US3698371A - Surging prevention device for use in vehicle having multicylinder spark-ignition internal combustion engine - Google Patents
Surging prevention device for use in vehicle having multicylinder spark-ignition internal combustion engine Download PDFInfo
- Publication number
- US3698371A US3698371A US138195A US3698371DA US3698371A US 3698371 A US3698371 A US 3698371A US 138195 A US138195 A US 138195A US 3698371D A US3698371D A US 3698371DA US 3698371 A US3698371 A US 3698371A
- Authority
- US
- United States
- Prior art keywords
- air
- engine
- pair
- supplying means
- fuel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 59
- 230000002265 prevention Effects 0.000 title claims description 15
- 239000000446 fuel Substances 0.000 claims abstract description 34
- 239000000203 mixture Substances 0.000 claims abstract description 7
- 230000001788 irregular Effects 0.000 abstract description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 230000001473 noxious effect Effects 0.000 description 4
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 239000010763 heavy fuel oil Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000003915 air pollution Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M13/00—Arrangements of two or more separate carburettors; Carburettors using more than one fuel
- F02M13/02—Separate carburettors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M13/00—Arrangements of two or more separate carburettors; Carburettors using more than one fuel
- F02M13/02—Separate carburettors
- F02M13/025—Equalizing pipes between the carburettors, e.g. between the float chambers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M3/00—Idling devices for carburettors
- F02M3/02—Preventing flow of idling fuel
- F02M3/04—Preventing flow of idling fuel under conditions where engine is driven instead of driving, e.g. driven by vehicle running down hill
- F02M3/043—Devices as described in F02M3/005, F02M3/041, F02M3/042, F02M3/045, F02M3/05 and F02M3/055 and also equipped with additional air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B1/00—Engines characterised by fuel-air mixture compression
- F02B1/02—Engines characterised by fuel-air mixture compression with positive ignition
- F02B1/04—Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S261/00—Gas and liquid contact apparatus
- Y10S261/19—Degassers
Definitions
- the conventional idling device of which the idling jet is situated on the engine side of the edge of the throttle Foreign Application Priority Data valve 21 communication passage communicating at the April 23, 7 Japan "45/41660 downstream side of the throttle valves between a pair of intake passages each connecting the carburetor to [52] CL 3 F, 13 DB 23 24 R, the respective combustion chambers, an additionally 123 127 123 97 3 2 1 1 19 fuel supplying means interposed in the communication 51 1m.
- the present invention relates to a surging prevention device for use in vehicles having spark-ignition internal combustion engines and, more particularly, to a device for preventing irregular combustion of fuel in a plurality of combustion chambers of a spark-ignition internal combustion engine of an automotive vehicle which will result in the fluctuations in the engine output torque and bumpy running or surging of the vehicle.
- the air-fuel mixture ratio is often enriched in view of the fact that a mixture of air with fuel supplied from the idling jet under the influence of the high negative pressure in the intake system is further mixed with the residual fuel that has been wetted on the inner peripheral surface of the intake manifold, a complete combustion will not take place in the cylinder even if the spark plug is fired.
- an irregular combustion which is an unstable repetition of misfire and tire will occur in the process from the engine braking operation till the idling operation, resulting in that the output torque of the engine will vary to such an extent as to create a bumpy running or surging of the vehicle.
- This occurrence of the irregular combustion will also constitute a cause for after-burning in the exhaust system of the engine as well as discharge of a considerable amount of noxious unburned compounds present in an exhaust gas to the atmosphere.
- Wankel engine a vehicle having the rotary piston internal combustion engine which is generally referred to as Wankel engine" to which current attention is centered.
- Wankel engine a vehicle having the rotary piston internal combustion engine which is generally referred to as Wankel engine" to which current attention is centered.
- Wankel engine a vehicle having the rotary piston internal combustion engine which is generally referred to as Wankel engine" to which current attention is centered.
- Wankel engine a vehicle having the rotary piston internal combustion engine which is generally referred to as Wankel engine” to which current attention is centered.
