US3706582A - Glass frit-ceramic powder composition - Google Patents

Glass frit-ceramic powder composition Download PDF

Info

Publication number
US3706582A
US3706582A US761164A US3706582DA US3706582A US 3706582 A US3706582 A US 3706582A US 761164 A US761164 A US 761164A US 3706582D A US3706582D A US 3706582DA US 3706582 A US3706582 A US 3706582A
Authority
US
United States
Prior art keywords
ceramic
metal
percent
parts
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US761164A
Inventor
Edward Meyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GTE Sylvania Inc
Original Assignee
GTE Sylvania Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GTE Sylvania Inc filed Critical GTE Sylvania Inc
Application granted granted Critical
Publication of US3706582A publication Critical patent/US3706582A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0054Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing PbO, SnO2, B2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2993Silicic or refractory material containing [e.g., tungsten oxide, glass, cement, etc.]
    • Y10T428/2996Glass particles or spheres

Definitions

  • ABSTRACT Disclosed are techniques for fabricating metal-ceramic articles wherein a hermetic seal is desired between the metal-ceramic jointure.
  • the technique involves utilization of a powdered ceramic containing a binding material which is compressed in a mould around the metal part or parts to be incorporated therein. The green part so formed exhibits superior strength and the article is much easier to handle for subsequent firing.
  • a glass-ceramic powder composition ideally suited to this process, together with methods for treating the metal parts to insure a hermetic seal.
  • This invention relates to the fabrication of metalceramic articles by a powder technique and to a ceramic powder ideally suited for use therewith. More particularly, it relates to methods and apparatus for making integrated circuit (I.C.) packages; to the ceramic used therewith; and to methods of treating the metal parts to be sealed therein.
  • I.C. integrated circuit
  • Packages for LG components generally comprise metal-ceramic composite having a ceramic body portion with metallic leads. imbeddedtherein and a metal base which defines a bed for the relatively small component. Inserted in the ceramic body portion are multiple metallic connectors which project into the bedarea so that connections to the LC. component may be made, and extend outwardly from the ceramic body to allow for connection of the package into a circuit.
  • Ceramic rectangular washers are fabricated and fired to form dense ceramic parts. These parts are placed adjacent to each other and to' the metal inserts which will form the leads and the base of the package and are placed in a graphite or similar mould. The mould is placed in a firing chamber and, while being fired, pressure is applied and the ceramic parts are joined together and to the metal parts.
  • present fabrication techniques employ the following steps: I
  • a ceramic powder is formulated generally of a glass frit blended together with alumina and various binders which, when dried, produces a powder which can easily be handled.
  • powders are compressed into parts of various shapes and configurations depending upon the type of pack being made. They may be rectangular, round or any other desirable geometric configuration. After the formation the parts are processed through the usual pre-firing step for binder removal and a subsequent firing step to convert the part into a fairly dense ceramic article.
  • This portion of the process depends upon the characteristic of the ceramic material to assume fluid characteristics that flow during heating.
  • the graphite dies with the various parts in position are now fed through a furnace which is heated to the temperature required for the ceramic to assume the fluid state.
  • This portion of the process therefore, causes the ceramic to flow around the leads of the frame and form a ceramicmetal bond with these leads and the base.
  • the part is removed from the furnace and is ready for further processing to make the finished article.
  • OBJECTS AND SUMMARY OF THE INVENTION vention by formulating a ceramic powder from glass frit and various amounts of alumina as a new composition of matter, blending them together with necessary binders and drying the powder.
  • the powders are placed into a multiple die having various movable and stationary members and the metal frame forming the leads and the base are placed in proper position.
  • a pressing operation is next performed and is carried out at a temperature of about to Centigrade and at a pressure of-about 4,000 lbs. per square inch, which causes the powders and the metal parts to bond into a single green part. This part has sufficient strength to be handled without fear of breaking.
  • the metal part is coated with a glass-suspension in a binder before insertion into the die.
  • the green-formed part is next placed in a furnace and fired, first at a relatively low temperature; that is, about 600 C. for one hour and then moved into a relatively hotter zone; that is, about 950 C. where a final conversion of the powder to a ceramic and the bonding of the ceramic to the metal takes place. After removal from the furnace and necessary cooling, the article is cleaned and other similar operations are performed to complete the handling of the part and it is now ready for use.
  • FIG. 1 is an exploded sectional view of a prior art device
  • FIG. 2 is a perspective view of the device made in accordance with this invention.
  • FIG. 3 is a flow diagram of a method of preparing the metal parts to be joined to the ceramic
  • FIG. 4 is a sectional perspective view of a portion of the mould used in fabricating an article in accordance with the invention.
  • FIG. 5 is a sectional perspective view of the mould in a secondary position
  • FIG. 6 is a plan view of the mould of FIG. 4.
  • FIGS. 7-18 are diagrammatic sectional views of various stages in the formulation of an article in ac cordance with this invention.
  • a lead frame 24 which contains a plurality of inwardly projecting leads 26 only several of which are shown. The leads are maintained in their desired location by attachment to a frame 28 which will subsequently be removed when the package is completed.
  • a second ceramic washer 30 Placed atop the lead frame 24 is a second ceramic washer 30 which is also substantially rectangular and whose outer configuration matches that of washer 22. The washer 30 defines a smaller opening 31 which will subsequently provide the bed for the LC.
  • a base plate 32 which is also of metal and which has a depression formed therein and which depression conforms to opening 31 in washer 30.
  • FIG. 2 is shown a perspective view of a completed device formed in accordance with the invention to be herein described.
  • the device shown in FIG. 2 and designated generally as '40 is formed in accordance with the invention and comprises a ceramic body portion 42 which rests upon a metallic base plate 44 of a suitable material such, for example, as Kovar. It is, of course, essential that the metallic members and the ceramic portions have substantially the same thermal coefficient of expansion.
