US3699401A - Photoemissive electron tube comprising a thin film transmissive semiconductor photocathode structure - Google Patents
Photoemissive electron tube comprising a thin film transmissive semiconductor photocathode structure Download PDFInfo
- Publication number
- US3699401A US3699401A US143862A US3699401DA US3699401A US 3699401 A US3699401 A US 3699401A US 143862 A US143862 A US 143862A US 3699401D A US3699401D A US 3699401DA US 3699401 A US3699401 A US 3699401A
- Authority
- US
- United States
- Prior art keywords
- layer
- compound
- photoemissive
- electron tube
- silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J29/00—Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
- H01J29/02—Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
- H01J29/10—Screens on or from which an image or pattern is formed, picked up, converted or stored
- H01J29/36—Photoelectric screens; Charge-storage screens
- H01J29/38—Photoelectric screens; Charge-storage screens not using charge storage, e.g. photo-emissive screen, extended cathode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J1/00—Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
- H01J1/02—Main electrodes
- H01J1/34—Photo-emissive cathodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/0242—Crystalline insulating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/02433—Crystal orientation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02441—Group 14 semiconducting materials
- H01L21/0245—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02455—Group 13/15 materials
- H01L21/02461—Phosphides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02494—Structure
- H01L21/02496—Layer structure
- H01L21/02502—Layer structure consisting of two layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/02546—Arsenides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H10P14/24—
-
- H10P14/2921—
-
- H10P14/2926—
-
- H10P14/3211—
-
- H10P14/3218—
-
- H10P14/3248—
-
- H10P14/3402—
-
- H10P14/3421—
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2201/00—Electrodes common to discharge tubes
- H01J2201/34—Photoemissive electrodes
- H01J2201/342—Cathodes
- H01J2201/3421—Composition of the emitting surface
- H01J2201/3423—Semiconductors, e.g. GaAs, NEA emitters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/007—Autodoping
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/056—Gallium arsenide
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/059—Germanium on silicon or Ge-Si on III-V
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/064—Gp II-VI compounds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/065—Gp III-V generic compounds-processing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/067—Graded energy gap
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/072—Heterojunctions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/115—Orientation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/119—Phosphides of gallium or indium
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/12—Photocathodes-Cs coated and solar cell
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/15—Silicon on sapphire SOS
Definitions
- ABSTRACT [73] Assrgnee: RCA Corporation A transmissive semiconductor photocathode structure Flledi May 11, 1971' comprising a first monocrystalline epitaxial layer of [2]] Appl No: 143,862 silicon or germanium about 200 to 300 nanometers thick on a ma or surface of a transparent monocrystalline dielectric substrate. On the silicon or germanium 317/235 317/234 3, layer is a second monocrystalline epitaxial layer of a 1 AC III-V or lI-VI semiconductor compound having a [51] Int. Cl.
- the present invention relates to photoemissive electron tubes and particularly to such tubes having a thin film light transmissive mode GaAs photocathode.
- Photoemissive electron tubes such as certain image tubes, camera tubes, and photomultiplier tubes generally contain a photocathode which emits electrons in response to incident light.
- Gallium arsenide GaAs
- GaAs Gallium arsenide
- Some gallium arsenide photocathodes are described for instance in the following:
- Reflective photocathodes of GaAs can be made by sensitizing a clean surface of a GaAs wafer sliced from a high-purity ingot.
- transmissive photocathodes of GaAs those for which light is incident on the GaAs from the side opposite the emissive surface, require special considerations.
- GaAs is substantially opaque to most of the light in the visible spectrum.
- the GaAs In order for electrons generated in the GaAs by the incident light to reach the vicinity of the emissive surface, the GaAs must be no thicker than the diffusion length of the electrons, which is about one micron. One micron is not enough thickness to provide structural support.
- the structural support may be provided by growing a thin epitaxial layer of GaAs on a supportingsubstrate of spinel or sapphire as described, for instance, in the second-cited publication above.
