US3706195A - Synthetic yarns - Google Patents

Synthetic yarns Download PDF

Info

Publication number
US3706195A
US3706195A US113661A US3706195DA US3706195A US 3706195 A US3706195 A US 3706195A US 113661 A US113661 A US 113661A US 3706195D A US3706195D A US 3706195DA US 3706195 A US3706195 A US 3706195A
Authority
US
United States
Prior art keywords
percent
fibers
filaments
yarn
ohms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US113661A
Inventor
Anthony Charles Davis
Brian Franklin Amos
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Imperial Chemical Industries Ltd
Original Assignee
Imperial Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Imperial Chemical Industries Ltd filed Critical Imperial Chemical Industries Ltd
Application granted granted Critical
Publication of US3706195A publication Critical patent/US3706195A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/445Yarns or threads for use in floor fabrics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/09Addition of substances to the spinning solution or to the melt for making electroconductive or anti-static filaments
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/04Blended or other yarns or threads containing components made from different materials
    • D02G3/045Blended or other yarns or threads containing components made from different materials all components being made from artificial or synthetic material
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/441Yarns or threads with antistatic, conductive or radiation-shielding properties
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S57/00Textiles: spinning, twisting, and twining
    • Y10S57/901Antistatic

Definitions

  • a blended fibrous structure comprising synthetic filaments or fibers having a high electrical resistance together with extruded synthetic polyester or polyamide filament, having an extension to break of at least 200 percent, containing between 5 to 20 percent by weight inclusive of conductive carbon black.
  • the present invention is concerned with improvements in synthetic fibrous structures, especially yarns having improved antistatic properties obtained by blending the filaments or fibers forming the fibrous structure with fibers having a high electrical conductivity, hereinafter referred to as conductive fibers.
  • a blended fibrous structure comprising synthetic filaments or fibers having a high electrical resistance together with as-spun fibers as defined containing between to 20 percent, preferably 5 to percent, by weight inclusive of conductive carbon black.
  • an as-spun fiber we mean an extruded synthetic polyester or polyamide filament, having an extension to break of at least 200 percent measured as hereinafter described.
  • as-spun fibers we include partially or variably drawn fibers having an extension to break of at least 200 percent at any part along their length.
  • Suitable as-spun fibers for use in the present invention are polyester fibers such as-those derived from poly(ethylene terephthalate) and polyamide fibers such as those derived from poly(hexamethylene adipamide) or polycaproamide.
  • the as-spun fibers may be present in the blended fibrous structure as continuous filaments or as a monofilament or as discontinuous filaments. It is preferred that the as-spun fibers comprise at least 0.5 percent by weight of the blended fibrous structure although amounts of as-spun fibers as low as 0.1 percent are useful. The upper limit for the amount of asspun fibers present in the fibrous structure is determined by the conductivity which is desired and by the color which can be tolerated.
  • filaments or fibers having a high electrical resistance are meant those filaments or fibers which have electrical resistances of greater than 1.0 X 10 ohms at 60 percent relative humidity when determined by the method hereinafter described.
  • filaments or fibers are those comprising poly(ethylene terephthalate) and poly(hexamethylene adipamide).
  • the electrical resistance of a yarn is determined by winding 125 turns of yarn onto a former comprising two parallel stainless steel rods (4 mm. diameter), spaced apart at 1 cm., and measuring the electrical resistance across the rods at C and at a given relative humidity.
  • Suitable conductive carbon blacks for use in the present invention are those which exhibit good bulk conductivity and which are capable of being dispersed in polyester or polyamide polymer either per se or in conjunction with dispersing agents.
  • suitable conductive carbon blacks are the oil furnace blacks Vulcan XC 72R, Vulcan 3X and Vulcan 6F.
  • Suitable dispersing agents are ethoxylated oleyl and cetyl alcohols or mixtures thereof containing approximately 3.5 moles ethylene oxide per hydroxyl group, sodium salt of condensed naphthalene sulphonate, disodium salt of methylene dinaphthalene sulphonic acid and sulphated alkylphenol adducts.
  • the blended fibrous structures of the present invention are suitable for the manufacture of fabrics and are especially suitable for the manufacture of carpets.
  • Such fabrics or carpets may contain other yarns in addition to the blended yarns provided that sufficient blended yarn is present to confer antistatic properties to the fabrics or carpets.
  • EXAMPLE 1 A conductive carbon black, Vulcan XC 72R, was dispersed in molten polycaproamide in an amount such that the carbon black comprised 10 percent by weight of the mixture.