  • Leads 46 are shown projecting from a side wall of the ceramic body 42 and projecting inwardly to a substantially rectangular opening 48. Within opening 48 is a second smaller rectangular opening 50 which actually forms the bed for the LC.
  • the floor of bed 50 is formed as a protruding portion on the base plate 44.
  • the package 40 is fabricated in four general steps, viz.
  • the metal parts which consist of the lead frame with the leads 46 attached and the base 44, may be fabricated in strips or in separate pieces.
  • the parts are prepared by first cleaning with a degreasing agent such, for example, as trichlorethylene. After the cleaning, the part is sandblasted to furnish an etched surface for the glass-ceramic material. After the sandblasting the metal parts are oxidized by heating in an oxidizing atmosphere at a temperature of about 900 to 1,000" C.
  • the flux comprises a fluid carrier and a suspension contained therein with the carrier comprising, by weight, about 99.64, percent water, about 0.11 percent concentrated hydrochloric acid, and about 0.25 percent dodecyl alcohol; and the suspension comprises by weight from 58 to 61 percent ZnO, from 18 to 21 percent B,O,, from to 12 percent SiOg.
  • the coating of the part may be done by spraying on a layer sufficient to give a gray to white coating on the metal.
  • Thecoated metal parts are then completely dried in warm air to fix the suspension on the part.
  • the new powder formulation that is, the glassceramic composition which will form the ceramic body portion, comprises by weight from 34 to 40 percent A1 0 from 0.5 to 2 percent BaO, from 12 to 16 percent ZnO, from 1 to 3 percent K 0, from 28 to 36 percent SiO from 12 18 percent B 0 from 0.5 to 1.5
  • the glass-ceramic composition is prepared by mixing the above ingredients in either a ball mill or V" type blender depending upon the amount being prepared. The blending takes from four to twelve hours. No balls or other objects are present in the mill or blender as no attrition is required.
  • the binder consists of 2.4 grams of polyvinyl alcohol, 1.6 grams triethylene glycol, 0.41 grams concentrated hydrochloric acid, 0.1 gram hydrodyne, and 3 to 4 drops of dodecyl alcohol. These ingredients are made up in about a 50 cc. solution of water.
  • the binder material is added to the glass-ceramic composition in an amount to make a 3.5 percent polyvinyl alcohol addition.
  • the binder addition may be made in any ball mill, blender or similar container to which a few ceramic balls have been added to aid in the mixing process.
  • the binder should be present in an amount sufficient to coat all particles of the glass-ceramic composition.
  • the die designated generally as 52, comprises a first stationary die 54 which defines therein a first geometric opening 56, in this instance the opening is shown as being rectangular; however, it is to be noted that any suitable geometric shape may be utilized depending upon circumstances.
  • a smaller second stationary die 58 Positioned substantially symmetrically within the first geometric opening 56 is a smaller second stationary die 58 which also has a substantially rectangular configuration.
  • a substantially symmetrically located second geometric opening60 is positioned within second stationary die 58.
  • a first movable die 62 having a substantially rectangular washer configuration is positioned between the first and second stationary dies and substantially conforms to the first geometric opening.
  • the upper surface 64 of the first movable die forms the bottom of the rectangular cavity defined by the first geometric opening.
  • a second movable die 66 Positioned within the second geometric opening 60 and substantially conforming thereto is a second movable die 66.
  • the upper surface 68 of die -66 is aligned with the upper surfaces of first stationary die 54 and second stationary die 62.
  • a third'movable die 70 defining a third geometric opening 72 is provided to overlie the first stationary die 54.
  • Third die 70 is shown in FIG. 3.
  • the third die is shown as laying upon the leads 46 of a lead-in frame and second movable die 68 is shown in a raised-position wherein the upper surface 68 thereof is now planar with the upper surface of third movable die 70. It will be seen that the thickness of second movable die 68 is such as to fit between the innermost ends of leads 46.
  • FIG. 7 shows the positionof the stationary and movable members of the die prior to the addition of any ceramic material.
  • the first cavity which is formed by the first and second stationary dies and the upper surface of the first movable die 64 is filled with a first quantity of the previously prepared powdered ceramic material 74.
  • the powdered material 74 is leveled off to coincide with the upper surfaces of first and second stationary dies.
  • a first metallic member 76 which comprises the leads 46 and a frame, not shown, but similar to frame 28 of FIG. 1.
  • FIG. 10 shows the addition of third movable die 70 which is positioned on top of the first metallic member 76 and which has its geometric opening 72 aligned with the first geometric opening 56.
  • FIG. 11 shows the next step in the operation which is that of raising second movable die 66 until its upper surface 68 is planar with the upper surface of third movable die 70.
  • FIG. 12 shows the next step which is the filling of the cavity 72 with a second given quantity of ceramic material 76 to the level of the upper surface of the third movable die.
  • the next step in the operation is the addition of a second metallic member which, in this instance, is the base plate 44.
  • the protuberance 78 which is formed on base plate 44 is aligned with the upper surface of second movable die 66. With the proper alignment being maintained, the green part is now formed by the application of a suitable force in two different directions, viz.: downwardly upon the base plate and upwardly by first movable die 62.
  • the force involved is about 4,000 lbs. per square inch. It is to be noted that, to avoid bending or distortion of the first metallic member 76, it is essential that this member define a fixed plane about which the two substantially equal forces are exerted. Further, to achieve a flowing and semibonding of the ceramic material to the metal members, the die at least prior to the application of the force is heated to a temperature shown in FIG. 18.
  • the green-formed part may now be stored or sent to final processing since it is found to have exceptional strength characteristics.
  • the green-formed'part is fired in atwo-step operation.
  • the first step is a firing in air at a temperature of about 600 C. for about one hour.
  • the first firing step assures the completion of binder removal.
  • the second step is a firing for about 20 minutes at a temperature of 900 to 975 C.
  • the second firing is done in an inert atmosphere, for example, nitrogen.
  • the part is cleaned and it is ready for the insertion and wiring of an'I.C. component.
  • a composition of matter consisting essentially of, by weight: from 34 to 40 percent A1 0 from 0.5 to 2 percent BaO; from 12 to 16 percent ZnO; from 1 to 3 percent K 0; from 28 to 36 percent SiO from 12 to 18 percent B 0 from 0.5 to 1.5 percent Na O; and from 0 to 2 percent of oxides selected from the group consisting of MgO, Li O, SrO, and CaO.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Glass Compositions (AREA)