- Superior GaAs layers are obtained by first providing a thin nucleation layer of silicon on the substrate and then growing the GaAs on the silicon to obtain a better match of crystal lattice orientation between the substrate and the GaAs as described, for example, in:
- thin epitaxial GaAs films grown on a silicon nucleation layer contain atoms of silicon as an impurity and have poor crystallinity at the emissive surface.
- the silicon impurities and the poor crystallinity degrade the desired long lifetime of minority carriers in the GaAs and thus impede the diffusion of light-generated electrons in the GaAs to the emissive surface.
- a semiconductor photocathode structure comprises a transparent monocrystalline dielectric supporting substrate with a first monocrystalline epitaxial layer of silicon or germanium on a major surface.
- the silicon or germanium layer has a thickness of from about 200 to about 300 nanometers, and its surfaces are in the (100) crystallographic plane.
- On thefirst layer is a second monocrystalline epitaxial layer of a IlI-V or II-VI semiconductor compound.
- the second layer is a third monocrystalline epitaxial layer of a Ill-V semiconductor compound having a smaller energy bandgap than the second layer compound.
- the invention includes also a photoemissive electron tube utilizing the novel photocathode structure sensitized with a work-function-reducing material deposited on the surface of the layer of the second compound.
- the second layer while being transparent to light which is absorbed by the third layer, provides the thickness of compound needed for obtaining an emissive surface sufficiently free of impurities and having good crystallinity.
- the second layer compound can be chosen to provide a favorable optical match between the substrate material and the third layer compounds, so that there is a minimum light loss by interface reflection.
- FIG. 1 is a sectional view of a proximity-focused image tube comprising the novel photocathode structure.
- FIG. 2 is a sectional fragment view of the photocathode structure of FIG. 1.
- flanges 14 and 15 welded to a short glass cylinder 16 to form a double rim.
- One flange 14 supports an input faceplate 17 and other flange 15 supports an output faceplate 18.
- the faceplates l7 and 18 are hermetically sealed to the flanges 14, 15 so that the entire envelope assembly can be evacuated through a short piece of exhaust tubulation 20 and sealed.
- the faceplates l7 and 18 are closely spaced inside the envelope at a distance of about 3 millimeters to minimize defocussing effects.
- On the inside surface of the output faceplate 18 is a phosphor screen 21 covered with a thin aluminum coating.
- the input faceplate 17 is a single crystalline disc of alpha-type aluminum oxide, also known as synthetic sapphire, about one inch in diameter and 25 mils thick.
- the faces of the faceplate 17 are cut so that they lie in the Miller Index crystallographic plane designated as (1 102) and are optically polished.
- the output faceplate 18 is optical glass having dimensions on the order of the dimensions of the input faceplate l7.
- a photocathode structure 12, about 18 mm in diameter is coated directly on the inside surface of the input faceplate l7 and comprises three epitaxial layers.
- a magnified portion of the photocathode structure 12 is shown in FIG. 2.
- a first layer of silicon 24 about 200 nanometers thick.
- gallium phosphide 26 about 5 microns thick.
- gallium arsenide 28 is a third layer, of gallium arsenide 28, about 1 micron thick, the exposed surface of which is the electron emissive surface 22.
- the photocathode structure 12 is grown by epitaxial vapor phase processes directly on the input faceplate 17 as follows: The surface of the input faceplate 17 is mechanically polished to epitaxial grade. It is then vapor rinsed in trichloroethylene for 2 minutes, followed by vapor rinsing in isopropyl alcohol for 2 minutes. Next, the faceplate 17 is mounted in a radiofrequency susceptor block of silicon carbide coated carbon, placed in a horizontal reactor, and heated by radio frequency heating of the susceptor block to about l,200 C in the presence of hydrogen for about 15 minutes to etch the surface.
- the temperature is then lowered to about 1,050 C and 3 percent silane in high purity palladium diffused hydrogen admitted to the reactor with a carrier flow of 2.25 liters per minute to deposit the silicon layer 24.
- the thickness of the silicon layer 24 is monitored by light interference fringe methods.