- Wankel engine a vehicle having the rotary piston internal combustion engine which is generally referred to as Wankel engine
- one object of the present invention is to provide an improved device capable of reducing variations in the output torque of the engine which often occur when the engine is decelerated.
- Another object of the present invention is to provide an improved device including a communication passage communicating a pair of intake manifolds which are connected independently to combustion chambers, additionally fuel supplying means interposed in said communication passage and a primary air supplying means formed adjacent to either of said intake manifolds for supplying a primary air and operable in such a manner that, when the engine is decelerated,
- this air can be supplied to one of the pair of the intake manifolds which is provided with the primary air supplying means, a portion of said primary air thus supplied being in turn supplied to the other intake manifold together with fuel supplied from said additionally fuel supplying means through the communication passage, whereby variations in the output torque of the engine which often occur during the deceleration of the engine can be substantially eliminated.
- a further object of the present invention is to provide an improved device adaptable in the rotary piston internal combustion engine by which the amount of noxious unburned compounds present in an exhaust gas emerging from the exhaust system of such rotary piston internal combustion engine can be additionally reduced.
- a still further object of the present invention is to provide the improved device of the character above referred to which can be manufactured at low cost without necessitating any complicated manufacturing steps.
- FIG. 1 is a schematic sectional view of an intake system of an internal combustion engine embodying the present invention
- FIG. 2 is a schematic sectional view of a modified intake system of the internal combustion engine embodying the present invention.
- the present invention will be described on the assumption that it is employed in an intake system of a two-cylinder two-stroke gasoline engine.
- the present invention is, of course, applicable in the intake system of any type of internal combustion engines including a two-rotor rotary piston internal combustion engine, i.e., two-rotor Wankel engine, now in the center of attention from the automobile industry.
- the intake system shown includes a conventional air-cleaner I having an air intake opening 1a and a carburetor assembly as generally indicated by 2.
- This carburetor assembly 1 may be of conventional two-barrel carburetor as shown and is provided therein with a pair of first and second passages 2a and 2b and a pair of first and second main fuel nozzles 2c and 2d respectively extended through venturi portions of said first and second passages 2a and 2b for supplying fuel to be atomized into the corresponding passages 2a and 2b.
- Each of said first and second passages 2a and 2b of the carburetor assembly 2 has one end connected with the air cleaner 1 and the other end connected with a corresponding one of first and second intake manifolds 3a and 3b respectively connecting said first and second passages 20 and 2b to combustion chambers 4a and 4b of an internal combustion engine having, in the instance as shown, a pair of cylinders 40 and 4d respectively provided therein with pistons 4e and 4f.
- the carburetor assembly 2 is provided in its first and second passages 2a and 2b with respective throttle valves 2e and 2f for regulating the flow of air-fuel mixture to be supplied to the combustion chambers 40 and 4b of the internal combustion engine.
- each of the air cleaner 1 and carburetor assembly 2 so far described is well known to those skilled in the art and, therefore, the details thereof are herein omitted.
- the two-stroke internal combustion engine herein employed for the only purpose of illustration of the present invention is also well known to those skilled in the art and, therefore, no reference is made to the details thereof except for such components of said engine as are necessitated to proceed the description of the present invention which are recited as indicated by the reference numerals.
- the surging prevention device constructed in accordance with the teachings of the present invention comprises a communication passage having one end, in the instance as shown, open to the interior'of the first passage 2a of the carburetor assembly 2 at the downstream side with respect to the throttle valve 2e and the other end open to the interior of the second passage 2b of said assembly 2 at the same side with respect to the throttle valve 2f.
- This communication passage may be disposed outside said carburetor assembly 2 so as to communicate the first and second intake manifolds 3a and 3b, provided that the length of said communication passage 5 be maintained at an optimum value.