  • the molten mixture was extruded and wound at 400 ft/min. to yield a 120 denier 5' filament as-spun yarn having an electrical resistance of 5.0 X 10 ohms, and an extension to break of approximately 350 percent. Further, the electrical resistance was independent of the relative humidity. After drawing the as-spun yarn to a draw ratio of 4.0, the electrical resistance increased to 3.2 X 10 ohms. at 60% R.H. In the latter case, the electrical resistance varied with the relative humidity at which it was measured.
  • a blended yarn having good antistatic properties was obtained by blending poly(hexamethylene adipamide) filaments with the above as-spun yarn, the latter comprising 1 percent by weight of the blended yarn.
  • EXAMPLE 2 A molten dispersion comprising polycaproamide parts) and Vulcan XC 72R carbon black 10 parts) was extruded and wound up at 1,420 ft/min to yield a monofilament yarn of denier 14. The resistance of the monofilament on the day of spinning was 6 X 10 ohms. The resistance was then followed through a period of ageing including a cycle of humidity changes with the following results:
  • EXAMPLE 3 This example illustrates the significantly improved conductivity of as-spun fibers containing conductive carbon black compared with drawn, 'but otherwise identical, fibers.
  • Polycaproamide containing Vulcan XC 72R dispersed therein was extruded at 275 280C and wound up at 400 ft/min under conditions such that asspun monofilaments of denier 19.5 and 40.0 were obtained.
  • the as-spun monofilaments had an extension to break of approximately 350 percent.
  • the as-spun monofilaments of denier 19.5 and 40.0 had electrical resistances, measured at 20% R.H., of 6.0 X 10" ohms and 4.5 X 10' ohms respectively.
  • a drawn monofilament of denier 17.3 was obtained by extruding the above polymer composition at 1,000 ft/min and drawing at 50 ft/min to a draw ratio of 4.0 over a hotplate at 120C.
  • a drawn monofilament of denier 41.0 was obtained by extruding the above polymer composition at 750 ft/min and drawing under the above conditions.
  • the drawn monofilaments containing dispersed carbon black had extensions to break of approximately 20 percent.
  • the drawn monofilaments of denier 17.3 and 41.0 had electrical resistances, measured at 20% R.l-l., of 1.5 X 10 ohms and 2.0 X 10 ohms respectively,
  • EXAMPLE 4 A 620 denier/52 filament as-spun yarn was prepared by extruding polycaproamide containing 10, percent by weight of a conductive carbon black Vulcan XC 72R.
  • the as-spun yarn had an electrical resistance of 10 ohms after scouring and rinsing.
  • the asspun yarn was crimped to 14 crimps per inch in a staple stuffing box and the crimped yarn was converted to 4 inch staple fiber by cutting.
  • the latter was blended with 12 d.p.f. crimped poly(hexamethylene adipamide) staple fiber to give 0.5, 1.0 and 2.0 percent of fiber containing carbon black in the blended yarn.
  • Blending was carried out at the yarn spinning stage in the conventional woollen process to give 2 fold 55's Drewsbury count staple yarn, 3% t.p.i. Z twist in singles and 2% t.p.i. S twist in folded yarn.
  • the blended yarns containing 0.5, 1.0 and 2.0 percent of carbon-containing fibers had electrical resistances, measured at percent relative humidity after scouring and rinsing, of 1.8 X 10' ohms, 3.4 X 10' ohms and 3.2 X 10' ohms respectively.
  • the blended yarns were used construct loop pile and cut pile carpets which exhibited good antistatic properties.
  • EXAMPLE 6 A conductive carbon black, Vulcan, XC 72R, was dispersed in molten poly(ethylene terephthalate) in an amount such that the carbon black comprised 10 percent by weight of the mixture. The molten mixture was extruded and wound up at 500 ft/min to yield a denier 5 filament as-spun yarn having an electrical resistance, measured at 20 percent relative humidity, of 3.3 X 10 ohms after scouring and rinsing. I
  • This yarn was then folded with a 2450 denier 136 filament poly(hexamethylene adipamide) drawn crimped yarn, and the blended yarn wound onto a former.
  • the electrical resistance of the blended yarn was measured on this former, before and after scouring and was found to be 1.7 X 10 ohms and 1.2 X 10 ohms respectively at approximately 20% RH. This compares with 2.0 X 10 ohms for scoured poly(hexamethylene adipamide), at the same R.l-l.
  • Example 6 was repeated except that poly(hexamethylene adipamide) was used instead of poly(ethylene terephthalate),
  • the 120 denier 5 filament as-spun yarn had an electrical, resistance, measured at 20 percent relative humidity, of 1.0 X l0 ohms after scouring and rinsing.
  • This yarn was then folded with a 2,450 denier 136 filament poly(hexamethylene adipamide) drawn, crimped yarn.
  • the blended yarn was wound onto a former and its electrical resistance measured before and after scouring.
  • the unsecured and scoured blended yarn had electrical resistances, measured at approximately 20% R.l-l. of 6.0 X 10 ohms and 2.0 X 10 ohms respectively compared with 2 X 10 ohms for scoured poly(hexamethylene adipamide) yarn at the same R.H. y
  • a blend of filaments or fibers comprising synthetic filaments-or fibers having a high electrical resistance together with other filaments or fibers containing 5 to 20 percent by weight conductive carbon black, said other filaments or fibers being made of extruded synthetic material selected from the group consisting of polyesters and polyamides and having an extension to break of at least 200 percent.
  • a blend as in claim 2 containing at least 0.5 percent by weight of said other filaments or fibers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)
  • Woven Fabrics (AREA)