Abstract

Disclosed are techniques for fabricating metal-ceramic articles wherein a hermetic seal is desired between the metal-ceramic jointure. The technique involves utilization of a powdered ceramic containing a binding material which is compressed in a mould around the metal part or parts to be incorporated therein. The green part so formed exhibits superior strength and the article is much easier to handle for subsequent firing. Also disclosed is a glass-ceramic powder composition ideally suited to this process, together with methods for treating the metal parts to insure a hermetic seal.

Description

United States Patent Meyer 1541 GLASS FRlT-CERAMIC POWDER COMPOSITION [72] Inventor: Edward Meyer, Russell Pa,
22] Filed: Sept. 20, 1968 211 Appl. No.: 761,164
[52] US. Cl. ..l06/39 R', 106/39 DV, 106/48, 106/54, 252/623. 252/635, 252/520, 264/61 I51 I Int. Cl. ..C04b 33/00 [58] Field of Search ..l06/313, 54, 48, 53, 39 R, 106/39 DV; 252/623, 63.5, 520; 264/61 [56] References Cited UNITED STATES PATENTS 2,379,075 6/1945 Garrison ..l06/48 2,920,971 1/1960 Stookey 2,972,544 2/1961 Hirayama..." 3,019,116 1/1962 Doucette 3,457,091 7/1969 Gupta ..106/39 OTHER PUBLlCATlONS Volf, MB; Glasses for Discharge Lamps, in Technical [451 Dec. 19, 1972 Glasses, London (Pitman's) 1961 pp 392-393. lngerson, E. et al; The Systems K20-ZnO-Si02, ZnO-B203-Si02, and Zn2SiO4-Zn2GeO4, in Amer. Journ. ofSci., 246, (1) pp 31-40 (1948).
Primary Examiner-Hyland Bizot Assistant Examiner-W. R. Satterfield AttorneyNorman J. O'Malley, Cyril A. Krenzer and William H. McNeill [57] ABSTRACT Disclosed are techniques for fabricating metal-ceramic articles wherein a hermetic seal is desired between the metal-ceramic jointure. The technique involves utilization of a powdered ceramic containing a binding material which is compressed in a mould around the metal part or parts to be incorporated therein. The green part so formed exhibits superior strength and the article is much easier to handle for subsequent firing. Also disclosed is a glass-ceramic powder composition ideally suited to this process, together with methods for treating the metal parts to insure a hermetic seal.
1 Claim, 18 Drawing Figures PATENT ED 19 I973 3.706582 sun-:1 1 OF 5 1 g. l PRIOR ART INVENTOR- EDWARD MEYER ATTORNEY PATENTEU 3,706,582
SHEET 2 OF 5 CLEAN METAL PART WITH DEGREASING AGENT SANDBLAST TO PROVIDE ETCHED SURFACE OXDIZE COAT OXIDIZED PART WITH FLUX F E INVENTOR.
EDWARD MEYER ua-W ATTORNEY SHEET l 0F 5 PATENTED DEC 19 I972 1 E INVENTOR.
EDWARD MEYER 9 ,a any ATTORNEY jli PATENTED DEC 19 I972 SHEEI 5 BF 5 lF W Emz s'x I g a. My
ATTORNEY 1 GLASS FRIT-CERAMIC POWDER COMPOSITION BACKGROUND OF THE INVENTION This invention relates to the fabrication of metalceramic articles by a powder technique and to a ceramic powder ideally suited for use therewith. More particularly, it relates to methods and apparatus for making integrated circuit (I.C.) packages; to the ceramic used therewith; and to methods of treating the metal parts to be sealed therein.
Packages for LG components generally comprise metal-ceramic composite having a ceramic body portion with metallic leads. imbeddedtherein and a metal base which defines a bed for the relatively small component. Inserted in the ceramic body portion are multiple metallic connectors which project into the bedarea so that connections to the LC. component may be made, and extend outwardly from the ceramic body to allow for connection of the package into a circuit.
These packages are currently fabricated by an assembly technique. Ceramic rectangular washers are fabricated and fired to form dense ceramic parts. These parts are placed adjacent to each other and to' the metal inserts which will form the leads and the base of the package and are placed in a graphite or similar mould. The mould is placed in a firing chamber and, while being fired, pressure is applied and the ceramic parts are joined together and to the metal parts.
In more detail, present fabrication techniques employ the following steps: I
A ceramic powder is formulated generally of a glass frit blended together with alumina and various binders which, when dried, produces a powder which can easily be handled.
These powders are compressed into parts of various shapes and configurations depending upon the type of pack being made. They may be rectangular, round or any other desirable geometric configuration. After the formation the parts are processed through the usual pre-firing step for binder removal and a subsequent firing step to convert the part into a fairly dense ceramic article.
These parts together with the metal frames which will ultimately form the leads and the metal part which forms the base are now placed in a graphite mould containing an upper and lower graphite die and three graphite rectangles, or other geometric shape as noted above which depend upon the geometric configuration of the pack being formed, are fitted in the various positions within the part being formed. A small weight is placed on one of the graphite parts to supply pressure during the next firing cycle.