- This communication passage 5 is provided at its intermediate portion, preferably at the central point of the length of said communication passage 5, with an additionally fuel supplying means including a nozzle 6 open to the interior of said passage 5 and an adjustment screw 7 adapted to regulate the flow of fuel from a fuel source (not shown) to the interior of said passage 5 through said nozzle 6.
- the structure of this additionally fuel supplying means may be substantially the same as that of the conventional idling device of which the nozzle or idling jet is normally situated on the engine side of the edge of the throttle valve.
- This additionally fuel supplying means which is a substitute for the conventional idling device acts in a similar manner to the conventional idling device, in view of the fact that, when the opening of the both throttle valves is so small that the amount of air drawn in the respective intake manifolds 3a and 3b is considerably reduced, fuel can be supplied through the nozzle 6 to the combustion chamber 4a and 4b as will be mentioned later.
- the surging prevention device further comprises a control valve for supplying the primary air during the deceleration of the engine which is generally indicated by 8.
- This control valve is designed such as shown in an enlarged fragmental portion of FIG. 1 and includes a valve housing 80 formed with an inlet port 8b communicated with the air cleaner 1 by means of a conduit 9 and an outlet port 8c communicated with the interior of the second passage 2b by means of a piping 10. While the opening at one end of said piping 10 is open to the interior of The control valve housing 8a is provided therein with a piston rod 8:!
- a resilient member 8g preferably in the form of a compression spring adapted to normally upwardly urge the piston rod 8d so as to cause the valve member 8c to close the inlet port 8b.
- the resiliency of said resilient member 8g is such that, the piston rod 8d can be downwardly moved against said resilient member 8g when the value of pressure within the valve housing 8a become smaller than that of pressure in the conduit 9 during the deceleration of the engine, said pressure in said conduit 9 being substantially equal to the atmospheric pressure.
- control valve 8 shown in FIG. 1 is replaced by a control valve assembly comprising a combination of first and second valve sections 11 and 12.
- the first valve section 11 includes a valve housing 11a formed at its upper portion with an inlet port 11b communicated with the air cleaner 1 by means of the conduit 9 and at its lower portion with an outlet port communicated with the interior of the intake manifold 3b by means of the piping 10.
- This valve housing 11a is also formed at its lower wall portion with a bore 11d through which a piston rod 13 is slidably extended.
- a second valve section 12 Positioned below the valve housing 11a is a second valve section 12 having first and second diaphragm chambers 12a and 12b divided by a diaphragm member formed with a small hole 12d communicating between said first and second diaphragm chambers 12a and 12b.
- the first diaphragm chamber 12a is also communicated with the interior of the intake manifold 3b by means of another piping 14 disposed below the first mentioned piping 10.
- the piston rod 13 has one end rigidly connected with a valve member lle of the size sufficient enough to close the outlet port 11c which is situated within the valve housing 11a, while the other end of said piston rod 13 is rigidly connected with an upper surface of said diaphragm member 120, and is normally downwardly urged by a resilient member 11f which may be employed in the form of a compression spring.
- this flow of air to the intake manifold 3b is permitted for a certain period of time until the value of pressure in the first diaphragm chamber 12a that has been reduced is equalized to that in the second diaphragm chamber 12b.
- This can be achieved by the provision of the hole 12d, formed in the diaphragm member 120, through which the both chambers 12a and 12b are communicated to each other so that the diaphragm member 12c that has been deformed can be restored to its original posture.
- the piston rod 13 that has been upwardly moved against the resilient member 11f can be returned to its original position when the difference between the values of pressure in the bothchambers 12a and 12b becomes smaller than the resiliency of the resilient member 11f normally acting to urge the piston rod 13 in the downward direction.
