US3698337A - Can bodies and method and apparatus for manufacture thereof - Google Patents

Can bodies and method and apparatus for manufacture thereof Download PDF

Info

Publication number
US3698337A
US3698337A US884299A US3698337DA US3698337A US 3698337 A US3698337 A US 3698337A US 884299 A US884299 A US 884299A US 3698337D A US3698337D A US 3698337DA US 3698337 A US3698337 A US 3698337A
Authority
US
United States
Prior art keywords
cylindrical body
wall
diameter
mandrel
neck
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US884299A
Inventor
William H Brawner
Claude A Gunsalus
Lowell K Rockwell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NICK A LAZNIBAT
Original Assignee
NICK A LAZNIBAT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NICK A LAZNIBAT filed Critical NICK A LAZNIBAT
Application granted granted Critical
Publication of US3698337A publication Critical patent/US3698337A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D51/00Making hollow objects
    • B21D51/16Making hollow objects characterised by the use of the objects
    • B21D51/26Making hollow objects characterised by the use of the objects cans or tins; Closing same in a permanent manner
    • B21D51/2646Of particular non cylindrical shape, e.g. conical, rectangular, polygonal, bulged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/10Stamping using yieldable or resilient pads
    • B21D22/105Stamping using yieldable or resilient pads of tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D7/00Containers having bodies formed by interconnecting or uniting two or more rigid, or substantially rigid, components made wholly or mainly of metal
    • B65D7/02Containers having bodies formed by interconnecting or uniting two or more rigid, or substantially rigid, components made wholly or mainly of metal characterised by shape

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)
  • Rigid Containers With Two Or More Constituent Elements (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

A tubular can body comprising a radially expanded central portion, a neck at each end of the central portion, and a radially extending flange adjacent each neck at the ends of the tubular member. A tubular, elastomeric member is positioned within a die-contained can body and is pressurized to mold the can body to the shape of the die. The operation forms a radially expanded can body, necks the can body adjacent the radially expanded portion, and flanges the ends of the body in a single operation. A tapered elastomeric mandrel may be utilized in place of the tubular mandrel, obviating the necessity of lubricating the mandrel and allowing the body to be axially extended so that the material from which the can is formed is altered in cross section both radially and axially. A structural groove, suitably positioned in the mandrel surface allows flanging to be effected at the upper end of the can body without damage to the mandrel. Alternatively, an expandable member may be substituted in place of either the tubular or tapered mandrel to form the can body through use of hydraulic pressure.

Description

United States Patent Brawner et al.
[54] CAN BODIES AND METHOD AND APPARATUS FOR MANUFACTURE THEREOF [72] Inventors: William H. Brawner, Anaheim; Claude A. Gunsalus, Covina; Lowell K. Rockwell, Walnut, all of Calif.
[731 Assignees: Dale E. Summer, Tiburon; Lowell K. Rockwell, Walnut; Paul C. Rogers,
Whittier; Nick A. Laznibat, Fullerton; Claude A. Gunsalus, Covina; William H. Brawner, Anaheim; Gordon R. Kimmich, Newhall; Leonard J. Plourde, Canoga Park; Marcus W. McGuire, El Cajon; George F. Smyth, Los Angeles, Calif. a part interest to each [22] Filed: Dec. 11, 1969 [21] Appl. N0.: 884,299
[52] US. Cl. ..113/120 AA, 72/58, 72/63, 1 13/ 1 20 M [51] Int. Cl ..B2ld 51/00, B21d 22/10 [58] Field of Search ..72/56, 58, 60, 61, 63; 113/1 G, 7 R, 7 A, 116 A, 120R, 120 M, 120 V, 120 AA l56| References Cited UNITED STATES PATENTS 3,252,312 5/1966 Maier ..72/56 3,236,080 2/1966 lllgen ..72/56 2,966,872 1/1961 Schmocker ..72/58 3,303,806 2/1967 Whiteford ..113/120 R 3,222,902 12/1965 Brejcha et al ..72/56 3,173,174 3/1965 Edwards ..72/58 3,461,699 8/1969 Roth ..72/56 2,354,564 7/1944 Wiley ..72/62 2,742,873 4/1956 Moore ..72/62 3,224,239 12/1965 Hansson ..72/62 [451 Oct. 17,1972
3,051,112 8/1962 Van Leer et a1 ..72/63 2,821,945 2/1958 Peccerill ..72/63 3,520,163 7/1970 Otoda ..72/61 3,162,940 12/1964 Kuhn ..72/61 3 ,094,091 6/1963 'Peccerill ..72/61 2,787,973 4/1957 l-leidmann ..72/56 939,702 11/1909 Jones ..72/56 3,394,569 7/1968 Smith ..72/62 3,397,563 8/1968 Pelt on ..72/62 OTHER PUBLICATIONS U.S. Abstract, Vol. 663 Page 1,223; 0.6. 10/28/52 Primary Examiner-Charles W. Lanham Assistant Examiner-Michael J. Keenan Attorney-Smyth, Roston & Pavitt [57] ABSTRACT A tubular can body comprising a radially expanded central portion, a neck at each end of the central portion, and a radially extending flange adjacent each neck at the ends of the tubular member. A tubular, elastomeric member is positioned within a die-contained can body and is pressurized to mold the can body to the shape of the die. The operation forms a radially expanded can body, necks the can body adjacent the radially expanded portion, and flanges the ends of the body in a single operation. A tapered elastomeric mandrel may be utilized in place of the tubular mandrel, obviating the necessity of lubricating the mandrel and allowing the body to be axially extended so that the material from which the can is formed is altered in cross section both radially and axially. A structural groove, suitably positioned in the mandrel surface allows flanging to be effected at the upper end of the can body without damage to the mandrel. Alternatively, an expandable member may be substituted in place of either the tubular or tapered mandrel to form the can body through use of hydraulic pressure.
