US3702576A - High-pressure multi-cylinder hydraulic machines - Google Patents

High-pressure multi-cylinder hydraulic machines Download PDF

Info

Publication number
US3702576A
US3702576A US42711A US3702576DA US3702576A US 3702576 A US3702576 A US 3702576A US 42711 A US42711 A US 42711A US 3702576D A US3702576D A US 3702576DA US 3702576 A US3702576 A US 3702576A
Authority
US
United States
Prior art keywords
barrel
distributor plate
fluid
axis
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US42711A
Inventor
Francois C Pruvot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Regie Nationale des Usines Renault
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Application granted granted Critical
Publication of US3702576A publication Critical patent/US3702576A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/20Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block
    • F04B1/2014Details or component parts
    • F04B1/2042Valves

Definitions

  • This invention relates in general to hydraulic machines such as multi-cylinder motors and pumps wherein the fluid is delivered to the cylinders through a flat or cylindrical distributor.
  • the term machine as used hereinafter should be taken as designating a device capable of operating either as a motor or as a P mP-
  • These well known machines comprise as a rule a rotary cylinder body or barrel, an impeller or swash plate rigid with the driving shaft and carrying a number of swivel-mounted connecting-rods operatively connected to the pistons, and a distributor plate.
  • This invention is concerned more particularly with a device for balancing the axial forces acting upon one of these members.
  • the barrel engages the distributor plate in the inoperative condition and moves away therefrom as it picks up speed.
  • the fluid supply grooves leading to the hydrostatic bearing mustbe very narrow (about 0.01 inch to about 0.02 inch), thus preventing the construction of motors having very small dimensions.
  • the sealing surfaces between the ports and the inner space of the machine casing must be much larger than in the case of balancing by means of hydrodynamic shoes since the latter do not require the machining, in the sealing lips, of grooves similar to those feeding the hydrostatic bearing. This is attended by a considerably greater separating force between the barrel and the distributor plate. To increase the bearing force of the barrel the cross-sectional area of the orifices formed through the bottoms of the cylinders are reduced, with the consequence that the inner losses of pressure of the motor are increased. It is also noted that a single radial groove is not capable of ensuring a correct feeding of the ends of the circular groove.
  • the present invention while avoiding the inconveniences listed hereinabove provides a hydraulic motor having a starting torque substantially equal to the rated torque while permitting maintaining internal pressure losses at a value of the same order as that of motors having the cylinder barrel balanced by hydrodynamic shoes.
  • the high-pressure hydraulic machine of the type comprising a multi-cylinder barrel and a distributor plate revolving in mutual contact, wherein the cylinders of said barrel and the orifices through which said cylinders open into the interface between said barrel and said plate are disposed on a circle about the barrel axis together with the corresponding fluid inlet and outlet ports of the distributor plate acting as a hydrodynamic bearing, is characterized in that the mean diameter of the imaginary circle containing the centers of said orifices and consumption is negligible in comparison with the other motor leakages, with means for regulating or controlling the thickness of the fluid film separating the barrel from the distributor plate.
  • the hydraulic machine according to this invention is also characterized in that the distributor plate comprises a hydrostatic bearing fed with fluid under pressure for balancing the barrel in the inoperative position and that means for controlling the supply of pressure fluid to said hydrostatic bearing are provided in order to limit or reduce said supply during the normal operation of the machine.
  • FIG. 1 is a fragmentary longitudinal section of a motor with its distributor, the section being taken along the line lI of FIG. 3
  • FIG. 2 is a plan view of the distributor plate, as seen in the direction of the arrows 11-11 of FIG. 1
  • FIG. 3 is an end view of the cylinder barrel, taken in the direction of the arrows IlI--III of FIG. 1 and
  • FIG. 4 is a plan view showing a modified form of embodiment of the distributor plate.
  • FIG. 1 showing a cylinder block 1 rotatably mounted on a distributor plate 2, it will be seen that in this cylinder block a plurality of cylinders 3 are disposed at spaced angular intervals about the axis of rotation of this block, the centers of said cylinders lying on a common circle having a diameter d so that the cylinder axes are parallel to said axis (0).
  • Each cylinder has slidably mounted therein a piston 4 operatively connected through a ball joint 6 to a connecting-rod having its other end (not shown) provided with another ball joint attached to a rotary impeller or swash plate as well known in the construction of hydraulic motors. Driven bodily with this impeller or swash plate the cylinder 1 revolves inside a case or body 7 in a bearing 8.
  • the distributor plate 2 is also provided with a number of peripheral hydrodynamic shoes 16 from which a bearing force is derived which depends on the viscosity of the hydraulic fluid and also on the velocity of motion in relation to the barrel.
  • Sealing surfaces l7, l8 bounded by circles having the diameters denoted d and d respectively are disposed on either side of ports 14 and 15.