- a surging prevention device for use in a vehicle having multicylinder spark-ignition internal combustion engine which comprises a plurality of main inlet passages each having therein a main fuel nozzle and a throttle valve and each independently connecting between an air source to a corresponding individual combustion chamber; a communication passage connecting between each pair of said main inlet passages at the downstream side with respect to a corresponding pair of the throttle valve; additionally, fuel supplying means formed at an intermediate portion of said communication passage; and a primary air supplying means disposed adjacent to either of the pair of said main inlet passages at the downstream side with respect to said pair of said throttle valve and operable in such a manner that, when the engine is decelerated, said air supplying means permits air from the air source to flow into the inlet passage, wherein, when the engine is decelerated, only air is supplied to one of the pair of said inlet passages so that no combustion arises in combustion chamber connected to said one of the pair of said main inlet passage and mixture of air and fuel from said additionally fuel supplying means is supplied to
- a surging prevention device wherein said additionally fuel supplying means is positioned in said communication passage at a position substantially equally spaced from the both ends of said communication passage.
- said air supplying means comprises a control valve having an inlet port communicated with the air source and an outlet port communicated with the advalve assembly including a control valve section and a diaphragm valve section operably associated with said control valve section so as to permit the flow of air from the air source to the adjacent inlet passage therethrough when the engine is decelerated and to cut off said flow of air when said engine is accelerated.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1970041660U JPS4729130Y1 (enrdf_load_stackoverflow) | 1970-04-28 | 1970-04-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3698371A true US3698371A (en) | 1972-10-17 |
Family
ID=12614517
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US138195A Expired - Lifetime US3698371A (en) | 1970-04-28 | 1971-04-28 | Surging prevention device for use in vehicle having multicylinder spark-ignition internal combustion engine |
Country Status (4)
Country | Link |
---|---|
US (1) | US3698371A (enrdf_load_stackoverflow) |
JP (1) | JPS4729130Y1 (enrdf_load_stackoverflow) |
DE (1) | DE2120949C3 (enrdf_load_stackoverflow) |
FR (1) | FR2131147A5 (enrdf_load_stackoverflow) |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3742922A (en) * | 1972-03-10 | 1973-07-03 | Nissan Motor | Multi carburetor system of variable area venturi type with auxiliary fuel supply system |
US3759232A (en) * | 1972-01-29 | 1973-09-18 | Bosch Gmbh Robert | Method and apparatus to remove polluting components from the exhaust gases of internal combustion engines |
US3765394A (en) * | 1972-09-05 | 1973-10-16 | Gen Motors Corp | Split engine operation |
US3784172A (en) * | 1971-10-19 | 1974-01-08 | Nissan Motor | Carburetor for internal combustion engines |
US3795230A (en) * | 1973-03-27 | 1974-03-05 | Toyo Kogyo Co | Primary air supply for an internal combustion engine |
US3841282A (en) * | 1973-02-28 | 1974-10-15 | Ford Motor Co | Air supply valve |
US3866588A (en) * | 1972-04-28 | 1975-02-18 | Toyota Motor Co Ltd | Device for supplying secondary air to a gas engine intake manifold |
US3869528A (en) * | 1973-03-21 | 1975-03-04 | Gen Motors Corp | Cold transient enrichment |