- the input faceplate 17 is cooled to room temperature, removed from the reactor, placed in a second susceptor block in a vertical reactor. Therein it is heated in the presence of hydrogen to about 900 C for about 10 minutes, after which there is admitted about 5 percent arsine (Asl-l in hydrogen to clean the silicon. Then the input faceplate 17 is then cooled to about 800 C and trimethyl gallium and percent phosphine (P11 in a carrier of hydrogen is admitted to the reactor to grow the gallium phosphide layer 26 for about 45 minutes. The flow rate of the carrier for the trimethyl gallium is 33.8 cc/min. The flow rate for the phosphine carrier is 450 cc/min. The input faceplate 17 is next cooled to room temperature in the presence of hydrogen, removed from the reactor, and etched with a bromine methanol solution containing 3 percent bromine by weight.
- the input faceplate 17 is mounted in a horizontal threezone reactor for depositing the gallium arsenide layer 28 with a heavy zinc doping concentration of about 10 atoms per cubic cm. and a thickness of about 1 micron.
- the reactor is resistance-heated until the central zone is at about 800 C.
- Gallium is heated in a second zone of the reactor in the presenceof hydrogen chloride to form a gallium subchloride.
- Arsine is transported by a high purity palladium-diffused hydrogen carrier from the third zone into the second zone, from where it passes with the gallium sub-chloride to the gallium phosphide layer 26 in the first zone, so that the gallium arsenide layer 28 vapor deposits on the gallium phosphide layer 26.
- the input faceplate 17 is then cooled in hydrogen.
- the faceplate 17 with the now-completed photocathode structure 12 on it is next assembled with the other portions of the tube 10 by indium sealing, and the surface of the gallium arsenide layer 28 sensitized to negative effective electron affinity by treatment with cesium and oxygen to form the photoemissive surface 22. Exposure of the surface of the GaAs layer 28 to air should be avoided, as this generally degrades the final photo-emission. Typical procedures for assembly and sensitizing are described, for instance, in US. Pat. No. 2,975,015, issued 14 March 1961 to D. W. Davis (cl. 3 16-19) and the Syms publication referred to earlier.
- a light image is focussed through the input faceplate 17 to the photocathode structure 12, which is biased at several thousand volts negative with respect to the phosphor screen 21.
- electrons generated in the GaAs are emitted from the inside emissive surface 22 and travel a short distance to the phosphor screen 21, whereupon striking the phosphor light is emitted through the output faceplate 18.
- Example II In a second embodiment of the novel photocathode structure, the input faceplate 17 is of spinel, of generally the same dimensions as the aluminum oxide faceplate of Example I.
- the surface of the spinel faceplate on which the first epitaxial layer 24 photocathode structure 12 is deposited lies in the Miller Index plane A process for forming the layers 24, 26 and 28 on the spinel are generally the same as for Example I.
- index plane herein refers to the Miller Index-Plane designations for surface orientations of crystals. It is found that for GaAs photoemissive surfaces sensitized with cesium and oxygen, the photoemission is somewhat higher when the surface of the GaAs is in the index plane (100) than for other possible index planes. Therefore, it is desirable that the substrate surfaces be in the (1 102) plane for sapphire and the (100) plane for spinel. Under these circumstances, the three epitaxial layers necessarily lie in the (100) plane.
- Ga? and GaAs layers of Example I While specific parameters for growth of the Ga? and GaAs layers of Example I are specified, it is to be understood that the values may all be varied to some extent. They are chosen to yield layers of optimum crystallinity for photoemission performance.
- the silicon or germanium layer need only be thick enough to fully cover the substrate surface, generally about 200-300 nanometers, so that it provides a nucleation layer for the next grown layer.
- the second layer compound should have an energy bandgap larger than that of the third layer compound from which the emission occurs, so that this second layer will not absorb light of as long a wavelength as the third layer.
- the difference in the energy bandgaps may be chosen to suit the wavelengths of light which are to result in photoemission, and to at the same time utilize materials having optimum match of lattice parameters, so that the epitaxial growth of the layers on oneanother results in best possible crystallinity of the emissive third layer.
- the second layer of the structure may be chosen from a number of semiconductor compounds chosen from either groups Illa and Va or groups 11b and Vla of the Periodic Table of the Elements, whereas the third layer may be any of a number of III-V compounds.