23 Claims, 14 Drawing Figures CAN BODIES AND METHOD AND APPARATUS FOR MANUFACTURE THEREOF BACKGROUND OF THE INVENTION Recent advances in the technology of can manufacturing, such as easy-open ends, improved seam welding, etc., have resulted in a rapidly expanding utilization of cans for the transportation, storage, and dispensation of beverages, foods, and so forth. As can usage has increased, a wide variety of concepts have been devised in attempting to reduce the cost of each individual can so as to provide greater product economy. Such concepts have included further improvements in can seam bonding, reduction in the quantity of metal used in. each can, and improvements in the methods and apparatus used for making cans.
One object which has long been pursued by the industry has been to manufacture a can having a satisfactory volume for product containment, a reduced quantity and weight of metal, and a sufficient strength to resist can well damage. This has been accomplished, to some extent, by the use of aluminum which, due to its ductility, may be drawn to such an extent that a can bottom can be formed integral with the body walls. Use of aluminum allows cans to be produced which have a minimum amount of metal in the walls and a large concentration of metal adjacent to and in the bottom for structural strength.
Relative lack of ductility prevents steel cans from being drawn having integral walls and bottoms, with the resultant material distribution, but the advantages of aluminum are largely offset by the lower cost of steel- In manufacturing cans today, whether steel, aluminum, or other material, a longitudinal section adjacent each open end of each can body is formed into a generally radially outwardly directed flange. The flange is provided on each open end so that a can end (top or bottom) may be mounted thereon in a well-known manner.
If it is desired to form a can having a diameter of 2- 1 1/16 inches, for example, can bodies are cut and seamed at that diameter. The flanges are then formed at the ends of the can and a 2-l l/l6 inch can end is suitably fastened to the flange.
When can ends are placed on a body formed in ac cordance with the prior art, the ends have diameters which are greater than that of the body so that the ends extend beyond the body walls. When two cans are placed next to one another, the can ends are in abutment and the bodies are spaced apart by an amount equal to the difference between the sum of the radii of the can ends and the sum of the external radii of the bodies, thereby resulting in a waste in storage space equal to the total separation between the external wall surfaces of the adjacent cans.
Some aluminum cans having the previously described integral body are provided with a neck just below the flange to increase the wall strength of the can so that it will withstand the forces imposed when a can end is installed on the flange. This also allows a slightly smaller can end to be used, such as a 2-9/16 inch end on a 2-1 l/l6 inch body, and obviates the problem discussed in the last paragraph. However, the necks and flanges for these cans have been provided in two distinct operations, requiring two different machines.
With respect to another aspect of the present invention, several concepts have been developed for the expansion of can bodies into a variety of shapes such as barrels, etc. Many of these concepts have required expensive and cumbersome equipment such as multi-part mandrels, electro-hydraulic shock wave distribution systems, etc. All of these concepts have been directed toward reshaping can bodies to produce commercially attractive containers. None of the prior art has been directed to or resulted in enlarging of the can body so as to maintain substantially the original body shape whiledecreasing the weight of the can per unit volume contained therein. Additionally, all of the known prior art has been directed to concepts in which, as the can body is expanded, the axial length of the body is shortened. The results of these concepts have been cans which, while containing a slightly greater volume, do so only because of the fact that they have been reformed into shapes approaching spheres, rather than having been stretched to merely enlarge their original shape.
SUMMARY OF THE INVENTION The present invention comprises a new can body which may be formed by novel apparatus in ac cordance with a new and unobvious method.
In its simplest form, a can body formed in accordance with the present invention basically comprises a cylindrical body which has been expanded throughout a majority of the length thereof to enclose a greater volume. Although the work cylinder usually connotes a body having a circular cross section, it is mathematically defined as, the surface traced by a straight line moving parallel to a fixed straight line and intersecting a fixed curve; the space bounded by any such surface and two parallel planes cutting all the elements. This definition includes bodies having circular, square, rectangular, hexagonal, etc., cross sections. It is intended therefore, that the use of the word cylinder in the specification and claims be understood to refer to any such body wherein the fixed curve is closed or continuous, regardless of the shape of a cross section taken perpendicular to the axis-or fixed straight linethereof. In like manner, the use of the term diameter should be understood, when used relative to a body having a non-circular cross section, to be the mean diameter, and the term radius should be construed as mean radius."