  • This surface (S) is generally equal to 0.9 or 0.95 times the piston area in other words, when the pressure prevailing in the cylinder is exerted against this surface, the resultant force will be according to circumstances 0.9 to 0.95 times the force acting on a piston.
  • the average diameter d of orifices l0 and corresponding ports 14, 15 is greater than the diameter d of the circle containing the centers of the cylinder orifices under these conditions, the resultant of the reaction forces of the dynamic shoes may be caused to become coincident with the axis of rotation of the barrel.
  • the values of d may be selected to be such that the resultant passes through a point G located at a distance d of the axis of rotation, which is considerably inferior to the mean radius of the dynamic shoes.
  • reaction force may be equal
  • the center of gravity G of Sri will not be coincident with the above-defined center of gravity 6,. It will lie at a distance d,, greater in relation to the axis of rotation of the barrel.
  • a surface area such as illustrated at S2 in H68. 1 and 2, of which the center of gravity is at a distance d from the barrel axis.
  • the motor can rotate in either direction, the induction and exhaust ports 14, being then inverted.
  • the motor could not operate normally, for when the barrel separates from the distributor plate the fluid pressure exerts a certain action under the sealing surfaces of the distribution ports, so that the hydraulic reaction would become greater than the force urging the barrel against the distributor plate to avoid this effect it is necessary not only to exert a pressure on the surface S2 when the barrel is inoperative, but also to discontinue the application of this pressure when the barrel is separated from the distributor plate. This is obtained in the manner illustrated in FIGS.
  • each surface S2 is supplied through the corresponding induction port 14 or 15 via a pressureloss generating laminar-flow duct consisting of a helical groove 19 machined in a cylindrical member 20 force fitted or assembled without play in a hole 21 adjacent to the fluid passage leading to said ports.
  • a pressureloss generating laminar-flow duct consisting of a helical groove 19 machined in a cylindrical member 20 force fitted or assembled without play in a hole 21 adjacent to the fluid passage leading to said ports.
  • FIG. 4 shows another form of embodiment of this invention wherein the distributor plate 2, comprises four hydrostatic bearings S22 each supplied via a duct 23 having a separate pressure loss, said bearings being interposed between the peripheral hydrodynamic shoes 16,.
  • the above described device is applicable to all pumps and motors of the type comprising a multicylinder barrel and a flat or spheroidal distributor plate.
  • This arrangement is particularly advantageous in the case of hydraulic motors for which starting under fullload conditions is a frequent requirement. This is observed notably in the case of hydrostatic transmission motors of automotive vehicles (passengers vehicles, trucks and more particularly public works vehicles and agricultural machines).
  • a specific feature characterizing the arrangement of this invention is that its component elements can be manufactured easily and economically, for example by using parts of sintered metal.
  • the balancing device is also applicable to the distributor plate of hydraulic, axial-piston pumps and motors wherein the distribution slide face is a surface of revolution of which the axis merges with the axis of rotation of the cylinder block,
  • This method of balancing axial forces is also applicable to the impeller or swash plate supporting the balljoints or heads of the connecting-rods of the pistons of a pump or motor of the broken axis type, in case the axial stress transmitted through the piston rods are already absorbed by means of a hydrostatic hearing.
  • a typical example of such impeller or swash plate is described in detail in the French Pat. application No. 69/19519 of June 12, 1969, the impeller or swash plate comprising on one face orifices registering with ports formed in a fixed slide face. These ports are supplied with a fluid under pressure.
  • the other face of the plate comprises cavities for receiving the ball-shaped heads of the pistons-supporting connecting-rods.
  • This axial-force balancing method is also applicable to radial-piston pumps and motors wherein the fluid distribution takes place through the medium of a flat distributor plate.
  • the orifices such as 10 are connected to cylinders disposed at right angles to the axis of rotation of the cylinder block and the floating distributor plate is urged against the cylinder block by an external force derived in general from the fluid supply pressure.
  • Hydraulic machine characterized in that said reaction surface comprises at least one arcuate groove of which the point of application of the resultant of the reaction stresses is substantially coincident with the axis of rotation of said barrel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydraulic Motors (AREA)
  • Reciprocating Pumps (AREA)

Abstract

High-pressure hydraulic machine of the multi-cylinder barrel type with a distributor plate, said barrel and plate revolving in mutual contact, wherein the barrel cylinders and the orifices through which they open into the interface between said barrel and said distributor plate are disposed on a circle about the axis of rotation of said barrel, together with the corresponding fluid inlet and outlet ports of the distributor plate constituting a hydrodynamic bearing, characterized in that the mean diameter of the imaginary circle containing the centers of said orifices and ports is greater than the diameter of the imaginary cylinder containing the axes of said cylinders, whereby the resultant balancing force exerted by said barrel on said distributor plate is directed internally of the bearing surfaces of said hydrodynamic bearing which are preferably coincident with the barrel axis.