Abstract

A blended fibrous structure comprising synthetic filaments or fibers having a high electrical resistance together with extruded synthetic polyester or polyamide filament, having an extension to break of at least 200 percent, containing between 5 to 20 percent by weight inclusive of conductive carbon black.

Description

United States Patent Davis et al.
Dec. 19, 1972 SYNTHETIC YARNS Inventors: Anthony Charles Davis; Brian Franklin Amos, both of Pontypool, England Imperial Chemical Industries Limited, London, England Filed: Feb. 8, 1971 App1.N0.: 113,661
Assignee:
Foreign Application Priority Data Feb. 13, 1970 Great Britain 7,102/70 US. Cl ..57/14o BY, 57/157 AS Int. Cl ..D02g 3/04, D02g 3/44 Field of Search ..57/14o R, 140 BY, 157 AS;
6/1958 Australia 57/157 AS Primary Examiner-Werner H. Schroeder AttorneyCushman, Darby & Cushman ABSTRACT A blended fibrous structure comprising synthetic filaments or fibers having a high electrical resistance together with extruded synthetic polyester or polyamide filament, having an extension to break of at least 200 percent, containing between 5 to 20 percent by weight inclusive of conductive carbon black.
5 Claims, No Drawings SYNTHETIC YARNS The present invention is concerned with improvements in synthetic fibrous structures, especially yarns having improved antistatic properties obtained by blending the filaments or fibers forming the fibrous structure with fibers having a high electrical conductivity, hereinafter referred to as conductive fibers.
According to the present invention, we provide a blended fibrous structure comprising synthetic filaments or fibers having a high electrical resistance together with as-spun fibers as defined containing between to 20 percent, preferably 5 to percent, by weight inclusive of conductive carbon black.
By an as-spun fiber we mean an extruded synthetic polyester or polyamide filament, having an extension to break of at least 200 percent measured as hereinafter described. In the term as-spun fibers we include partially or variably drawn fibers having an extension to break of at least 200 percent at any part along their length.
Suitable as-spun fibers for use in the present invention are polyester fibers such as-those derived from poly(ethylene terephthalate) and polyamide fibers such as those derived from poly(hexamethylene adipamide) or polycaproamide. I
The as-spun fibers may be present in the blended fibrous structure as continuous filaments or as a monofilament or as discontinuous filaments. It is preferred that the as-spun fibers comprise at least 0.5 percent by weight of the blended fibrous structure although amounts of as-spun fibers as low as 0.1 percent are useful. The upper limit for the amount of asspun fibers present in the fibrous structure is determined by the conductivity which is desired and by the color which can be tolerated.
By filaments or fibers having a high electrical resistance is meant those filaments or fibers which have electrical resistances of greater than 1.0 X 10 ohms at 60 percent relative humidity when determined by the method hereinafter described. Examples of such filaments or fibers are those comprising poly(ethylene terephthalate) and poly(hexamethylene adipamide).
For the purpose of the present invention the electrical resistance of a yarn is determined by winding 125 turns of yarn onto a former comprising two parallel stainless steel rods (4 mm. diameter), spaced apart at 1 cm., and measuring the electrical resistance across the rods at C and at a given relative humidity.
Extension to break of as-spun fiber is measured on a conventional lnstron tensile tester under the following conditions:
Fiber test length 5 cm Load 100 g Crosshead speed 50 cm/min Chart speed 50 cm/min Rate of extension l000%/min Relative Humidity 66% Temperature 20C for polyamide fiber 150C for polyester fiber Suitable conductive carbon blacks for use in the present invention are those which exhibit good bulk conductivity and which are capable of being dispersed in polyester or polyamide polymer either per se or in conjunction with dispersing agents. Examples of suitable conductive carbon blacks are the oil furnace blacks Vulcan XC 72R, Vulcan 3X and Vulcan 6F. Examples of suitable dispersing agents are ethoxylated oleyl and cetyl alcohols or mixtures thereof containing approximately 3.5 moles ethylene oxide per hydroxyl group, sodium salt of condensed naphthalene sulphonate, disodium salt of methylene dinaphthalene sulphonic acid and sulphated alkylphenol adducts.