- the compound for either the second or third layer may be binary or ternary. It is essential, however, that the energy bandgap of the second layer compound be greater than that of the third layer compound so that light absorbed by the third layer will pass substantially through the second layer.
- the second layer may be GaP, AlAs, ZnSe, Al?
- Gallium-arsenide-phosphide may be graded to provide a better lattice match for the second compound layer.
- the refractive indices of sapphire, GaP, and GaAs are about 1.7, 2.6 and 2.9, respectively, (the silicon layer is sothin that its index of refraction is unimportant).
- GaP provides a beneficial optical matching from the sapphire to the GaAs and thus minimizes loss of incoming light by reflection from an interface.
- the layer In order to minimize light absorption in the second layer, the layer should be as thin as is practicable, while being thick enough to provide a surface of good crystallinity for the third layer. A thickness of at least about 3 microns is generally required for the second layer. The maximum permissible thickness is dependent on the light transmissivity of the material. For highly transparent material such as GaP, the layer may be as much as a centimeter thick.
- the thickness of the electron-emitting second compound layer is chosen just thick enough so that substantially all the light incident on it is absorbed. Greater thickness results in increased chance of recombination of electrons generated near the light input surface of the material before they reach the opposite emitting surface for emission.
- the optimum thickness can be readily determined for a particular material by calculation from the observed minority carrier diffusion length for the material and its absorption of light of the wavelength of interest.
- the optimum thickness for GaAs is at least about one micron for GaAs of such quality that the minority carrier diffusion length is very long as the thickness may be as great as about 5 microns.
- a transmissive semiconductor photocathode structure comprising:
- a transparent monocrystalline dielectric supporting substrate having a major surface
- a photoemissive electron tube comprising:
- an evacuated envelope having a transparent monocrystalline faceplate with a substantially flat inside surface in the interior of said envelope;
- a third monocrystalline epitaxial layer of a III-V semiconductor compound on said second layer said third layer compound having an energy bandgap smaller than said second layer compound, and said third layer having a thickness of from about 1 micron to about 5 microns, the surface of said third layer being sensitized with at least an electropositive material to reduce the work function to a level below said energy band gap of said third layer compound.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14386271A | 1971-05-17 | 1971-05-17 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3699401A true US3699401A (en) | 1972-10-17 |
Family
ID=22505988
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US143862A Expired - Lifetime US3699401A (en) | 1971-05-17 | 1971-05-11 | Photoemissive electron tube comprising a thin film transmissive semiconductor photocathode structure |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US3699401A (OSRAM) |
| JP (1) | JPS515269B1 (OSRAM) |
| CA (1) | CA966920A (OSRAM) |
| FR (1) | FR2138054B1 (OSRAM) |
| GB (1) | GB1387004A (OSRAM) |
| SE (1) | SE377982B (OSRAM) |
Cited By (22)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3889143A (en) * | 1972-11-24 | 1975-06-10 | Philips Corp | Photocathode manufacture |
| US3951698A (en) * | 1974-11-25 | 1976-04-20 | The United States Of America As Represented By The Secretary Of The Army | Dual use of epitaxy seed crystal as tube input window and cathode structure base |