This portion of the process depends upon the characteristic of the ceramic material to assume fluid characteristics that flow during heating. The graphite dies with the various parts in position are now fed through a furnace which is heated to the temperature required for the ceramic to assume the fluid state. This portion of the process, therefore, causes the ceramic to flow around the leads of the frame and form a ceramicmetal bond with these leads and the base. When sufficient time has elapsed for this to take place, the part is removed from the furnace and is ready for further processing to make the finished article.
OBJECTS AND SUMMARY OF THE INVENTION vention by formulating a ceramic powder from glass frit and various amounts of alumina as a new composition of matter, blending them together with necessary binders and drying the powder. The powders are placed into a multiple die having various movable and stationary members and the metal frame forming the leads and the base are placed in proper position. A pressing operation is next performed and is carried out at a temperature of about to Centigrade and at a pressure of-about 4,000 lbs. per square inch, which causes the powders and the metal parts to bond into a single green part. This part has sufficient strength to be handled without fear of breaking. In order to facilitate the bonding between the metal and the ceramic, the metal part is coated with a glass-suspension in a binder before insertion into the die.
The green-formed part is next placed in a furnace and fired, first at a relatively low temperature; that is, about 600 C. for one hour and then moved into a relatively hotter zone; that is, about 950 C. where a final conversion of the powder to a ceramic and the bonding of the ceramic to the metal takes place. After removal from the furnace and necessary cooling, the article is cleaned and other similar operations are performed to complete the handling of the part and it is now ready for use.
BRIEF DESCRIPTION OF THE DRAWINGS I FIG. 1 is an exploded sectional view of a prior art device;
FIG. 2 is a perspective view of the device made in accordance with this invention;
FIG. 3 is a flow diagram of a method of preparing the metal parts to be joined to the ceramic;
FIG. 4 is a sectional perspective view of a portion of the mould used in fabricating an article in accordance with the invention;
FIG. 5 is a sectional perspective view of the mould in a secondary position;
FIG. 6 is a plan view of the mould of FIG. 4; and
FIGS. 7-18 are diagrammatic sectional views of various stages in the formulation of an article in ac cordance with this invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS tioned over the ceramic washer is a lead frame 24 which contains a plurality of inwardly projecting leads 26 only several of which are shown. The leads are maintained in their desired location by attachment to a frame 28 which will subsequently be removed when the package is completed. Placed atop the lead frame 24 is a second ceramic washer 30 which is also substantially rectangular and whose outer configuration matches that of washer 22. The washer 30 defines a smaller opening 31 which will subsequently provide the bed for the LC. Placed atop washer 30 is a base plate 32 which is also of metal and which has a depression formed therein and which depression conforms to opening 31 in washer 30. This assembly, after all of the parts have been formulated, is completed by stacking together in an appropriate mould and heating as described above, thus forming the completed package.
In FIG. 2 is shown a perspective view of a completed device formed in accordance with the invention to be herein described. It is to be noted that the prior art device of FIG. 1 is shown in an inverted position, that is, with the apertures facing downward, while the device of FIG. 2 is shown with the apertures uppermost. The device shown in FIG. 2 and designated generally as '40 is formed in accordance with the invention and comprises a ceramic body portion 42 which rests upon a metallic base plate 44 of a suitable material such, for example, as Kovar. It is, of course, essential that the metallic members and the ceramic portions have substantially the same thermal coefficient of expansion. Leads 46 are shown projecting from a side wall of the ceramic body 42 and projecting inwardly to a substantially rectangular opening 48. Within opening 48 is a second smaller rectangular opening 50 which actually forms the bed for the LC. The floor of bed 50 is formed as a protruding portion on the base plate 44. The package 40 is fabricated in four general steps, viz.
1. Preparation of the metal parts.
2. Preparation of the powder for the glass-ceramic portion. v
3. Assembly of the metal ceramic package into a green-formed part.
4. Firing to remove the binder and further firing to completely. form the ceramic member and to complete the seal.