The expansion results in a reduction of the body wall thickness and an increase in the diameter of the can. As an example, a can formed according to the present invention could be expanded from an original diameter of 2-9/16 inches to 2-l H1 6 inches. In addition to an increase in the volume containable within the can body, the radial expansion thereof also results in a work hardening of the wall, thereby producing a stronger can body. Adjacent each end, the can body is maintained at its original dimension so as to form necks which serve to increase the can strength and reduce spillage during filling. Each end of the body, beyond the necks, is bent in a radially outward direction to create a flange for attachment of a can end thereto in a well-known manner. The can ends, which are rolled onto the flanges, are, in the above example, the same ends which would be required for a 2-9/16 inch can rather than those required for a 2-1 l/l6 inch can, thereby further decreasing the amount of metal required to form a can according to the present invention. This last feature also means that when the can ends are put onto the body, they will not have a diameter as large as the expanded portion of the body, thereby allowing adjacent cans to be more closely stacked together since the exterior surfaces of cans will be in contact throughout the expanded portions thereof and the cans will not be held apart by abutment of the ends. In other words, the external wall surfaces of the bodies will be in abutment, thereby resulting in a decreased storage space requirementfor a given number of cans.
Those skilled in the art will realize, of course, that when one of the previously described aluminum drawn cans is so formed, only the upper, open end of the can needs to be flanged for receipt of a can end and, unless desired, the closed end of the can need not be necked.
In forming the can bodies in accordance with the present invention, a cylindrical body is placed within a multi-part die having internal structure for producing the entire desired body shape, including the necks and flanges. A mandrel is placed within the can body and a force is exerted thereon which causes the mandrel to expand against the internal die structure so as to be formed thereagainst. In the areas in which necks are to be formed, the body is maintained at its original diameter by the die structure and the wall between the necks is expanded to the desired shape. The ends of the body beyond the necks are formed about the die necking structure into can end-receiving flanges.
When elastomeric mandrels are used to expand and reshape the can bodies, the mandrels must be manufactured so that they extend beyond one end of the die structure to provide sufficient material for radial expansion thereof. The provision of a compressible circumferential groove in the mandrel allows the mandrel to flow in such a way that it cannot reach behind the end of the can body which is to be flanged adjacent the end of the die from which the mandrel extends. If the mandrel could flow behind that end of the can body and come between the body and the die, it would prevent proper formation of the flange and the mandrel would quickly become damaged by the sharp end of the body.
Expansion of cans in accordance with this invention allows them to be automatically tested for seam strength, eliminating the time and labor previously required to accomplish this result.
When-it is desirable to use an elastomeric mandrel,
- body toward the other, thereby obviating any possibility of wrinkles forming in the body wall. Additionally, this progressive expansion of the can body may, when certain materials are used, allow the body to be stretched in the axial direction, thereby allowing cans of a predetermined length to be formed from bodies which have been manufactured with a slightly shorter axial dimension. This, of course, results in a further economic benefit due to the reduction of metal required to form a can.
In summary, the present invention produces a can body which requires less metal and weight in both the body and the ends than heretofore possible, while allowing'a larger number of cans of an effective diameter to be stored in any given area. Further, theinvention allows the cans to be formed in a single step, thereby obviating the previous requirement for a plurality of machines to accomplish necking and flanging. The method of this invention may be used to form a very wide variety of can shapes and may be used with many presently known materials such as tin-free steel, tinplated steel, aluminum, etc.
Other objects, advantages, modes, and embodiments of the present invention will become obvious to those skilled in the art through reference to the Detailed Description and accompanying drawings which illustratewhat are presently considered to be preferred embodiments of the best mode contemplated for utilizing the novel principles set forth in the claims.
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 and 2 are elevations, partly in section, of two embodiments of structure which may be utilized to form the product of this invention according to the method hereof;
FIG. 3 is an enlarged illustration of the product forming apparatus according to the embodiment of FIG. 2;
FIG. 4 is a view, similar to FIG. 3, of a third embodiment of apparatus which may be utilized in accordance with the present invention;
FIGS. 5 and 6 are illustrations of consecutive positions assumed by part of the apparatus of FIGS. 2 and 3 during operation thereof;
FIG. 7 is a partial sectional view of an apparatus which is similar to that illustrated in FIGS. 2 and 3, having a modified die structure therein;
FIGS. 8-12 illustrate various configurations into which cans formed by the present invention may be shaped;
FIG. 13 is an elevation of two cans formed according to the present invention and placed in abutment; and
FIG. 14 is a view, similar to FIG. 13, of cans formed according to prior art methods.