| US3963538A (en) * | 1974-12-17 | 1976-06-15 | International Business Machines Corporation | Two stage heteroepitaxial deposition process for GaP/Si |
| US3963539A (en) * | 1974-12-17 | 1976-06-15 | International Business Machines Corporation | Two stage heteroepitaxial deposition process for GaAsP/Si LED's |
| US3981755A (en) * | 1972-11-24 | 1976-09-21 | U.S. Philips Corporation | Photocathode manufacture |
| US3984857A (en) * | 1973-06-13 | 1976-10-05 | Harris Corporation | Heteroepitaxial displays |
| US3985590A (en) * | 1973-06-13 | 1976-10-12 | Harris Corporation | Process for forming heteroepitaxial structure |
| US4000503A (en) * | 1976-01-02 | 1976-12-28 | International Audio Visual, Inc. | Cold cathode for infrared image tube |
| DE2359072B2 (de) * | 1972-11-27 | 1978-03-30 | Rca Corp., New York, N.Y. (V.St.A.) | Verfahren zur Herstellung einer Durchsicht-Photokathode |
| US4096511A (en) * | 1971-11-29 | 1978-06-20 | Philip Gurnell | Photocathodes |
| US4113531A (en) * | 1976-10-26 | 1978-09-12 | Hughes Aircraft Company | Process for fabricating polycrystalline inp-cds solar cells |
| US4120706A (en) * | 1977-09-16 | 1978-10-17 | Harris Corporation | Heteroepitaxial deposition of gap on silicon substrates |
| US4213801A (en) * | 1979-03-26 | 1980-07-22 | Bell Telephone Laboratories, Incorporated | Ohmic contact of N-GaAs to electrical conductive substrates by controlled growth of N-GaAs polycrystalline layers |
| US4214926A (en) * | 1976-07-02 | 1980-07-29 | Tdk Electronics Co., Ltd. | Method of doping IIb or VIb group elements into a boron phosphide semiconductor |
| US4216037A (en) * | 1978-01-06 | 1980-08-05 | Takashi Katoda | Method for manufacturing a heterojunction semiconductor device by disappearing intermediate layer |
| US4226649A (en) * | 1979-09-11 | 1980-10-07 | The United States Of America As Represented By The Secretary Of The Navy | Method for epitaxial growth of GaAs films and devices configuration independent of GaAs substrate utilizing molecular beam epitaxy and substrate removal techniques |
| US4273596A (en) * | 1978-10-03 | 1981-06-16 | The United States Of America As Represented By The Secretary Of The Army | Method of preparing a monolithic intrinsic infrared focal plane charge coupled device imager |
| WO1985005221A1 (en) * | 1984-04-27 | 1985-11-21 | Advanced Energy Fund Limited | SILICON-GaAs EPITAXIAL COMPOSITIONS AND PROCESS OF MAKING SAME |
| EP0202637A3 (en) * | 1985-05-20 | 1987-01-21 | Honeywell Inc. | Uv photocathode |
| US4719496A (en) * | 1982-11-24 | 1988-01-12 | Federico Capasso | Repeated velocity overshoot semiconductor device |
| US4929867A (en) * | 1988-06-03 | 1990-05-29 | Varian Associates, Inc. | Two stage light converting vacuum tube |
| CN111261489A (zh) * | 2020-01-29 | 2020-06-09 | 北方夜视技术股份有限公司 | 光电倍增管用光电阴极、制备方法及光电倍增管 |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4677342A (en) * | 1985-02-01 | 1987-06-30 | Raytheon Company | Semiconductor secondary emission cathode and tube |
| RU2454750C2 (ru) * | 2010-08-02 | 2012-06-27 | Учреждение Российской академии наук Физико-технический институт им. А.Ф. Иоффе РАН | Фотокатод |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3400015A (en) * | 1963-03-22 | 1968-09-03 | Texas Instruments Inc | Energy converter |
| US3433684A (en) * | 1966-09-13 | 1969-03-18 | North American Rockwell | Multilayer semiconductor heteroepitaxial structure |
| US3478213A (en) * | 1967-09-05 | 1969-11-11 | Rca Corp | Photomultiplier or image amplifier with secondary emission transmission type dynodes made of semiconductive material with low work function material disposed thereon |
