverflow) 1971-11-05
CH523524A (de) 1972-05-31
GB1330424A (en) 1973-09-19

Similar Documents

Publication Publication Date Title
US3665241A (en) Field ionizer and field emission cathode structures and methods of production
US3786359A (en) Ion accelerator and ion species selector
US6236163B1 (en) Multiple-beam ion-beam assembly
US3410997A (en) Multipole mass filter
US3717785A (en) System of electrostatic quadrupole micro-lenses
US3708661A (en) Corona discharge for electro-static charging
US4013891A (en) Method for varying the diameter of a beam of charged particles
GB1326279A (en) Mass spectrometers
US3796872A (en) Mass spectrometry
GB683475A (en) Improvements in or relating to electric discharge tubes for accelerating particles
US2239407A (en) Electron beam tube
US2182185A (en) High voltage ionic discharge device
US3792312A (en) Device for creating electrostatic charge or discharge
Frost et al. Electron guns for forming solid beams of high perveance and high convergence
Spyrou et al. Why Paschen's law does not apply in low-pressure gas discharges with inhomogeneous fields
US3702416A (en) Ion source having a uniform radial density
US3265918A (en) Ion source having plasma control means
US4012666A (en) Method of and device for the removal of electrostatic charges
US3808498A (en) Electron beam generating source
US2617077A (en) Electrostatic deflection system for cathode-ray tubes
US2667582A (en) Mass separator
Krejcik et al. An electrostatic coaxial probe forming lens suitable for high-energy ion beams
US2359290A (en) Electrostatic lens for corpuscular ray apparatus
US3086111A (en) Mass spectrometer for gases at low pressures
US3694687A (en) Electron gun with anode segments for beam position detection