The metal parts, which consist of the lead frame with the leads 46 attached and the base 44, may be fabricated in strips or in separate pieces. The parts are prepared by first cleaning with a degreasing agent such, for example, as trichlorethylene. After the cleaning, the part is sandblasted to furnish an etched surface for the glass-ceramic material. After the sandblasting the metal parts are oxidized by heating in an oxidizing atmosphere at a temperature of about 900 to 1,000" C.
for about 100 to 110 seconds. After the oxidizing, at least the oxidized portions are coated with a suitable flux to facilitate movement of the glass-ceramic composition therearound during the final steps in forming the seal. The flux comprises a fluid carrier and a suspension contained therein with the carrier comprising, by weight, about 99.64, percent water, about 0.11 percent concentrated hydrochloric acid, and about 0.25 percent dodecyl alcohol; and the suspension comprises by weight from 58 to 61 percent ZnO, from 18 to 21 percent B,O,, from to 12 percent SiOg. from 0.1 to 0.2 percent Al,0,, from 0.040 .to 0.070 percent MgO, from 0.010 to 0.020 percent Na 0, from 4 to 5 percent polyvinyl alcohol, from 2 to 4 percent triethylene glycol and from 0.1 to 0.22 percent hydrodyne. The coating of the part may be done by spraying on a layer sufficient to give a gray to white coating on the metal. Thecoated metal parts are then completely dried in warm air to fix the suspension on the part. a
The new powder formulation, that is, the glassceramic composition which will form the ceramic body portion, comprises by weight from 34 to 40 percent A1 0 from 0.5 to 2 percent BaO, from 12 to 16 percent ZnO, from 1 to 3 percent K 0, from 28 to 36 percent SiO from 12 18 percent B 0 from 0.5 to 1.5
. percent Na,0, and from 0 to 2 percent of oxides selected from the group consisting of'MgO, Li O, SrO, and CaO.
. The glass-ceramic composition is prepared by mixing the above ingredients in either a ball mill or V" type blender depending upon the amount being prepared. The blending takes from four to twelve hours. No balls or other objects are present in the mill or blender as no attrition is required.
After the materials have been blended, a binder material to improve flow characteristics is added. The binder consists of 2.4 grams of polyvinyl alcohol, 1.6 grams triethylene glycol, 0.41 grams concentrated hydrochloric acid, 0.1 gram hydrodyne, and 3 to 4 drops of dodecyl alcohol. These ingredients are made up in about a 50 cc. solution of water. The binder material is added to the glass-ceramic composition in an amount to make a 3.5 percent polyvinyl alcohol addition. The binder addition may be made in any ball mill, blender or similar container to which a few ceramic balls have been added to aid in the mixing process. The binder should be present in an amount sufficient to coat all particles of the glass-ceramic composition. After the mixing of the composition and the addition of the binder, the entire suspension is removed from the mill or blender and spray dried to remove all volatile materials. The resulting powder produced by this method is spherical, free-flowing and dry.
It will be obvious to those skilled in the art that various applications for this ceramic material may require different binders, fluxes and metallic inserts.
Referring now to FIG. 4, there is shown therein diagram-matically a multiple die in which the greenforrned part is fabricated. The die, designated generally as 52, comprises a first stationary die 54 which defines therein a first geometric opening 56, in this instance the opening is shown as being rectangular; however, it is to be noted that any suitable geometric shape may be utilized depending upon circumstances. Positioned substantially symmetrically within the first geometric opening 56 is a smaller second stationary die 58 which also has a substantially rectangular configuration. A substantially symmetrically located second geometric opening60 is positioned within second stationary die 58. A first movable die 62 having a substantially rectangular washer configuration is positioned between the first and second stationary dies and substantially conforms to the first geometric opening. The upper surface 64 of the first movable die forms the bottom of the rectangular cavity defined by the first geometric opening. Positioned within the second geometric opening 60 and substantially conforming thereto is a second movable die 66. The upper surface 68 of die -66 is aligned with the upper surfaces of first stationary die 54 and second stationary die 62.
To complete the multiple die, a third'movable die 70 defining a third geometric opening 72 is provided to overlie the first stationary die 54. Third die 70 is shown in FIG. 3. In the instant figure, the third die is shown as laying upon the leads 46 of a lead-in frame and second movable die 68 is shown in a raised-position wherein the upper surface 68 thereof is now planar with the upper surface of third movable die 70. It will be seen that the thickness of second movable die 68 is such as to fit between the innermost ends of leads 46.