| US3537029A (en) * | 1968-06-10 | 1970-10-27 | Rca Corp | Semiconductor laser producing light at two wavelengths simultaneously |
| US3575628A (en) * | 1968-11-26 | 1971-04-20 | Westinghouse Electric Corp | Transmissive photocathode and devices utilizing the same |
-
1971
- 1971-05-11 US US143862A patent/US3699401A/en not_active Expired - Lifetime
-
1972
- 1972-04-24 CA CA140,460A patent/CA966920A/en not_active Expired
- 1972-05-11 GB GB2202972A patent/GB1387004A/en not_active Expired
- 1972-05-16 SE SE7206392A patent/SE377982B/xx unknown
- 1972-05-17 JP JP47049036A patent/JPS515269B1/ja active Pending
- 1972-05-17 FR FR7217689A patent/FR2138054B1/fr not_active Expired
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3400015A (en) * | 1963-03-22 | 1968-09-03 | Texas Instruments Inc | Energy converter |
| US3433684A (en) * | 1966-09-13 | 1969-03-18 | North American Rockwell | Multilayer semiconductor heteroepitaxial structure |
| US3478213A (en) * | 1967-09-05 | 1969-11-11 | Rca Corp | Photomultiplier or image amplifier with secondary emission transmission type dynodes made of semiconductive material with low work function material disposed thereon |
| US3537029A (en) * | 1968-06-10 | 1970-10-27 | Rca Corp | Semiconductor laser producing light at two wavelengths simultaneously |
| US3575628A (en) * | 1968-11-26 | 1971-04-20 | Westinghouse Electric Corp | Transmissive photocathode and devices utilizing the same |
Non-Patent Citations (1)
| Title |
|---|
| Marinace, IBM Tech. Discl. Bull., Vol. 6, No. 2 July 1963 * |
Cited By (25)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4096511A (en) * | 1971-11-29 | 1978-06-20 | Philip Gurnell | Photocathodes |
| US3889143A (en) * | 1972-11-24 | 1975-06-10 | Philips Corp | Photocathode manufacture |
| US3981755A (en) * | 1972-11-24 | 1976-09-21 | U.S. Philips Corporation | Photocathode manufacture |
| DE2359072C3 (de) * | 1972-11-27 | 1978-11-09 | Rca Corp., New York, N.Y. (V.St.A.) | Verfahren zur Herstellung einer Durchsicht-Photokathode |
| DE2359072B2 (de) * | 1972-11-27 | 1978-03-30 | Rca Corp., New York, N.Y. (V.St.A.) | Verfahren zur Herstellung einer Durchsicht-Photokathode |
| US3985590A (en) * | 1973-06-13 | 1976-10-12 | Harris Corporation | Process for forming heteroepitaxial structure |
| US3984857A (en) * | 1973-06-13 | 1976-10-05 | Harris Corporation | Heteroepitaxial displays |
| US3951698A (en) * | 1974-11-25 | 1976-04-20 | The United States Of America As Represented By The Secretary Of The Army | Dual use of epitaxy seed crystal as tube input window and cathode structure base |
| US3963539A (en) * | 1974-12-17 | 1976-06-15 | International Business Machines Corporation | Two stage heteroepitaxial deposition process for GaAsP/Si LED's |
| US3963538A (en) * | 1974-12-17 | 1976-06-15 | International Business Machines Corporation | Two stage heteroepitaxial deposition process for GaP/Si |
| US4000503A (en) * | 1976-01-02 | 1976-12-28 | International Audio Visual, Inc. | Cold cathode for infrared image tube |
| US4214926A (en) * | 1976-07-02 | 1980-07-29 | Tdk Electronics Co., Ltd. | Method of doping IIb or VIb group elements into a boron phosphide semiconductor |
| US4113531A (en) * | 1976-10-26 | 1978-09-12 | Hughes Aircraft Company | Process for fabricating polycrystalline inp-cds solar cells |
| US4120706A (en) * | 1977-09-16 | 1978-10-17 | Harris Corporation | Heteroepitaxial deposition of gap on silicon substrates |
| US4216037A (en) * | 1978-01-06 | 1980-08-05 | Takashi Katoda | Method for manufacturing a heterojunction semiconductor device by disappearing intermediate layer |
| US4273596A (en) * | 1978-10-03 | 1981-06-16 | The United States Of America As Represented By The Secretary Of The Army | Method of preparing a monolithic intrinsic infrared focal plane charge coupled device imager |