Description

United States Patent Pruvot [s41 HIGH-PRESSURE MULTl-CYLINDER HYDRAULIC MACHINES [72] Inventor: Francois C. Pruvot, Billancourt,
France [73] Assignee: Regie Nationale Des Usines Renault, Billancourt, France [22] Filed: June 2, 1970 [21] Appl. No.: 42,711
[ Nov. 14, 1972 3,180,274 4/1965 Sisk ..91/4s7 Primary Examiner-Martin P. Schwadron Assistant Examiner-Irwin C. Cohen Attorney-Stevens, Davis, Miller & Mosher ABSTRACT High-pressure hydraulic machine of the multi-cylinder barrel type with a distributor plate, said barrel and plate revolving in mutual contact, wherein the barrel cylinders and the orifices through which they open into the interface between said barrel and said distributor plate are disposed on a circle about the axis of rotation of said barrel, together with the corresponding fluid inlet and outlet ports of the distributor plate constituting a hydrodynamic bearing, characterized in that the mean diameter of the imaginary circle containing the centers of said orifices and ports is greater than the diameter of the imaginary cylinder containing the axes of said cylinders, whereby the resultant balancing force exerted by said barrel on said distributor plate is directed internally of the bearing surfaces of said hydrodynamic bearing which are preferably coincident with the: barrel axis.
2 Clains, 4 Drawing Figures HIGH-PRESSURE MULTI-CYLINDER HYDRAULIC MACHINES This invention relates in general to hydraulic machines such as multi-cylinder motors and pumps wherein the fluid is delivered to the cylinders through a flat or cylindrical distributor. The term machine as used hereinafter should be taken as designating a device capable of operating either as a motor or as a P mP- These well known machines comprise as a rule a rotary cylinder body or barrel, an impeller or swash plate rigid with the driving shaft and carrying a number of swivel-mounted connecting-rods operatively connected to the pistons, and a distributor plate.
This invention is concerned more particularly with a device for balancing the axial forces acting upon one of these members.
It is knownthat the force with which the cylinder barrel bears against the distributor plate ranges as a rule from 5 to percent (although certain cases are known where slightly different values are attained) of the thrust exerted by the hydraulic fluid against the bottoms of the various cylinders. This force is absorbed in general by dynamic shoes disposed at spaced intervals on the outer periphery of the barrel or distributor plate, which shoes give a bearing force depending on various parameters such as fluid viscosity, relative speed of said shoes in relation to the plate, surface condition, etc.
Thus, the barrel engages the distributor plate in the inoperative condition and moves away therefrom as it picks up speed.
This device operates satisfactorily when the barrel has been separated from the distributor plate. On the other hand, when starting the machine the pressure distribution on the sealing faces disposed on either side of the high pressure port is unknown. In fact, when the barrel and the distributor plate are in mutual contact, the fluid cannot penetrate into the interface formed between the surfaces. In this case the machine, when starting, must overcome a considerable frictional resistance. Therefore, it is obvious that there is latent risk of jamming and abnormal wear by friction during the starting period, until the dynamic shoes become gradually more efficient with the increasing speed .of the machine and will permit the lifting of the cylinder barrel and a more adequate pressure distribution.
In fact, mixed starting conditions are encountered due to the relative evenness of the contacting faces of the barrel and distributor plate. However, in the case of a motor starting under load, there is no suflicient time for a proper distribution of pressure on the sealing surfaces and the starting efficiency will be relatively moderate. This effect, also referred to as sticking of the barrel to the distributor plate, is such that a relatively high pressure may be necessary for starting the motor, the pressure resuming a normal value at the end of the starting period. Now this constitutes a major inconveniences in the case of slow hydraulic motors starting under load, as used inter alia for propelling vehicles. This effect is rendered still more unpleasant and detrimental by the fact that the unequal pressure distribution in the various portions of the sealing surfaces permits a certain wedge or skew lifting of the barrel, which constitutes a source of considerable leakage during the starting period.
Machines are also known wherein the barrel is supported by a hydrostatic bearing consisting of a controlled delivery of fluid under pressure at the scaling interfaces formed between the high-pressure and lowpressure ports, on the one hand, and the inner space of the casing, on the other hand however, it is noted that the nature of the pressure distribution is unknown, at least under one portion of the sealing surfaces, so that the inconveniences mentioned hereinabove in connection with dynamic bearings are also observed in the present instance. g I I This method of balancing pressures by using hydrostatic bearings is attended by other inconveniences.
Thus, the fluid supply grooves leading to the hydrostatic bearing mustbe very narrow (about 0.01 inch to about 0.02 inch), thus preventing the construction of motors having very small dimensions.
The sealing surfaces between the ports and the inner space of the machine casing must be much larger than in the case of balancing by means of hydrodynamic shoes since the latter do not require the machining, in the sealing lips, of grooves similar to those feeding the hydrostatic bearing. This is attended by a considerably greater separating force between the barrel and the distributor plate. To increase the bearing force of the barrel the cross-sectional area of the orifices formed through the bottoms of the cylinders are reduced, with the consequence that the inner losses of pressure of the motor are increased. It is also noted that a single radial groove is not capable of ensuring a correct feeding of the ends of the circular groove. Finally, a serious inconvenience of this balancing method lies in its heavy fluid consumption due to the fact that a gap in excess of 0.01 mm (0.0004. inch) must necessarily be provided between the sealing surfaces of the barrel and distribw tor plate in order to avoid an excessive sensitivity to fluid pollution.