The blended fibrous structures of the present invention are suitable for the manufacture of fabrics and are especially suitable for the manufacture of carpets. Such fabrics or carpets may contain other yarns in addition to the blended yarns provided that sufficient blended yarn is present to confer antistatic properties to the fabrics or carpets.
The following examples, in which all parts and percentages are by weight, illustrate but do not limit the present invention.
EXAMPLE 1 A conductive carbon black, Vulcan XC 72R, was dispersed in molten polycaproamide in an amount such that the carbon black comprised 10 percent by weight of the mixture. The molten mixture was extruded and wound at 400 ft/min. to yield a 120 denier 5' filament as-spun yarn having an electrical resistance of 5.0 X 10 ohms, and an extension to break of approximately 350 percent. Further, the electrical resistance was independent of the relative humidity. After drawing the as-spun yarn to a draw ratio of 4.0, the electrical resistance increased to 3.2 X 10 ohms. at 60% R.H. In the latter case, the electrical resistance varied with the relative humidity at which it was measured. A blended yarn having good antistatic properties was obtained by blending poly(hexamethylene adipamide) filaments with the above as-spun yarn, the latter comprising 1 percent by weight of the blended yarn.
EXAMPLE 2 A molten dispersion comprising polycaproamide parts) and Vulcan XC 72R carbon black 10 parts) was extruded and wound up at 1,420 ft/min to yield a monofilament yarn of denier 14. The resistance of the monofilament on the day of spinning was 6 X 10 ohms. The resistance was then followed through a period of ageing including a cycle of humidity changes with the following results:
1. Yarn kept for 3 days at 60% R.H. resistance 4 X 10 ohms.
2. Yarn then transferred to 20% R.H. and kept for 5 hours at 20% R.H. resistance 1 X 10 ohms.
3. Yarn kept for a further 19 hours at 20% R.H.
resistance 8 X 10" ohms.
4. Yarn then returned to 60% R.H. atmosphere and kept for 10 days more at 60% R.H. resistance 1.2 X 10 ohms.
It can be seen that resistance appears to drop progressively with time up to 14 days after spinning, most of the fall being in the first 3 days. Conditioning the yarn to a lower humidity also lowered the resistance, but the change with R.H. appeared to be reversible. The absence of the usual increase of resistance with falling humidity is a useful property of the synthetic yarns produced according to the invention.
EXAMPLE 3 This example illustrates the significantly improved conductivity of as-spun fibers containing conductive carbon black compared with drawn, 'but otherwise identical, fibers.
Polycaproamide containing Vulcan XC 72R dispersed therein was extruded at 275 280C and wound up at 400 ft/min under conditions such that asspun monofilaments of denier 19.5 and 40.0 were obtained. The as-spun monofilaments had an extension to break of approximately 350 percent. The as-spun monofilaments of denier 19.5 and 40.0 had electrical resistances, measured at 20% R.H., of 6.0 X 10" ohms and 4.5 X 10' ohms respectively.
A drawn monofilament of denier 17.3 was obtained by extruding the above polymer composition at 1,000 ft/min and drawing at 50 ft/min to a draw ratio of 4.0 over a hotplate at 120C. I
A drawn monofilament of denier 41.0 was obtained by extruding the above polymer composition at 750 ft/min and drawing under the above conditions.
The drawn monofilaments containing dispersed carbon black had extensions to break of approximately 20 percent.
The drawn monofilaments of denier 17.3 and 41.0 had electrical resistances, measured at 20% R.l-l., of 1.5 X 10 ohms and 2.0 X 10 ohms respectively,
EXAMPLE 4 EXAMPLE 5 A 620 denier/52 filament as-spun yarn was prepared by extruding polycaproamide containing 10, percent by weight of a conductive carbon black Vulcan XC 72R.
' The as-spun yarn had an electrical resistance of 10 ohms after scouring and rinsing.