DETAILED DESCRIPTION As shown in FIG. 1, a can body forming machine element 11, forms one station of a multi-station machine in which a large plurality of can.bodies are formed sequentially and/or simultaneously. The machine rotates about a vertical axis (not shown) which is coaxial with a fixed upper drum cam 13 and a fixed lower drum cam 15. As the element 11 is carried in rotation about the axis of themachine, a cam follower l7 cooperates with a cam groove 19 in the lower drum cam 15 to reciprocate a support member 21 relative to a multipart die 23. As the machine is carried about the axis, the support is moved into position to receive a can body 25 from any suitable feed means, such as a starwheel (not shown), when the support member 21 is in the lowered position shown in phantom in FIG. 1. As the support member is moved upwardly due to the cooperation of the following 17 and cam groove 19, it
moves the can body into the opened die 23. The die is then closed about the body which is locatedin the position illustrated at 27. When can body 27 has been formed, in a manner to be described, the die will be reopened and continued movement of the element 11 about the machine axis will cause support member 21 to be moved downwardly and the formed can body 29 will be removed from the support member 21 by any suitable machinery.
An upper cam follower 31 cooperates with a cam groove 33 in the upper drum cam 13 so as to reciprocate a punch 35 through a support plate 36 and relative to the die 23. Cam groove 33 is so formed that punch 35 is reciprocated to the position illustrated in FIG. 1 and is then moved downwardly still further during the period in which the can body is to be formed.
Those skilled in the art will realize that it may be unnecessary to reciprocate the mandrel so that it is withdrawn from the die so long as the can may be easily moved over it as the can is placed within the die. Any combination of mandrel, die, and support movement can be provided so long as the total effect is to position the can in the die and the mandrel in the can, and to allow the mandrel to be worked to form the can.
A pilot rod 37 is suitably fastened to the punch 35 and an elastomeric mandrel 39, which may be of any suitable material, such as rubber, is fitted over the pilot rod for close abutment with the punch as shown. The mandrel may be either bonded to the punch or held thereagainst by shrink-fitting it onto the pilot rod.
The multi'part die 23 is formed, in the illustration of FIG. 1, with a circumferentially recessed portion 41, hereafter referred to as the expansion section," between radially inwardly directed portions 43 and 45, hereafter referred to as neckers. A pair of circumferentially recessed portions 47 and 49, hereafter referred to as flangers, are formed at each end of the die structure adjacent neckers 43 and 45, respectively.
In operation, when support member 21 has moved a can body 25 into the position illustrated at 27, the die having been closed thereon, punch lowers the mandrel into the can body until the mandrel 39 contacts the upper surface of support member 21. If necessary, a machine station (not shown) may be provided to lubricate the mandrel prior to its insertion into the body. Continued rotation of the machine relative to the drum cams causes punch 35 to be moved downwardly, compressing the mandrel 39 so that it expands against the body 27, forcing it into the expansion section 41 of the die between neckers 43 and 45. As this occurs, the mandrel acts against the body in, the areas of the neckers 43 and 45 to hold it tightly against them, thereby stretching the body throughout the area of expansion section 41 with a resultant reduction of the can body wall thickness and increase of the body diameter in that section. Since the portions of the body adjacent neckers 43 and 45 are fixed against movement by the mandrel 39, their thicknesses and diameters will remain unchanged. 1
As this is occurring, mandrel 39 will also tend to expand into the flanger 49, causing the lower end of the body to be formed around the necker 45 to create a lower flange thereon. The mandrel will also expand into the flanger 47, thereby forming a similar flange at the upper end of the body. A circumferential groove 51 in the mandrel 39, which will be more fully described later, allows the mandrel to be compressed at the intersection of punch support 36 and die member 23 without allowing the mandrel to flow into the area behind the can body in the flanger 47. If it did flow behind the can, it would interfere with the formation of the upper flange and would eventually become damaged by the sharp upper edge of the blank. This problem is obviated atthe lower flanger 49 since the mandrel does not extend below the lower extremity of die 23 and it cannot flow into the flanger until the flange is formed.
Referring now to FIG. 2, it will beseen that the structure therein is similar in many respects to that previously described relative to FIG. 1.. Elements which are nearly identical have been provided with identical identification labels, preceded by the numeral 1, so that machine element 11 of FIG. 1 becomes machine element 111 in FIG. 2, etc. Therefore, only those structural elements which are, different from those described relative to FIG. 1 need to be described with reference to FIG. 2. i
A mandrel 153 within the machine element 111 is formed with a tapered external surface of conical configuration which is truncated in the area of the groove 151. The mandrel may be fastened to the punch by any of the alternatives previously described relative to mandrel 39, but to illustrate a further alternative it has been shown to be fixed to punch 135 by means of a plate 155 which is fastened to the pilot rod 137 by any suitable fastening means, such as a bolt 157. The plate fits within a circular counterbore 159 in the mandrel 153 and, when the punch 135 is in the upper position, seats against the bottom of the counterbore.
As shown more clearly in FIG. 3, the can body 127 is not long enough to extend up to the upper end of the die when support 121 abuts the die. When the mandrel 153 is placed into the body 127, the bottom end thereof will abut the support 121. As punch 135 is actuated, the mandrelwill hold the bottom portion of the body against necker to prevent movement of the body, in the manner previously described. Further actuation of the punch 135 causes the lower end of the mandrel to bend the bottom end of the body into the flanger 149; at the same time, the forces acting on the mandrel move it against the body 127 in the area of the expansion section 141. Since the mandrel is conical in configuration, its contact with the body and the resultant reshaping occurs progressively upwardly so that the body wall becomes thinner and may, with suitable body material selection, become lengthened toward the upper end of'the die. Thus, it willbe seen, that the particular configuration of the mandrel described may cause the body wall to be reduced in thickness while being increased in length. Further, the configuration results in an ironing effect on the body so that no wrinkles can be formed in the expansion section. Now turning to FIG. 5, it can be seen that, as the mandrel 153 moves the can body 127 into the expansion section 141, the can body will be lengthened until the top edge thereof is coplanar with the upper end of the die.