US3930479A (en) * | 1972-09-07 | 1976-01-06 | Robert Bosch G.M.B.H. | Fuel metering device for externally ignited internal combustion engines with compression of the air-fuel mixture |
US3982513A (en) * | 1973-05-07 | 1976-09-28 | Nissan Motor Co., Ltd. | Carburetor for torch ignited engine |
US4000614A (en) * | 1975-02-08 | 1977-01-04 | Daimler-Benz Aktiengesellschaft | Mixture compressing internal combustion engine with two cylinder rows and exhaust gas treatment |
US4037571A (en) * | 1976-03-09 | 1977-07-26 | Toyota Jidosha Kogyo Kabushiki Kaisha | Multi-cylinder internal combustion engine |
US4070994A (en) * | 1975-11-10 | 1978-01-31 | Dudley B. Frank | Modification for selectively operating a fraction of multiple rotors of a rotary engine |
US4075837A (en) * | 1975-06-18 | 1978-02-28 | Toyota Jidosha Kogyo Kabushiki Kaisha | Exhaust gas purifying system for an internal combustion engine |
US4080948A (en) * | 1977-01-25 | 1978-03-28 | Dolza Sr John | Split engine control system |
US4084565A (en) * | 1975-09-02 | 1978-04-18 | Dr. Ing. H.C.F. Porsche Aktiengesellschaft | Combustion air supply apparatus for an internal combustion engine |
US4103654A (en) * | 1974-11-01 | 1978-08-01 | Nissan Motor Company, Ltd. | Method and apparatus to control air/fuel ratio of the mixture applied to an internal combustion engine |
US4122806A (en) * | 1976-03-26 | 1978-10-31 | Deutsche Vergaser Gmbh & Co. Kg | Valve for adding extra air in an internal combustion engine |
US4130102A (en) * | 1977-09-01 | 1978-12-19 | George A. Stanford | Adaptor and control system arrangement for converting multiple cylinder carburetor engines for split operation |
US4138974A (en) * | 1976-10-13 | 1979-02-13 | Toyo Kogyo Co., Ltd. | Air-fuel mixture intake system |
US4200083A (en) * | 1978-07-06 | 1980-04-29 | Toyota Jidosha Kogyo Kabushiki Kaisha | Split operation type multi-cylinder internal combustion engine |
US4207856A (en) * | 1977-07-15 | 1980-06-17 | Nissan Motor Company, Limited | I.C. Engine operable in party-cylinder mode |
US4264535A (en) * | 1978-02-24 | 1981-04-28 | Toyo Kogyo Co., Ltd. | Fuel intake system for multi-cylinder internal combustion engine |
US4502435A (en) * | 1978-03-24 | 1985-03-05 | Mazda Motor Corporation | Intake system for multiple cylinder internal combustion engine |
US4520775A (en) * | 1980-11-20 | 1985-06-04 | Yamaha Hatsudoki Kabushiki Kaisha | Intake system for multiple valve type engine |
US5447546A (en) * | 1994-04-14 | 1995-09-05 | Build-A-Mold Limited | Carburetor air filter and method of operation of same |
US20170211529A1 (en) * | 2016-01-22 | 2017-07-27 | Nikki Co., Ltd. | Fuel supply device for v-type two-cylinder general purpose engine |
US20180258838A1 (en) * | 2016-09-01 | 2018-09-13 | Bright Acceleration Technologies LLC | Cross-port air flow to reduce pumping losses |
US10364739B2 (en) | 2016-09-01 | 2019-07-30 | Bright Acceleration Technologies LLC | Synergistic induction and turbocharging in internal combustion engine systems |
US10408122B2 (en) * | 2016-09-01 | 2019-09-10 | Bright Acceleration Technologies LLC | Synergistic induction and turbocharging in internal combustion engine systems |
US10465621B2 (en) | 2016-09-01 | 2019-11-05 | Bright Acceleration Technologies LLC | Synergistic induction and turbocharging in internal combustion engine systems |
US10697357B2 (en) | 2016-09-01 | 2020-06-30 | Bright Acceleration Technologies LLC | Cross-port air flow to reduce pumping losses |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2824726A (en) * | 1955-11-08 | 1958-02-25 | Gen Motors Corp | Degasser attachment for internal combustion engines |
US3570821A (en) * | 1967-10-30 | 1971-03-16 | Brooks Walker | Carburetor |
US3578116A (en) * | 1968-01-25 | 1971-05-11 | Nissan Motor | Device for selective combustion in a multicylinder engine |