The present invention while avoiding the inconveniences listed hereinabove provides a hydraulic motor having a starting torque substantially equal to the rated torque while permitting maintaining internal pressure losses at a value of the same order as that of motors having the cylinder barrel balanced by hydrodynamic shoes.
To this end, the high-pressure hydraulic machine according to this invention, of the type comprising a multi-cylinder barrel and a distributor plate revolving in mutual contact, wherein the cylinders of said barrel and the orifices through which said cylinders open into the interface between said barrel and said plate are disposed on a circle about the barrel axis together with the corresponding fluid inlet and outlet ports of the distributor plate acting as a hydrodynamic bearing, is characterized in that the mean diameter of the imaginary circle containing the centers of said orifices and consumption is negligible in comparison with the other motor leakages, with means for regulating or controlling the thickness of the fluid film separating the barrel from the distributor plate.
To this end, the hydraulic machine according to this invention is also characterized in that the distributor plate comprises a hydrostatic bearing fed with fluid under pressure for balancing the barrel in the inoperative position and that means for controlling the supply of pressure fluid to said hydrostatic bearing are provided in order to limit or reduce said supply during the normal operation of the machine.
Balancing devices according to this invention will now be described by way of example with reference to the attached drawing, in which FIG. 1 is a fragmentary longitudinal section of a motor with its distributor, the section being taken along the line lI of FIG. 3
FIG. 2 is a plan view of the distributor plate, as seen in the direction of the arrows 11-11 of FIG. 1
FIG. 3 is an end view of the cylinder barrel, taken in the direction of the arrows IlI--III of FIG. 1 and FIG. 4 is a plan view showing a modified form of embodiment of the distributor plate.
Referring first to FIG. 1, showing a cylinder block 1 rotatably mounted on a distributor plate 2, it will be seen that in this cylinder block a plurality of cylinders 3 are disposed at spaced angular intervals about the axis of rotation of this block, the centers of said cylinders lying on a common circle having a diameter d so that the cylinder axes are parallel to said axis (0).
Each cylinder has slidably mounted therein a piston 4 operatively connected through a ball joint 6 to a connecting-rod having its other end (not shown) provided with another ball joint attached to a rotary impeller or swash plate as well known in the construction of hydraulic motors. Driven bodily with this impeller or swash plate the cylinder 1 revolves inside a case or body 7 in a bearing 8.
The bottoms of these cylinders 9 open to the outside of the barrel and the latter is provided to this end with a series of spaced orifices l0 lying on a mean circle having a diameter d and limited by circles having diameters d and d respectively. These orifices 10 contact the distributing surface of plate 2 formed with a pair of arcuate ports 14 and 15 constituting the former the inlet port and the latter the exhaust or delivery port.
The distributor plate 2 is also provided with a number of peripheral hydrodynamic shoes 16 from which a bearing force is derived which depends on the viscosity of the hydraulic fluid and also on the velocity of motion in relation to the barrel.
Sealing surfaces l7, l8 bounded by circles having the diameters denoted d and d respectively are disposed on either side of ports 14 and 15.
The operation of this device will be better understood when considering the following remarks For each cylinder under pressure, it is assumed that the force pressing the barrel 1 against the distributor plate 2 is substantially equal to the force acting upon the piston.
The hydraulic reaction force per cylinder is produced by the pressure acting upon a surface defined by the angle a =(21rln) (n being the number of cylinders of the pump) and by a pair of circles having the diameters d and d respectively, which are the outer diameters of the sealing surfaces. Due to the pressure drop across the sealing surfaces, it may be assumed that the reaction surface (S) will be defined by the dime ters d and d equal to (d, d /2) and (d d /2), respectively, and will in all cases be limited by the angle a (21r/n), this surface (S) being shown by a thinshaded area in FIG. 3.
This surface (S) is generally equal to 0.9 or 0.95 times the piston area in other words, when the pressure prevailing in the cylinder is exerted against this surface, the resultant force will be according to circumstances 0.9 to 0.95 times the force acting on a piston.
In the pumps and motors now available commercially the mean diameter d of orifices 10 is not clearly determined and varies between the value d of the diameter of the circle containing the centers of the bottom orifices of the cylinders and considerably lower values (0.75 d and even less). A simple calculation will prove that the resultant of the reaction forces of the hydrodynamic shoes 16 will be considerably out-ofcenter in relation to the barrel axis. It may also be proved in this case that it lies at a distance which may exceed d /2. As a result, only one or two dynamic shoes are loaded. In the case illustrated in FIG. 2, assuming that 15 is the high-pressure port, only the shoes 16,, and 16 would receive a sensitive load. This is attended by two inconveniences the barrel takes an inclined or skew position in relation to the distributor plate This inclination is attended by very reduced play on the side of shoes 16a and 16b in other words, the sensivity to pollution of the fluid will be considerable. On the other hand, important plays will develop on the side of the low-pressure port 14.