FIGS. 5 and 6 will be described. with reference to the embodiment of FIG. 2, but it should be borne in mind that the actual flanging action is identical for the structure of either FIG. 1 or 2. Referring now to FIGS. 3, 5, and 6 together, the circumferential groove 151 comprises an upper tapered section 161 and a lower tapered section 163 which are joined by a vertical section 165. When the mandrel has been compressed to the position shown in FIG. 5, the upper tapered section 161 and the vertical section 165 will have become compressed to form an horizontal section and the lower tapered section 163 will have become compressed so that the lower edge thereof will expand outwardly to the upper end of the can body. Still further downward movement of the punch 135 to the position shown in FIG. 6 will result in a complete closure of the groove 151 and an extension of the opposite sides thereof into the flanger 147 to form a flange on the can body 127 about the upper edge of the necker 143.
As previously stated, circumferential grooves 51 and 151 are identical, as is their cooperation with the flangers 47 and 147, respectively.
Now with reference to FIG. 4, a third embodiment of an apparatus which may be utilized in accordance with the present invention has been illustrated. Those portions of the structure which are identical to previously described portions have been given identical labels, preceded by the numeral 2, such that support 21 or 121 now becomes 221; further description of such identical elements is believed to be unnecessary.
As shown in that embodiment, a punch member 267 is suitably fastened by any desired means to a sealed, flexible, diaphragm-like member 269 which, if desired, may be tapered in the same manner in which mandrel 153 was tapered, or may be formed in any other suitable shape. A pipe 271, having a central bore 273 which is in communication with the internal volume of the flexible member 269 by means of a plurality of apertures 275, extends into the support member 267 for communication with a fluid passage 277. Fluid, such as air, water, etc., may be pumped into the flexible member 269, through the passage 277 and pipe 271, so that the flexible member will form the can body 227 in the manner described relative to the embodiment of either FIG. 1 or FIG. 2. When the can has been formed, the fluid circuit may be reversed and the fluid withdrawn from the flexible member 269 through the pipe and passage, allowing contraction of the flexible member for removal from the formed can body.
The member 267 may, if desired, also be reciprocable within the support plate 236 so as to increase the pressure within the flexible member. Further, the flexible member may be provided with a constricted portion 279 which will cooperate with the flanger 247 in a manner which is similar to that described relative to groove 151.
Referring now to FIG. 7, an embodiment of the invention has been partially illustrated in which parts which are identical to those previously described have been labeled with an identical label, preceded by the numeral3.
As shown, a die 381 has been positioned for cooperation with a mandrel 353 to form a can body 327 in the manner previously described. In this embodiment, however, the expansion area 341 has been provided with a plurality of recessed portions 383 of varying shapes and diameters, so that, as the can is formed, it can be embossed in predetermined areas through cooperation with the die 381.
As shown in FIGS. 8-12, a variety of can sizes, shapes, and embossing configurations can be provided in accordance with the present invention. In FIG. 8, a can body 429 has been shown which is circular in cross section, having wall strengthening necked portions 487 which are equal to the original wall thickness and diameter of the can, and end flanges 489. The internal surface edge 490 of the necks serve an added function in that they reduce liquid splash and loss when the can is filled with the product at a later time. In FIG. 9, an hexagonal can 529 is shown having necked portions 587 and flanges 589. Similarly, in FIG. 10, a square can body 629 has been illustrated having necks 687 and flanges 689. Obviously, in the case of such shapes, some reforming in the neck and flange area will occur, but. this will be negligible in comparison with the reforming of the intermediate section.
FIG. 1 1 shows a generally circular can body 729 having necks 787 and flanges 789. As shown, the can may be provided with embossed portions such. as 791 and 793 which, for example, would correspond to the configurations shown in the recess portions 383 of FIG. 7.
Now with reference to FIG. 12, a can body 829 has been illustrated having necks 887 and 888 and flanges 889. As shown, a variety of different features may be provided in a single can body, such as a central constriction 891, longitudinal embossments 893, artistic designs such as an embossed shield 895 having cross spears 897 embossed upon the embossment, etc. In other words, the use of the apparatus and/or method of the present invention will provide relatively limitless configurations, dependent only upon the inherent limitations of the process and the design capabilities of its user.
It will be noted relative to FIG. 12 that the diameter of neck 888 has been expanded somewhat, whereas the diameter of neck 887 has been maintained at its original dimension. When cans are formed in the shapes shown in FIGS. 8-12 with similar differences in neck and end diameters, improved stacking of cans will result since the smaller can ends, on the body ends having smaller neck diameters, will fit within the larger can ends on the larger necks. Thus, utilization of storage space can also be improved in this manner.