The asspun yarn was crimped to 14 crimps per inch in a staple stuffing box and the crimped yarn was converted to 4 inch staple fiber by cutting. The latter was blended with 12 d.p.f. crimped poly(hexamethylene adipamide) staple fiber to give 0.5, 1.0 and 2.0 percent of fiber containing carbon black in the blended yarn. Blending was carried out at the yarn spinning stage in the conventional woollen process to give 2 fold 55's Drewsbury count staple yarn, 3% t.p.i. Z twist in singles and 2% t.p.i. S twist in folded yarn.
The blended yarns containing 0.5, 1.0 and 2.0 percent of carbon-containing fibers had electrical resistances, measured at percent relative humidity after scouring and rinsing, of 1.8 X 10' ohms, 3.4 X 10' ohms and 3.2 X 10' ohms respectively.
The blended yarns were used construct loop pile and cut pile carpets which exhibited good antistatic properties.
EXAMPLE 6 A A conductive carbon black, Vulcan, XC 72R, was dispersed in molten poly(ethylene terephthalate) in an amount such that the carbon black comprised 10 percent by weight of the mixture. The molten mixture was extruded and wound up at 500 ft/min to yield a denier 5 filament as-spun yarn having an electrical resistance, measured at 20 percent relative humidity, of 3.3 X 10 ohms after scouring and rinsing. I
This yarn was then folded with a 2450 denier 136 filament poly(hexamethylene adipamide) drawn crimped yarn, and the blended yarn wound onto a former. The electrical resistance of the blended yarn was measured on this former, before and after scouring and was found to be 1.7 X 10 ohms and 1.2 X 10 ohms respectively at approximately 20% RH. This compares with 2.0 X 10 ohms for scoured poly(hexamethylene adipamide), at the same R.l-l.
EXAMPLE7 Example 6 was repeated except that poly(hexamethylene adipamide) was used instead of poly(ethylene terephthalate), The 120 denier 5 filament as-spun yarn had an electrical, resistance, measured at 20 percent relative humidity, of 1.0 X l0 ohms after scouring and rinsing.
This yarn was then folded with a 2,450 denier 136 filament poly(hexamethylene adipamide) drawn, crimped yarn. The blended yarn was wound onto a former and its electrical resistance measured before and after scouring. The unsecured and scoured blended yarn had electrical resistances, measured at approximately 20% R.l-l. of 6.0 X 10 ohms and 2.0 X 10 ohms respectively compared with 2 X 10 ohms for scoured poly(hexamethylene adipamide) yarn at the same R.H. y
We claim:
l. A blend of filaments or fibers comprising synthetic filaments-or fibers having a high electrical resistance together with other filaments or fibers containing 5 to 20 percent by weight conductive carbon black, said other filaments or fibers being made of extruded synthetic material selected from the group consisting of polyesters and polyamides and having an extension to break of at least 200 percent.
2. A blend as in claim 1 wherein said other filaments or fibers contain 5 to 15 percent by weight conductive carbon black.
3. A blend as in claim 2 containing at least 0.5 percent by weight of said other filaments or fibers.
4. A carpet containing yarns made of the blend of claim 3.
S. A yarn made of a blend of synthetic filaments or fibers having a high electrical resistance of greater than 1.0x 10" ohms at 60 percent relative humidity together with 0.1 to 2.0 percent by weight of other filaments or fibers containing 5 to 20 percent by weight conductive carbon black, said other filaments or fibers being made of extruded synthetic material selected from the group consisting of polyesters and polyamides and having an extension to break of at least 200 percent.
UNITED STATES PATENT @FFEEE @FF QQRREQTEGN Patent No. $7 95 Dated December 19 1972 Inventofls) Anthony Charles Davis and Brian Franklyn Amos It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Title page, line 72, read as follows:
--[72] Inyentors: Anthony Charles Davis; Brian Franklyn Amos, both of Pontypool, England-- Signed and sealed this 10th day of July 1973.
(SEAL) Attes't:
EDWARD M.FLETCHER,JR. e e egtmeyer Attescing Officer Acting Commissioner of Patents FORM PO-105O (10-69) USCOMM-DC 60376-P69 t uisl covznrmem wmmuc ornc: 7 use 0-366-334