-
1970
- 1970-04-28 JP JP1970041660U patent/JPS4729130Y1/ja not_active Expired
-
1971
- 1971-04-27 FR FR7114992A patent/FR2131147A5/fr not_active Expired
- 1971-04-28 US US138195A patent/US3698371A/en not_active Expired - Lifetime
- 1971-04-28 DE DE2120949A patent/DE2120949C3/de not_active Expired
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2824726A (en) * | 1955-11-08 | 1958-02-25 | Gen Motors Corp | Degasser attachment for internal combustion engines |
US3570821A (en) * | 1967-10-30 | 1971-03-16 | Brooks Walker | Carburetor |
US3578116A (en) * | 1968-01-25 | 1971-05-11 | Nissan Motor | Device for selective combustion in a multicylinder engine |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3784172A (en) * | 1971-10-19 | 1974-01-08 | Nissan Motor | Carburetor for internal combustion engines |
US3759232A (en) * | 1972-01-29 | 1973-09-18 | Bosch Gmbh Robert | Method and apparatus to remove polluting components from the exhaust gases of internal combustion engines |
US3742922A (en) * | 1972-03-10 | 1973-07-03 | Nissan Motor | Multi carburetor system of variable area venturi type with auxiliary fuel supply system |
US3866588A (en) * | 1972-04-28 | 1975-02-18 | Toyota Motor Co Ltd | Device for supplying secondary air to a gas engine intake manifold |
US3765394A (en) * | 1972-09-05 | 1973-10-16 | Gen Motors Corp | Split engine operation |
US3930479A (en) * | 1972-09-07 | 1976-01-06 | Robert Bosch G.M.B.H. | Fuel metering device for externally ignited internal combustion engines with compression of the air-fuel mixture |
US3841282A (en) * | 1973-02-28 | 1974-10-15 | Ford Motor Co | Air supply valve |
US3869528A (en) * | 1973-03-21 | 1975-03-04 | Gen Motors Corp | Cold transient enrichment |
US3795230A (en) * | 1973-03-27 | 1974-03-05 | Toyo Kogyo Co | Primary air supply for an internal combustion engine |
US3982513A (en) * | 1973-05-07 | 1976-09-28 | Nissan Motor Co., Ltd. | Carburetor for torch ignited engine |
US4103654A (en) * | 1974-11-01 | 1978-08-01 | Nissan Motor Company, Ltd. | Method and apparatus to control air/fuel ratio of the mixture applied to an internal combustion engine |
US4000614A (en) * | 1975-02-08 | 1977-01-04 | Daimler-Benz Aktiengesellschaft | Mixture compressing internal combustion engine with two cylinder rows and exhaust gas treatment |
US4075837A (en) * | 1975-06-18 | 1978-02-28 | Toyota Jidosha Kogyo Kabushiki Kaisha | Exhaust gas purifying system for an internal combustion engine |
US4084565A (en) * | 1975-09-02 | 1978-04-18 | Dr. Ing. H.C.F. Porsche Aktiengesellschaft | Combustion air supply apparatus for an internal combustion engine |
US4070994A (en) * | 1975-11-10 | 1978-01-31 | Dudley B. Frank | Modification for selectively operating a fraction of multiple rotors of a rotary engine |
US4037571A (en) * | 1976-03-09 | 1977-07-26 | Toyota Jidosha Kogyo Kabushiki Kaisha | Multi-cylinder internal combustion engine |
US4122806A (en) * | 1976-03-26 | 1978-10-31 | Deutsche Vergaser Gmbh & Co. Kg | Valve for adding extra air in an internal combustion engine |
US4138974A (en) * | 1976-10-13 | 1979-02-13 | Toyo Kogyo Co., Ltd. | Air-fuel mixture intake system |
US4080948A (en) * | 1977-01-25 | 1978-03-28 | Dolza Sr John | Split engine control system |
US4207856A (en) * | 1977-07-15 | 1980-06-17 | Nissan Motor Company, Limited | I.C. Engine operable in party-cylinder mode |
US4130102A (en) * | 1977-09-01 | 1978-12-19 | George A. Stanford | Adaptor and control system arrangement for converting multiple cylinder carburetor engines for split operation |
US4264535A (en) * | 1978-02-24 | 1981-04-28 | Toyo Kogyo Co., Ltd. | Fuel intake system for multi-cylinder internal combustion engine |