the fluid temperature between the shoe and the barrel increases to considerable proportions (up to 200 C temperature increments are easily observed) this is attended by the twofold inconvenience of abnormally heating the component elements, thus reducing their useful life while decomposing (or carbonizing) the fluid.
According to the present invention, the average diameter d of orifices l0 and corresponding ports 14, 15 is greater than the diameter d of the circle containing the centers of the cylinder orifices under these conditions, the resultant of the reaction forces of the dynamic shoes may be caused to become coincident with the axis of rotation of the barrel. In fact, without going so far the values of d may be selected to be such that the resultant passes through a point G located at a distance d of the axis of rotation, which is considerably inferior to the mean radius of the dynamic shoes.
Thus, all the dynamic shoes will share the supporting action, the clearance between the barrel and the distributor plate will remain substantially constant and the temperature gradient under the shoes having the highest load will be such that the fluid temperature will remain within reasonable and permissible limits. Consequently, the volumetric efiiciency of the pump or motor is improved while reducing its sensivity to fluid pollution and increasing its useful life.
The foregoing applies to both hydraulic pumps and motors, but the operation of these machines is improved only when their rotational speed is relatively high, for the pressure distribution under the sealing surfaces of the ports is then as contemplated hereinabove. Pumps are always driven at relatively high speed and started under no-load condition. On the other hand, hydraulic motors are frequently operated at very low speeds and under maximum pressure. in this case the distribution of pressures on the sealing surfaces is not known and the consequence of the considerable friction thus developed may lead to a low starting torque and a high degree of wear.
Considering now the motor in its inoperative condition with the barrel contacting the distributor plate, we have seen that at a given moment the force urging the barrel against the distributor plate was equal to the force exerted on each piston, multiplied of course by the number of cylinders under pressure.
On the other hand, the reaction force may be equal,
at the minimum, to the product of the pressure by the So the cross-sectional area of a cylinder (or piston) Sri the surface bounded by the angle a and diameters d the additional reaction surface contemplated will be 4 Sr2 2 m XSc-m XSrl=m (Sc-Sri) Moreover, due to the fact that the surfaces denoted Sri are smaller than surfaces (S) (active reaction surfaces when the motor is operating at high speed), the center of gravity G of Sri will not be coincident with the above-defined center of gravity 6,. It will lie at a distance d,, greater in relation to the axis of rotation of the barrel. To balance the barrel under these conditions it is contemplated, as the surface 812, a surface area such as illustrated at S2 in H68. 1 and 2, of which the center of gravity is at a distance d from the barrel axis. In this case there are two surfaces S2 since the motor can rotate in either direction, the induction and exhaust ports 14, being then inverted.
With this arrangement, the barrel will safely move away from the distributor plate immediately as the motor is supplied with fluid under pressure.
However, if another additional provision were not provided, the motor could not operate normally, for when the barrel separates from the distributor plate the fluid pressure exerts a certain action under the sealing surfaces of the distribution ports, so that the hydraulic reaction would become greater than the force urging the barrel against the distributor plate to avoid this effect it is necessary not only to exert a pressure on the surface S2 when the barrel is inoperative, but also to discontinue the application of this pressure when the barrel is separated from the distributor plate. This is obtained in the manner illustrated in FIGS. 1 and 2, showing that each surface S2 is supplied through the corresponding induction port 14 or 15 via a pressureloss generating laminar-flow duct consisting of a helical groove 19 machined in a cylindrical member 20 force fitted or assembled without play in a hole 21 adjacent to the fluid passage leading to said ports. Thus, when the barrel separates from the distributor plate, the fluid leakage through the outer periphery of surface S2 is such that the pressure across this surface drops rapidly to substantially zero value (for example the pressure loss may be calculated to cause the fluid pressure to be substantially zero when the barrel leaves the distributor plate by 2 to 3).
Also in this case it is proved that the fluid consumption may be reduced to practically negligible values (corresponding to less than 1/ l ,000 of the rated output of the motor). Finally, it will be seen that when the motor rotates at a relatively high speed, the hydrodynamic shoes disposed at the outer periphery of the barrel will take over the barrel supporting action. By means of proper calculation it will be possible, according to the desired operating speed, to determine the speed whereat the passage from hydrostatic lift to hydrodynamic lift (through the shoes) will take place. It will be seen that the pressure losses in this motor will not exceed those of a motor balanced by means of a hydrodynamic shoe, and also that this barrel balancing method is applicable to hydraulic motors of all sizes.