Claims (4)

  1. 2. A blend as in claim 1 wherein said other filaments or fibers contain 5 to 15 percent by weight conductive carbon black.
  2. 3. A blend as in claim 2 containing at least 0.5 percent by weight of said other filaments or fibers.
  3. 4. A carpet containing yarns made of the blend of claim 3.
  4. 5. A yarn made of a blend of synthetic filaments or fibers having a high electrical resistance of greater than 1.0 X 1010 ohms at 60 percent relative humidity together with 0.1 to 2.0 percent by weight of other filaments or fibers containing 5 to 20 percent by weight conductive carbon black, said other filaments or fibers being made of extruded synthetic material selected from the group consisting of polyesters and polyamides and having an extension to break of at least 200 percent.
US113661A 1970-02-13 1971-02-08 Synthetic yarns Expired - Lifetime US3706195A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB710270 1970-02-13

Publications (1)

Publication Number Publication Date
US3706195A true US3706195A (en) 1972-12-19

Family

ID=9826654

Family Applications (1)

Application Number Title Priority Date Filing Date
US113661A Expired - Lifetime US3706195A (en) 1970-02-13 1971-02-08 Synthetic yarns

Country Status (3)

Country Link
US (1) US3706195A (en)
DE (1) DE2106784A1 (en)
GB (1) GB1333594A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4064075A (en) * 1972-08-11 1977-12-20 E. I. Du Pont De Nemours And Company Conductive, extrudable polymer composition of poly(ε-caproamide) and carbon black
US4232082A (en) * 1979-07-11 1980-11-04 Nippon Keori Kabushiki Kaisha Anti-electrostatically guarded worsted suiting
US4432924A (en) * 1981-04-10 1984-02-21 Lion Corporation Process for producing an electrically conductive monofilament
US4606968A (en) * 1983-07-25 1986-08-19 Stern And Stern Textiles, Inc. Electrostatic dissipating fabric
CN102154736A (en) * 2011-03-28 2011-08-17 际华三五零六纺织服装有限公司 Conductive fiber for clothing