| US4213801A (en) * | 1979-03-26 | 1980-07-22 | Bell Telephone Laboratories, Incorporated | Ohmic contact of N-GaAs to electrical conductive substrates by controlled growth of N-GaAs polycrystalline layers |
| US4226649A (en) * | 1979-09-11 | 1980-10-07 | The United States Of America As Represented By The Secretary Of The Navy | Method for epitaxial growth of GaAs films and devices configuration independent of GaAs substrate utilizing molecular beam epitaxy and substrate removal techniques |
| US4719496A (en) * | 1982-11-24 | 1988-01-12 | Federico Capasso | Repeated velocity overshoot semiconductor device |
| WO1985005221A1 (en) * | 1984-04-27 | 1985-11-21 | Advanced Energy Fund Limited | SILICON-GaAs EPITAXIAL COMPOSITIONS AND PROCESS OF MAKING SAME |
| US4588451A (en) * | 1984-04-27 | 1986-05-13 | Advanced Energy Fund Limited Partnership | Metal organic chemical vapor deposition of 111-v compounds on silicon |
| EP0202637A3 (en) * | 1985-05-20 | 1987-01-21 | Honeywell Inc. | Uv photocathode |
| US4929867A (en) * | 1988-06-03 | 1990-05-29 | Varian Associates, Inc. | Two stage light converting vacuum tube |
| CN111261489A (zh) * | 2020-01-29 | 2020-06-09 | 北方夜视技术股份有限公司 | 光电倍增管用光电阴极、制备方法及光电倍增管 |
| CN111261489B (zh) * | 2020-01-29 | 2022-03-25 | 北方夜视技术股份有限公司 | 光电倍增管用光电阴极、制备方法及光电倍增管 |
Also Published As
| Publication number | Publication date |
|---|---|
| FR2138054B1 (OSRAM) | 1980-04-04 |
| DE2224141B2 (de) | 1976-10-14 |
| JPS515269B1 (OSRAM) | 1976-02-18 |
| CA966920A (en) | 1975-04-29 |
| DE2224141A1 (de) | 1972-11-30 |
| SE377982B (OSRAM) | 1975-08-04 |
| FR2138054A1 (OSRAM) | 1972-12-29 |
| GB1387004A (en) | 1975-03-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3699401A (en) | Photoemissive electron tube comprising a thin film transmissive semiconductor photocathode structure | |
| Bell et al. | 3-5 compound photocathodes: A new family of photoemitters with greatly improved performance | |
| Dupuis | Metalorganic chemical vapor deposition of III-V semiconductors | |
| US3696262A (en) | Multilayered iii-v photocathode having a transition layer and a high quality active layer | |
| US3575628A (en) | Transmissive photocathode and devices utilizing the same | |
| Williams et al. | Current status of negative electron affinity devices | |
| US4644221A (en) | Variable sensitivity transmission mode negative electron affinity photocathode | |
| André et al. | GaAs photocathodes for low light level imaging | |
| US3769536A (en) | Iii-v photocathode bonded to a foreign transparent substrate | |
| US3667007A (en) | Semiconductor electron emitter | |
| US4286373A (en) | Method of making negative electron affinity photocathode | |
| EP0817279A1 (en) | Process for the production of a chalcopyrite structure semiconductor thin film containing a specific dopant | |
| US4498225A (en) | Method of forming variable sensitivity transmission mode negative electron affinity photocathode | |
| US3868523A (en) | Semitransparent photocathode | |
| US3972750A (en) | Electron emitter and method of fabrication | |
| US3925119A (en) | Method for vapor deposition of gallium arsenide phosphide upon gallium arsenide substrates | |
| Blum et al. | The liquid phase epitaxy of Al x Ga 1-x As for monolithic planar structures | |
| US6597112B1 (en) | Photocathode for night vision image intensifier and method of manufacture | |
| JP3143040B2 (ja) | エピタキシャルウエハおよびその製造方法 | |
| JPH0936427A (ja) | 半導体装置及びその製造方法 | |
| JPH0896705A (ja) | 半導体光電陰極及び光電管 | |
| Allenson et al. | An improved GaAs transmission photocathode | |
| JP3806514B2 (ja) | 光電面及びその製造方法 | |
| US4107564A (en) | Photoemitter | |
| US4518980A (en) | Semiconductor device for the vacuum-emission of electrons |