FIG. 4 shows another form of embodiment of this invention wherein the distributor plate 2,, comprises four hydrostatic bearings S22 each supplied via a duct 23 having a separate pressure loss, said bearings being interposed between the peripheral hydrodynamic shoes 16,. With this arrangement a real adjustment of the barrel position in relation to the distributor plate can be achieved, in contrast to the preceding form of embodiment wherein the single additional reaction surface S2 definitely precluded this adjustment.
The above described device is applicable to all pumps and motors of the type comprising a multicylinder barrel and a flat or spheroidal distributor plate.
This arrangement is particularly advantageous in the case of hydraulic motors for which starting under fullload conditions is a frequent requirement. This is observed notably in the case of hydrostatic transmission motors of automotive vehicles (passengers vehicles, trucks and more particularly public works vehicles and agricultural machines). A specific feature characterizing the arrangement of this invention is that its component elements can be manufactured easily and economically, for example by using parts of sintered metal.
The balancing device is also applicable to the distributor plate of hydraulic, axial-piston pumps and motors wherein the distribution slide face is a surface of revolution of which the axis merges with the axis of rotation of the cylinder block,
of pumps and motors wherein the cylinder block held against but the distributor plate, either plane or of revolution, rotates.
This method of balancing axial forces is also applicable to the impeller or swash plate supporting the balljoints or heads of the connecting-rods of the pistons of a pump or motor of the broken axis type, in case the axial stress transmitted through the piston rods are already absorbed by means of a hydrostatic hearing. A typical example of such impeller or swash plate is described in detail in the French Pat. application No. 69/19519 of June 12, 1969, the impeller or swash plate comprising on one face orifices registering with ports formed in a fixed slide face. These ports are supplied with a fluid under pressure. The other face of the plate comprises cavities for receiving the ball-shaped heads of the pistons-supporting connecting-rods.
This axial-force balancing method is also applicable to radial-piston pumps and motors wherein the fluid distribution takes place through the medium of a flat distributor plate. In this case the orifices such as 10 are connected to cylinders disposed at right angles to the axis of rotation of the cylinder block and the floating distributor plate is urged against the cylinder block by an external force derived in general from the fluid supply pressure.
Although a few forms of embodiment of this invention have been described, illustrated and suggested herein, it will readily occur to those conversant with the art that various modifications and changes may be brought thereto within the scope of the present invention, without departing from the basic principles thereof as set forth in the appended claims.
What is claimed as new is l. High-pressure hydraulic machine of the multicylinder barrel type with a distributor plate, said barrel and plate revolving in mutual contact, wherein the barrel cylinders and the orifices through which they open into the interface between said barrel and said distributor plate are disposed on a circle about the axis of rotation of said barrel, together with the corresponding fluid inlet and outlet ports of the distributor plate constituting a hydrodynamic bearing, characterized in that the mean diameter of the imaginary circle containing the centers of said orifices and ports is greater than the diameter of the imaginary cylinder containing the axes of said cylinders, said bearing comprising means for substantially coinciding the direction of the resultant balancing force exerted by said barrel on said distributor plate, which is directed internally of the bearing surfaces of said hydrodynamic bearing, with the barrel axis, said distributor plate also comprising a hydrostatic bearing comprising at least one reaction surface supplied with fluid under pressure for balancing the barrel when said barrel starts rotating, and means for controlling the supply of fluid to said reaction surface for limiting said supply during operative rotation of said barrel, wherein said controlling means consists essentially of a helical, laminar-flow duct in a cylindrical member fitted in a passage communicating between said reaction surface and a fluid outlet port of the distributor plate.
2. Hydraulic machine according to claim 1, characterized in that said reaction surface comprises at least one arcuate groove of which the point of application of the resultant of the reaction stresses is substantially coincident with the axis of rotation of said barrel.
UNITED STATES PATENT oFFIQE CERTWWATE OF fiORRECTIGN Inventofls) Francois C Pruvot 'It is certified that error appetite the above-identified patent and that said Letters Patent are hereby corrected as shown below:
IN THE HEADING Change the name ofthe Assignee to read: Regie Nationale des Usines Renault and Automobiles Peugeot Change the addressv of the Assignee to read: Billancourt and Paris, France Signed and sealed this 1st day of October 1974.
(SEAL) Attest:
McCOY M. GIBSON JR. C. MARSHALL DANN Commissioner of Patents Attesting Officer DCM [6489 USCOMM-DC scam-peg Y (1.5. GOVERNMENT PRIN ING OFFICE: I969 036$-3S-i.
F ORM PO-105O (10-69) UNllIEll STATES PATENT ehhiiweim CmRERE-JQTWN Patent No. 3,702,576 Dated November 14, 1972 Inventbfls) Francois C. Pruvot It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
The Heading of this patent should show that it claims under 35 U.S.C. 119 the benefit of French application No, P.V. 69/23827, filed July ll, 1969.,
Col. 3, line 66, "l" in the formula should be a slash Col, 4, line 25, "d./2 should be d /Z Col. 5, line 30, "d should read d 1 Signed and sealed this 29th day of May 1973'.
and d -7 (SEAL) Attes't:
EDWARD M.FLETCHE.R,JR. ROBERT GOTTSCHALK Attesting Officer Commissioner of Patents FORM PO-IO O (1 I USCOMM-DC 60376-P69 I U. 5. GOVERNMENT PRINTIN? OFFICE I969 I;)---36633-1,