Referring now to FIGS. 7 through 18, there is shown a diagrammatic sequence of the green part forming operation. FIG. 7 shows the positionof the stationary and movable members of the die prior to the addition of any ceramic material. With the dies in this position, the first cavity which is formed by the first and second stationary dies and the upper surface of the first movable die 64 is filled with a first quantity of the previously prepared powdered ceramic material 74. The powdered material 74 is leveled off to coincide with the upper surfaces of first and second stationary dies. In FIG. 9 is shown the addition of a first metallic member 76 which comprises the leads 46 and a frame, not shown, but similar to frame 28 of FIG. 1. The inner opening defined by the innermost ends of leads 46 is aligned with the second geometric opening which is formed in second stationary die 58. FIG. 10 shows the addition of third movable die 70 which is positioned on top of the first metallic member 76 and which has its geometric opening 72 aligned with the first geometric opening 56. FIG. 11 shows the next step in the operation which is that of raising second movable die 66 until its upper surface 68 is planar with the upper surface of third movable die 70. FIG. 12 shows the next step which is the filling of the cavity 72 with a second given quantity of ceramic material 76 to the level of the upper surface of the third movable die. The next step in the operation is the addition of a second metallic member which, in this instance, is the base plate 44. The protuberance 78 which is formed on base plate 44 is aligned with the upper surface of second movable die 66. With the proper alignment being maintained, the green part is now formed by the application of a suitable force in two different directions, viz.: downwardly upon the base plate and upwardly by first movable die 62. The force involved is about 4,000 lbs. per square inch. It is to be noted that, to avoid bending or distortion of the first metallic member 76, it is essential that this member define a fixed plane about which the two substantially equal forces are exerted. Further, to achieve a flowing and semibonding of the ceramic material to the metal members, the die at least prior to the application of the force is heated to a temperature shown in FIG. 18. The green-formed part may now be stored or sent to final processing since it is found to have exceptional strength characteristics. For the final processing, the green-formed'part is fired in atwo-step operation. The first step is a firing in air at a temperature of about 600 C. for about one hour. The first firing step assures the completion of binder removal. The second step is a firing for about 20 minutes at a temperature of 900 to 975 C. The second firing is done in an inert atmosphere, for example, nitrogen. After the final firing, the part is cleaned and it is ready for the insertion and wiring of an'I.C. component.
An exact understanding of the mechanics of the firing operation is not completely understood at this time. During the firing cycle, it is or would be expected that the part would shrink and that cracking or distortion of the frame would occur. While some shrinkage of the material does occur, there is no cracking or distortion present. It appears that,-during the period of change in physical size, the ceramic material actually moves along the metal frame without breaking the seal. When both parts are at the elevated temperature, that is, in the 900 to 975 C. range, the change in physical size seems to have been completed and the parts cool with the same coefficient of expansion. This in turn forms an article which meets all of the necessary size, shape, and hermeticity requirements of an LC. package. I
Thus, it will be seen that there has been provided a new and novel method for fabricating metal-ceramic composite articles. With particular application to I.C. packages, the fabrication is greatly enhanced. Many unnecessary firing steps are eliminated and thus the cost is greatly reduced from the prior art methods of manufacture. A green part is formed which has exceptional strength characteristics and which may be handled and stored prior to the final firing operations.
While there have been shown and described what are at present considered the preferred embodiments of the invention, it will be obvious to those skilled in the art that various changes and modifications may be made therein without departing from the scope of the invention as defined by the appended claims.
I claim:
1. A composition of matter consisting essentially of, by weight: from 34 to 40 percent A1 0 from 0.5 to 2 percent BaO; from 12 to 16 percent ZnO; from 1 to 3 percent K 0; from 28 to 36 percent SiO from 12 to 18 percent B 0 from 0.5 to 1.5 percent Na O; and from 0 to 2 percent of oxides selected from the group consisting of MgO, Li O, SrO, and CaO.
US761164A 1968-09-20 1968-09-20 Glass frit-ceramic powder composition Expired - Lifetime US3706582A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US76116468A 1968-09-20 1968-09-20