Referring now to FIGS. 13 and 14, there is clearly illustrated the storage advantage of the cans formed according to the present invention over the prior art. As shown in FIG. 13, a pair of cylindrical cans 1029 are in abutment throughout the expanded mid-sections of their lengths and their can ends 1030 are held apart due to the configuration of the can necks 1087. The prior art cans 1088 shown in FIG. 14, however, are not in contact along the body walls but are separated by the abutment of the overhanging ends 1090. Thus it can be seen that cans of a predetermined size, e.g., 2-11/16 inches, which are formed according to the present invention, may be placed closer together than prior art cans of an identical size, thereby saving storage and shipping space.
No matter how a can is configured or what material it is made from, the invention herein provides a new and improved concept in the can-making art which yields a true advance in that art. The invention allows the production of can bodies in a highly economical way since the amount of material used in a can is reduced by means of a reduction in wall thickness, an increase in the length of the wall, if desired, and the use of smaller ends. Also,- the body is formed in a single operation, eliminating the need for a plurality of machines to perform necking and flanging in separate steps. Of course, the invention should not be construed so as to preclude the formation of the flange in a separate operation, if that should be desirable in certain instances.
While a few preferred embodiments of the invention have been illustrated, it will, of course, be realized that they are capable of variation and modification in a variety of ways without exceeding the scope of the invention.
We claim:
1. The method of reforming the wall ofa non-flanged hollow cylindrical body having a constant diameter throughout the length thereof comprising the steps of forming necks adjacent each end of the wall of the cylindrical body by restraining longitudinal sections thereof adjacent the ends of the cylindrical body from movingin a radial direction relative to the axis of the cylindrical body,
uniformly increasing the diameter of the cylindrical body wall intermediate the longitudinal sections, and
forming a flange at each end of the cylindrical body adjacent the neck formed by the restrained longitudinal sections prior to the discontinuation of said step of restraining said longitudinal sections.
2. The method of claim 1 wherein said step of uniformly increasing the diameter of the cylindrical body wall includes the step of uniformly reducing the thickness of the. cylindrical body wall intermediate the restrained longitudinal sections.
3. The method of claim 1 wherein said flange forming step is accomplished by bending the portion of the cylindrical body wall which is intermediate each neck and its adjacent end, after the neck, is formed, to form a generally radially outward directed member.
4. The method of reforming the wall of a hollow cylindrical body comprising the steps of forming a neck adjacent at least oneof the ends of the wall of the cylindrical body by restraining at least one longitudinal section of the cylindrical body wall from movement in the radial direction relative to the axis of the cylindrical body, increasing the diameter of a predetermined portion of the cylindrical body wall adjacent the neck thus formed, on the side of the neck away from the at least one end, and forming an outwardly directed flange at at least one end of the cylindrical body prior to the discontinuation of said step of restraining said at least one longitudinal section. i 5. The method of claim 4 wherein said step of increasing the diameter of the cylindrical body wall is accomplished by simultaneously radially expanding the cylindrical body wall throughout the predetermined portion along the axial dimension thereof. 6. The method of claim 4 wherein said step of increasing the diameter of the cylindrical body wall is accomplished by progressively radially expanding the cylindrical body wall along the axial dimension. 7. The method of reforming the wall of a hollow,
uniform diameter cylindrical body comprising the steps of positioning the cylindrical body between a female die and a male mandrel, increasing the diameter of a predetermined portion of the cylindrical body wall along the axial length thereof by r exerting a force on the mandrel to cause it to move the cylindrical bodywall against the face of the die, and
' forming an outwardly directed flange adjacent at least one end of the cylindrical body by continuing said step of exerting a force on the mandrel to cause it to move the cylindrical body wall against the face of the die. 8.The method of claim 7 including the step of providing the female die with at least one neck forming member thereon which will maintain a corv responding section of the cylindrical body wall at its original diameter during said force exerting step. 9. The method of claim 7 including the step of providing a tapered conical surface on the mandrel so that the step of exerting a force on the mandrel causes said step of increasing the diameter of the predetermined portion of the cylindrical body wall to be accomplished progressively along the axial dimension of the cylindrical body wall. 10. The method of claim 7 including the step of providing the female die with at least one area of distinctive diameter against which a corresponding section of said cylindrical body wall is moved by themandrel during said force exerting step to impress a decorative arrangement on the predetermined portion of the cylindrical body wall. 11. The method of claim 7 including the steps of providing neck forming structure adjacent the ends of the female die, providing a recessed area on the female die intermediate the neck forming structures, and providing flange forming structure between the ends of the female die and the neck forming structures, thereby causing the increase in diameter of the predetermined portion of the cylindrical body wall, a formation of necks adjacent the ends of the cylindrical body wall, and a formation of flanges at the ends of the cylindrical body wall in a single operation. during said step of. exerting a force on the mandrel. 12. The method of claim 11 wherein .saidstep of exerting a force on themandrel results in a substantially simultaneous increase in diameter of the predetermined portion of the cylindrical body wall and formation of the necks and flanges thereon due to the step of a providing said mandrel to be so shaped as to contact the entire axial dimension of the cylindrical body wall substantially simultaneously. 13. The method of claim 11 wherein said step of exerting aforce on the mandrel results in a progressive increase in diameter of the predetermined portion of the cylindrical body wall and formation of the necks and flanges thereon due to the step of providing said mandrel to be so shaped as to contact the cylindrical body wall progressively along its axial dimension as the force exerted on the mandrel is increased.