Claims (2)

1. High-pressure hydraulic machine of the multi-cylinder barrel type with a distributor plate, said barrel and plate revolving in mutual contact, wherein the barrel cylinders and the orifices through which they open into the interface between said barrel and said distributor plate are disposed on a circle about the axis of rotation of said barrel, together with the corresponding fluid inlet and outlet ports of the distributor plate constituting a hydrodynamic bearing, characterized in that the mean diameter of the imaginary circle containing the centers of said orifices and poRts is greater than the diameter of the imaginary cylinder containing the axes of said cylinders, said bearing comprising means for substantially coinciding the direction of the resultant balancing force exerted by said barrel on said distributor plate, which is directed internally of the bearing surfaces of said hydrodynamic bearing, with the barrel axis, said distributor plate also comprising a hydrostatic bearing comprising at least one reaction surface supplied with fluid under pressure for balancing the barrel when said barrel starts rotating, and means for controlling the supply of fluid to said reaction surface for limiting said supply during operative rotation of said barrel, wherein said controlling means consists essentially of a helical, laminar-flow duct in a cylindrical member fitted in a passage communicating between said reaction surface and a fluid outlet port of the distributor plate.
2. Hydraulic machine according to claim 1, characterized in that said reaction surface comprises at least one arcuate groove of which the point of application of the resultant of the reaction stresses is substantially coincident with the axis of rotation of said barrel.
US42711A 1970-06-02 1970-06-02 High-pressure multi-cylinder hydraulic machines Expired - Lifetime US3702576A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US4271170A 1970-06-02 1970-06-02

Publications (1)

Publication Number Publication Date
US3702576A true US3702576A (en) 1972-11-14

Family

ID=21923356

Family Applications (1)

Application Number Title Priority Date Filing Date
US42711A Expired - Lifetime US3702576A (en) 1970-06-02 1970-06-02 High-pressure multi-cylinder hydraulic machines

Country Status (1)

Country Link
US (1) US3702576A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3803984A (en) * 1971-11-20 1974-04-16 Kloeckner Werke Ag Hydrostatic piston machine construction
US3851669A (en) * 1972-01-25 1974-12-03 Bosch Gmbh Robert Control face arrangement for an axial piston machine
US3980003A (en) * 1975-02-07 1976-09-14 Caterpillar Tractor Co. Variable hydrostatic bearing between barrel and head of axial piston units
US4057006A (en) * 1975-05-09 1977-11-08 Klockner-Werke Ag Valve plate arrangement for hydrostatic piston machines
US20070028608A1 (en) * 2004-02-11 2007-02-08 George Kadlicko Rotary hydraulic machine and controls
US20140056730A1 (en) * 2011-04-28 2014-02-27 Caterpillar Inc. Hydraulic piston pump with reduced restriction barrel passage