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2639499C2 (en) * 1976-09-02 1982-05-27 Bayer Ag, 5090 Leverkusen Mixtures of synthetic fibers or threads containing carbon black
EP0185806B1 (en) * 1984-12-06 1988-03-09 Badische Corporation Supported antistatic yarn, products incorporating same, and method for its production
GB8716199D0 (en) * 1987-07-09 1987-08-12 Courtaulds Plc Electrically conductive materials
GB8716243D0 (en) * 1987-07-10 1987-08-19 Courtaulds Plc Yarns
IT1262083B (en) * 1993-03-08 1996-06-19 Zoom Srl PROCEDURE FOR THE PRODUCTION OF TEXTILE THREADS AND TEXTILE THREADS FOR ANTI-STRESS PRODUCTS OBTAINED WITH THESE THREADS

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2845962A (en) * 1953-07-14 1958-08-05 Dunlop Rubber Co Antistatic fabrics
US3206923A (en) * 1963-05-16 1965-09-21 Russell W Price Reinforced conductive yarn
US3586597A (en) * 1967-11-20 1971-06-22 Teijin Ltd Cloth having durable antistatic properties for use in garments and underwear

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2845962A (en) * 1953-07-14 1958-08-05 Dunlop Rubber Co Antistatic fabrics
US3206923A (en) * 1963-05-16 1965-09-21 Russell W Price Reinforced conductive yarn
US3586597A (en) * 1967-11-20 1971-06-22 Teijin Ltd Cloth having durable antistatic properties for use in garments and underwear

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4064075A (en) * 1972-08-11 1977-12-20 E. I. Du Pont De Nemours And Company Conductive, extrudable polymer composition of poly(ε-caproamide) and carbon black
US4232082A (en) * 1979-07-11 1980-11-04 Nippon Keori Kabushiki Kaisha Anti-electrostatically guarded worsted suiting
US4432924A (en) * 1981-04-10 1984-02-21 Lion Corporation Process for producing an electrically conductive monofilament
US4606968A (en) * 1983-07-25 1986-08-19 Stern And Stern Textiles, Inc. Electrostatic dissipating fabric
CN102154736A (en) * 2011-03-28 2011-08-17 际华三五零六纺织服装有限公司 Conductive fiber for clothing

Also Published As

Publication number Publication date
DE2106784A1 (en) 1971-08-19
GB1333594A (en) 1973-10-10

Similar Documents

Publication Publication Date Title
US7240476B2 (en) Stretch polyester/cotton spun yarn
US4085182A (en) Process for producing electrically conductive synthetic fibers
DE69414562T2 (en) MIXED FIBERS FOR IMPROVED CARPET STRUCTURE MAINTENANCE
US4882222A (en) Carpet fiber blends
GB2077182A (en) Conductive composite filaments
JPS5945769B2 (en) Yarn containing antistatic synthetic filaments or staple fibers
US3706195A (en) Synthetic yarns
US5213892A (en) Antistatic core-sheath filament
US3188790A (en) Nylon fiber blends
US6458455B1 (en) Poly(trimethylene terephthalate) tetrachannel cross-section staple fiber
US4643931A (en) Method and materials for manufacture of anti-static carpet having tufts containing electroconductive carbonized filaments or fibers
EP0591827B1 (en) Core yarn comprising a core of high-strength polyester material and method of manufacturing the same
US3295308A (en) Multifilament polyolefin carpets of non-regular cross-section and method of manufacture
EP1549789B1 (en) Stretch polyester and acrylic spun yarn
KR20220104699A (en) Carpets made from self-bulking PTT-containing bicomponent fibers
JPS5819360A (en) Electrically conductive polymer composition
EP1956121B1 (en) Stretch polyester/cotton spun yarn
US2143574A (en) Yarn and fabric
KR100494341B1 (en) An excellent flame-retardant and antibiotic spun yarn composed of synthetic fiber
JP7340183B1 (en) Core-sheath type polyester composite fiber and its manufacturing method
JPS593574B2 (en) Manufacturing method of conductive mixed fiber yarn
US6180230B1 (en) Permanently crimped fibres and method for making same
JPS5953368B2 (en) Method for manufacturing polyester staple with excellent spinnability
JP2813368B2 (en) Antistatic composite fiber
JPS58149327A (en) Production of electroconductive conjugated fiber