US4502435A (en) * | 1978-03-24 | 1985-03-05 | Mazda Motor Corporation | Intake system for multiple cylinder internal combustion engine |
US4200083A (en) * | 1978-07-06 | 1980-04-29 | Toyota Jidosha Kogyo Kabushiki Kaisha | Split operation type multi-cylinder internal combustion engine |
US4520775A (en) * | 1980-11-20 | 1985-06-04 | Yamaha Hatsudoki Kabushiki Kaisha | Intake system for multiple valve type engine |
US5447546A (en) * | 1994-04-14 | 1995-09-05 | Build-A-Mold Limited | Carburetor air filter and method of operation of same |
US20170211529A1 (en) * | 2016-01-22 | 2017-07-27 | Nikki Co., Ltd. | Fuel supply device for v-type two-cylinder general purpose engine |
US20180258838A1 (en) * | 2016-09-01 | 2018-09-13 | Bright Acceleration Technologies LLC | Cross-port air flow to reduce pumping losses |
US10302008B2 (en) * | 2016-09-01 | 2019-05-28 | Bright Acceleration Technologies LLC | Cross-port air flow to reduce pumping losses |
US10364739B2 (en) | 2016-09-01 | 2019-07-30 | Bright Acceleration Technologies LLC | Synergistic induction and turbocharging in internal combustion engine systems |
US10408122B2 (en) * | 2016-09-01 | 2019-09-10 | Bright Acceleration Technologies LLC | Synergistic induction and turbocharging in internal combustion engine systems |
US10465621B2 (en) | 2016-09-01 | 2019-11-05 | Bright Acceleration Technologies LLC | Synergistic induction and turbocharging in internal combustion engine systems |
US10697357B2 (en) | 2016-09-01 | 2020-06-30 | Bright Acceleration Technologies LLC | Cross-port air flow to reduce pumping losses |
US11022029B2 (en) | 2016-09-01 | 2021-06-01 | Bright Acceleration Technologies LLC | Cross-port air flow to reduce pumping losses |
Also Published As
Publication number | Publication date |
---|---|
DE2120949B2 (de) | 1974-06-20 |
FR2131147A5 (enrdf_load_stackoverflow) | 1972-11-10 |
DE2120949A1 (de) | 1971-12-02 |
DE2120949C3 (de) | 1975-02-20 |
JPS4729130Y1 (enrdf_load_stackoverflow) | 1972-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3698371A (en) | Surging prevention device for use in vehicle having multicylinder spark-ignition internal combustion engine | |
US4248047A (en) | Exhaust bypass valve assembly for an exhaust gas turbo-supercharger | |
US3638626A (en) | Engine spark timing control device | |
US3842810A (en) | Carburetor | |
US3678910A (en) | Control valve for positive crankcase ventilation system | |
US4066055A (en) | Positive crankcase ventilation system | |
US3832985A (en) | Non-pollution carburetion system for engines | |
US4264535A (en) | Fuel intake system for multi-cylinder internal combustion engine | |
US3433242A (en) | Fluid bypass and pressure relief valve assembly | |
US3353524A (en) | Method of operating an automotive engine | |
US3742922A (en) | Multi carburetor system of variable area venturi type with auxiliary fuel supply system | |
US2460046A (en) | Internal-combustion engine | |
GB1537344A (en) | Fuel supply means for internal combustion engine | |
US3913541A (en) | Self-modulating air bleed apparatus and method for internal combustion engine | |
US4062333A (en) | Supercharged internal combustion engine | |
US3712279A (en) | Vacuum spark advance cutoff | |
US4098850A (en) | Orifice device for air flow restriction | |
US3788291A (en) | Unitized distributor vacuum spark advance control valve with regulator | |
US4344406A (en) | Fuel saver | |
US3515105A (en) | Ignition system | |
CA1318555C (en) | Vacuum control valve | |
US3252451A (en) | Distributor vacuum advance valve | |
US4014960A (en) | Carburator for a stratified combustion engine with a prechamber | |
US3972312A (en) | Exhaust gas recirculation control by high port actuated diaphragm | |
US3841282A (en) | Air supply valve |