Publications (1)

Publication Number Publication Date
US3706582A true US3706582A (en) 1972-12-19

Family

ID=25061361

Family Applications (1)

Application Number Title Priority Date Filing Date
US761164A Expired - Lifetime US3706582A (en) 1968-09-20 1968-09-20 Glass frit-ceramic powder composition

Country Status (3)

Country Link
US (1) US3706582A (en)
DE (1) DE1947296A1 (en)
FR (1) FR2018534A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3870776A (en) * 1973-01-02 1975-03-11 Metalized Ceramics Corp Method for making ceramic-metal structures
US4152282A (en) * 1976-12-27 1979-05-01 U.S. Philips Corporation Silk-screening dielectric paste for multilayer circuit fabrication comprising aluminum oxide and a borosilicate glass
US4209334A (en) * 1976-04-15 1980-06-24 Brunswick Corporation Porous ceramic seals and method of making same
US4349635A (en) * 1981-10-26 1982-09-14 Motorola, Inc. Lower temperature glass and hermetic seal means and method
US4417913A (en) * 1981-10-26 1983-11-29 Motorola, Inc. Lower temperature glass and hermetic seal means and method
DE3318585A1 (en) * 1983-05-21 1984-11-22 Friedrichsfeld Gmbh, Steinzeug- Und Kunststoffwerke, 6800 Mannheim Process for making a vacuum-tight bond, and a composite produced thereby
EP0080535B1 (en) * 1981-11-27 1985-08-28 Krohne AG Measuring head for an electro-magnetic flow meter
US4544828A (en) * 1980-03-03 1985-10-01 Canon Kabushiki Kaisha Heating device
DE3634492A1 (en) * 1986-10-09 1988-04-14 Fischer & Porter Gmbh METHOD FOR PRODUCING A VACUUM-TIGHT AND PRESSURE-TIGHT CONNECTION BETWEEN A METAL BODY AND A OXIDE CERAMIC BODY
US5043302A (en) * 1988-03-25 1991-08-27 The United States Of America As Represented By The Secretary Of The Navy Glassy binder system for ceramic substrates, thick films and the like
US5725218A (en) * 1996-11-15 1998-03-10 The University Of Chicago High temperature seal for joining ceramics and metal alloys
US6146581A (en) * 1998-08-21 2000-11-14 Friatec Aktiengesellschaft Method of manufacturing a ceramic component with a cermet body

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3003791B1 (en) * 2013-03-28 2015-07-31 Commissariat Energie Atomique PROCESS FOR MANUFACTURING A SPECIFIC OBJECT OF A CURED INORGANIC OR ORGANIC MATERIAL
FR3003790B1 (en) * 2013-03-28 2015-05-01 Commissariat Energie Atomique PROCESS FOR MANUFACTURING AN OBJECT OF COMPLEX SHAPE IN A CURED INORGANIC OR ORGANIC MATERIAL

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2379075A (en) * 1941-05-20 1945-06-26 Gen Electric Enamel composition
US2920971A (en) * 1956-06-04 1960-01-12 Corning Glass Works Method of making ceramics and product thereof
US2972544A (en) * 1959-10-22 1961-02-21 Westinghouse Electric Corp Glass composition
US3019116A (en) * 1957-10-11 1962-01-30 Gen Electric Ceramic body and method of making the same
US3457091A (en) * 1965-03-19 1969-07-22 Haveg Industries Inc Glass bonded alumina