14. The method of claim 7 including the step of providing at least one flange forming member in the female die and providing the mandrelwith means which will prevent the mandrel from entering into the flange forming member until after the cylindrical body wall has been moved into it as a result of said step of exerting a force on the mandrel.
15. The method of reforming the wall of a uniform hollow cylindrical body having a seam extending between the ends thereof comprising the steps of forming a neck adjacent at least one of the ends of the cylindrical body wall by restraining a longitudinal section of said wall adjacent said at least one end from moving in a radial direction relative to the axis of the cylindrical body,
increasing the diameter of a predetermined portion of the cylindrical body wall adjacent the neck thus formed, on the side of the neck away from the at least one end, and,
prior to discontinuing said step of restraining a longitudinal section of said wall, turning at least one end of the hollow cylindrical body outwardly, thereby forming a flange thereon.
16. The method of claim 7 including the step of maintaining a predetermined portion of the cylindrical body wall between the outwardly directed flange and the increased diameter portion at its original diameter to form a neck in the reformed wall.
17. The method of reforming the wall of a hollow, straight cylindrical body having a first diameter comprising the steps of positioning the body between a female die and a male mandrel,
exerting a force on the mandrel to force the body against the wall of the die, thereby progressively a. expanding a portion of the body into a uniform diameter central portion having a second diameter greater than said first diameter,
b. maintaining a predetermined portion of the body at the first diameter to provide a neck on the body intermediate the expanded portion and one end of the body, and
c. turning the one end of the body outwardly in a uniform manner to form a closure-receiving flange thereon.
18. The method of reforming the wall of a straight, uniform diameter, hollow cylindrical body into a reformed straight, uniform diameter, hollow cylindrical body, suitable to serve as a container, in which the reformed diameter is greater than the original uniform diameter comprising the steps of exerting a pressure on the interior of the body along a central portion thereof, thereby a. expanding it to the reformed diameter,
b. maintaining relatively short predetermined portions at opposite ends of the central portion at the original uniform diameter to form necks thereon, and
c. turning the portions of the body on the sides of the necks away from the central portion outwardly to form closure-receiving flanges thereon.
19. The method. of reforming the wall of a hollow,
10 non-flanged cylindrical body of uniform diameter comprising the steps of positioning the cylindrical body between a female die and a male mandrel, forming a neck adjacent at least one of the ends of the cylindrical body by exerting a force on said male mandrel, thereby a. restraining a longitudinal section of said cylindrical body adjacent said at least one end from moving in a radial direction relative to the axis of the cylindrical body,
b. forming a radially outwardly directed flange at the at leastone end of said cylindrical body adjacent said neck, and i c. forcing substantially the remainder of the cylindrical body radially outwardly against the face of the female die. g
20. The method of reforming the wall of a nonflanged hollow cylindrical body having a uniform diameter throughout the length of the wall thereof comprising the steps of positioning the body within a die and thereafter exerting a force within the body, thereby forming a neck adjacent at least one end of the wall of the cylindrical body by restraining a longitudinal section thereof adjacent the at least one end of the wall from moving in a radial direction relative to the body axis,
forming a radially outwardly directed flange between the neck thus formed and the adjacent end of the body wall by turning the portion of the body wall extending from the neck thus formed and the adjacent end of the body wall outwardly into a flange-receiving portionon the die, and expanding the cylindrical portion of he body wall on the opposite side of the neck from the flange by forcing it outwardly into contact with the die.
21. The method of claim 20 wherein said step of expanding the cylindrical portion of e body wall on the opposite side of the neck from the flange includes enlarging the diameter of at least a portion thereof to a dimension at least as large as that defined by a can closure end wall when the latter is subsequently mounted on the radially outwardly directed flange.
22. The method of claim 20 wherein said step of expanding the cylindrical portion of the body on the opposite side of the neck from the flange includes enlarging a portion of the cylindrical portion of the body against at least one area of distinctive diameter on the die to form a decorative arrangement on a predetermined portion of the body wall.
23. The method of claim 20 wherein said step of expanding the cylindrical portion of the body on the opposite side of the neck from the flange includes moving the cylindrical portion of the body against a preformed configuration on the surface of the die to reform the cylindrical portion of the body into. a non-cylindrical configuration.

Claims (23)

1. The method of reforming the wall of a non-flanged hollow cylindrical body having a constant diameter throughout the length thereof comprising the steps of forming necks adjacent each end of the wall of the cylindrical body by restraining longitudinal sections thereof adjacent the ends of the cylindrical body from moving in a radial direction relative to the axis of the cylindrical body, uniformly increasing the diameter of the cylindrical body wall intermediate the longitudinal sections, and forming a flange at each end of the cylindrical body adjacent the neck formed by the restrained longitudinal sections prior to the discontinuation of said step of restraining said longitudinal sections.