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1867308A (en) * 1931-04-04 1932-07-12 Waterbury Tool Co Hydraulic speed transmission
US2298850A (en) * 1939-08-30 1942-10-13 Vickers Inc Pump or motor
US2525498A (en) * 1944-08-15 1950-10-10 Vickers Armstrongs Ltd Radial pump or hydraulic motor
US2577242A (en) * 1947-05-05 1951-12-04 Oilgear Co Axial type hydrodynamic machine
US2972962A (en) * 1956-07-16 1961-02-28 Oilgear Co Hydraulic thrust bearing
US3073253A (en) * 1955-03-14 1963-01-15 Daimler Benz Ag Lubrication system
US3180274A (en) * 1962-06-04 1965-04-27 Francis J Sisk Silent variable delivery hydraulic pump
US3249061A (en) * 1963-07-01 1966-05-03 Sundstrand Corp Pump or motor device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1867308A (en) * 1931-04-04 1932-07-12 Waterbury Tool Co Hydraulic speed transmission
US2298850A (en) * 1939-08-30 1942-10-13 Vickers Inc Pump or motor
US2525498A (en) * 1944-08-15 1950-10-10 Vickers Armstrongs Ltd Radial pump or hydraulic motor
US2577242A (en) * 1947-05-05 1951-12-04 Oilgear Co Axial type hydrodynamic machine
US3073253A (en) * 1955-03-14 1963-01-15 Daimler Benz Ag Lubrication system
US2972962A (en) * 1956-07-16 1961-02-28 Oilgear Co Hydraulic thrust bearing
US3180274A (en) * 1962-06-04 1965-04-27 Francis J Sisk Silent variable delivery hydraulic pump
US3249061A (en) * 1963-07-01 1966-05-03 Sundstrand Corp Pump or motor device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3803984A (en) * 1971-11-20 1974-04-16 Kloeckner Werke Ag Hydrostatic piston machine construction
US3851669A (en) * 1972-01-25 1974-12-03 Bosch Gmbh Robert Control face arrangement for an axial piston machine
US3980003A (en) * 1975-02-07 1976-09-14 Caterpillar Tractor Co. Variable hydrostatic bearing between barrel and head of axial piston units
US4057006A (en) * 1975-05-09 1977-11-08 Klockner-Werke Ag Valve plate arrangement for hydrostatic piston machines
US20070028608A1 (en) * 2004-02-11 2007-02-08 George Kadlicko Rotary hydraulic machine and controls
US7992484B2 (en) 2004-02-11 2011-08-09 Haldex Hydraulics Corporation Rotary hydraulic machine and controls
US9115770B2 (en) 2004-02-11 2015-08-25 Concentric Rockford Inc. Rotary hydraulic machine and controls
US20140056730A1 (en) * 2011-04-28 2014-02-27 Caterpillar Inc. Hydraulic piston pump with reduced restriction barrel passage
US9151280B2 (en) * 2011-04-28 2015-10-06 Caterpillar Inc. Hydraulic piston pump with reduced restriction barrel passage

Similar Documents

Publication Publication Date Title
US3750533A (en) Hydraulic pumps or motors
US3036434A (en) Thrust bearings for hydrostatic transmissions
US4546692A (en) Radial bearing for drive plate of inclined-axis type axial piston machine
US3199460A (en) Hydraulic pump or motor
AU2955392A (en) Volumetric fluid machine equipped with pistons without connecting rods
US3654761A (en) Fluid handling device with radially variable working chambers
US3648567A (en) Variable displacement axial pump or motor
US3187681A (en) Hydraulic ball pumps and motors
US3089426A (en) Engine
US3650180A (en) Compound hydrostatic bearing for rotary radial piston hydraulic machines
US3702576A (en) High-pressure multi-cylinder hydraulic machines
US3996841A (en) Hydraulic pump or motor
US3010405A (en) Pump or motor device
US3661055A (en) Multi-cylinder barrel hydraulic pumps or motors
US4232587A (en) Fluid pump
US3011453A (en) Hydraulic apparatus
US3199297A (en) Infinitely variable hydrostatic transmission system
US3253551A (en) Axial piston unit
US3225701A (en) Hydraulic pumps
US4219314A (en) Rolling piston rotary compressor
US2823619A (en) Radial type hydraulic unit
US3960057A (en) Hydraulic pump or motor
US3969986A (en) Radial piston pump
US3066613A (en) Pump or motor device
US3890882A (en) Fluid device having plastic housing and means for mounting a cylinder barrel