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2379075A (en) * 1941-05-20 1945-06-26 Gen Electric Enamel composition
US2920971A (en) * 1956-06-04 1960-01-12 Corning Glass Works Method of making ceramics and product thereof
US3019116A (en) * 1957-10-11 1962-01-30 Gen Electric Ceramic body and method of making the same
US2972544A (en) * 1959-10-22 1961-02-21 Westinghouse Electric Corp Glass composition
US3457091A (en) * 1965-03-19 1969-07-22 Haveg Industries Inc Glass bonded alumina

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Ingerson, E. et al; The Systems K 2 O ZnO SiO 2 , ZnO B 2 O 3 SiO 2 , and Zn 2 SiO 4 Zn 2 GeO 4 , in Amer. Journ. of Sci., 246, (1) pp 31 40 (1948). *
Volf, M.B; Glasses for Discharge Lamps, in Technical Glasses, London (Pitman s) 1961 pp 392 393. *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3870776A (en) * 1973-01-02 1975-03-11 Metalized Ceramics Corp Method for making ceramic-metal structures
US4209334A (en) * 1976-04-15 1980-06-24 Brunswick Corporation Porous ceramic seals and method of making same
US4152282A (en) * 1976-12-27 1979-05-01 U.S. Philips Corporation Silk-screening dielectric paste for multilayer circuit fabrication comprising aluminum oxide and a borosilicate glass
US4544828A (en) * 1980-03-03 1985-10-01 Canon Kabushiki Kaisha Heating device
US4349635A (en) * 1981-10-26 1982-09-14 Motorola, Inc. Lower temperature glass and hermetic seal means and method
WO1983001442A1 (en) * 1981-10-26 1983-04-28 Motorola Inc Lower temperature glass and hermetic seal means and method
US4417913A (en) * 1981-10-26 1983-11-29 Motorola, Inc. Lower temperature glass and hermetic seal means and method
EP0080535B1 (en) * 1981-11-27 1985-08-28 Krohne AG Measuring head for an electro-magnetic flow meter
DE3318585A1 (en) * 1983-05-21 1984-11-22 Friedrichsfeld Gmbh, Steinzeug- Und Kunststoffwerke, 6800 Mannheim Process for making a vacuum-tight bond, and a composite produced thereby
DE3634492A1 (en) * 1986-10-09 1988-04-14 Fischer & Porter Gmbh METHOD FOR PRODUCING A VACUUM-TIGHT AND PRESSURE-TIGHT CONNECTION BETWEEN A METAL BODY AND A OXIDE CERAMIC BODY
US5043302A (en) * 1988-03-25 1991-08-27 The United States Of America As Represented By The Secretary Of The Navy Glassy binder system for ceramic substrates, thick films and the like
US5416049A (en) * 1988-03-25 1995-05-16 The United States Of America As Represented By The Secretary Of The Navy Glassy binder system for ceramic substrates, thick films and the like
US5725218A (en) * 1996-11-15 1998-03-10 The University Of Chicago High temperature seal for joining ceramics and metal alloys
US6146581A (en) * 1998-08-21 2000-11-14 Friatec Aktiengesellschaft Method of manufacturing a ceramic component with a cermet body

Also Published As

Publication number Publication date
DE1947296A1 (en) 1970-03-26
FR2018534A1 (en) 1970-05-29

Similar Documents

Publication Publication Date Title
US3706582A (en) Glass frit-ceramic powder composition
US3520054A (en) Method of making multilevel metallized ceramic bodies for semiconductor packages
US3272686A (en) Structural ceramic bodies and method of making same
US3793134A (en) Low density, high strength ceramic article
US3669715A (en) Method of preparing a metal part to be sealed in a glass-ceramic composite
JP2000313674A5 (en)
US3676569A (en) Integrated circuit package
US4748136A (en) Ceramic-glass-metal composite
US3489845A (en) Ceramic-glass header for a semiconductor device
US3601855A (en) Apparatus for forming a composite metal-ceramic article
JPWO2003045864A1 (en) SEALING COMPOSITION AND SEALING MATERIAL
US3320353A (en) Packaged electronic device
GB2127530A (en) Method and holder for the manufacture of annular cores
JPH02500907A (en) Ceramic/glass/metal composite
CA1133683A (en) Method for manufacturing an object of silicon nitride
US3482149A (en) Sintered glass integrated circuit structure product and method of making the same
US2696652A (en) Quartz article and method for fabricating it
SE414920C (en) SET TO MAKE A FORM OF A MATERIAL IN THE FORM OF A POWDER THROUGH ISOSTATIC PRESSING OF A POWDER-FORMATED BODY
US2175707A (en) Spacer for electron discharge devices
US2985547A (en) Method for preparing coated bodies
US3849142A (en) Barium- or strontium-containing glass frits for silver metallizing compositions
US3374076A (en) Method for producing hermetic glass to metal seals
JPH0717776A (en) Bonding method for pottery and glass
CN221012930U (en) Ceramic or purple sand integrated internal heating container
US2840490A (en) Lamp envelope coating and method of applying