2. The method of claim 1 wherein said step of uniformly increasing the diameter of the cylindrical body wall includes the step of uniformly reducing the thickness of the cylindrical body wall intermediate the restrained longitudinal sections.
3. The method of claim 1 wherein said flange forming step is accomplished by bending the portion of the cylindrical body wall which is intermediate each neck and its adjacent end, after the neck is formed, to form a generally radially outward directed member.
4. The method of reforming the wall of a hollow cylindrical body comprising the steps of forming a neck adjacent at least one of the ends of the wall of the cylindrical body by restraining at least one longitudinal section of the cylindrical body wall from movement in the radial direction relative to the axis of the cylindrical body, increasing the diameter of a predetermined portion of the cylindricAl body wall adjacent the neck thus formed, on the side of the neck away from the at least one end, and forming an outwardly directed flange at at least one end of the cylindrical body prior to the discontinuation of said step of restraining said at least one longitudinal section.
5. The method of claim 4 wherein said step of increasing the diameter of the cylindrical body wall is accomplished by simultaneously radially expanding the cylindrical body wall throughout the predetermined portion along the axial dimension thereof.
6. The method of claim 4 wherein said step of increasing the diameter of the cylindrical body wall is accomplished by progressively radially expanding the cylindrical body wall along the axial dimension.
7. The method of reforming the wall of a hollow, uniform diameter cylindrical body comprising the steps of positioning the cylindrical body between a female die and a male mandrel, increasing the diameter of a predetermined portion of the cylindrical body wall along the axial length thereof by exerting a force on the mandrel to cause it to move the cylindrical body wall against the face of the die, and forming an outwardly directed flange adjacent at least one end of the cylindrical body by continuing said step of exerting a force on the mandrel to cause it to move the cylindrical body wall against the face of the die.
8. The method of claim 7 including the step of providing the female die with at least one neck forming member thereon which will maintain a corresponding section of the cylindrical body wall at its original diameter during said force exerting step.
9. The method of claim 7 including the step of providing a tapered conical surface on the mandrel so that the step of exerting a force on the mandrel causes said step of increasing the diameter of the predetermined portion of the cylindrical body wall to be accomplished progressively along the axial dimension of the cylindrical body wall.
10. The method of claim 7 including the step of providing the female die with at least one area of distinctive diameter against which a corresponding section of said cylindrical body wall is moved by the mandrel during said force exerting step to impress a decorative arrangement on the predetermined portion of the cylindrical body wall.
11. The method of claim 7 including the steps of providing neck forming structure adjacent the ends of the female die, providing a recessed area on the female die intermediate the neck forming structures, and providing flange forming structure between the ends of the female die and the neck forming structures, thereby causing the increase in diameter of the predetermined portion of the cylindrical body wall, a formation of necks adjacent the ends of the cylindrical body wall, and a formation of flanges at the ends of the cylindrical body wall in a single operation during said step of exerting a force on the mandrel.
12. The method of claim 11 wherein said step of exerting a force on the mandrel results in a substantially simultaneous increase in diameter of the predetermined portion of the cylindrical body wall and formation of the necks and flanges thereon due to the step of providing said mandrel to be so shaped as to contact the entire axial dimension of the cylindrical body wall substantially simultaneously.
13. The method of claim 11 wherein said step of exerting a force on the mandrel results in a progressive increase in diameter of the predetermined portion of the cylindrical body wall and formation of the necks and flanges thereon due to the step of providing said mandrel to be so shaped as to contact the cylindrical body wall progressively along its axial dimension as the force exerted on the mandrel is increased.
14. The method of claim 7 including the step of providing at least one flange forming member in the female die and providing the mandrel with meAns which will prevent the mandrel from entering into the flange forming member until after the cylindrical body wall has been moved into it as a result of said step of exerting a force on the mandrel.
15. The method of reforming the wall of a uniform hollow cylindrical body having a seam extending between the ends thereof comprising the steps of forming a neck adjacent at least one of the ends of the cylindrical body wall by restraining a longitudinal section of said wall adjacent said at least one end from moving in a radial direction relative to the axis of the cylindrical body, increasing the diameter of a predetermined portion of the cylindrical body wall adjacent the neck thus formed, on the side of the neck away from the at least one end, and, prior to discontinuing said step of restraining a longitudinal section of said wall, turning at least one end of the hollow cylindrical body outwardly, thereby forming a flange thereon.
16. The method of claim 7 including the step of maintaining a predetermined portion of the cylindrical body wall between the outwardly directed flange and the increased diameter portion at its original diameter to form a neck in the reformed wall.
17. The method of reforming the wall of a hollow, straight cylindrical body having a first diameter comprising the steps of positioning the body between a female die and a male mandrel, exerting a force on the mandrel to force the body against the wall of the die, thereby progressively a. expanding a portion of the body into a uniform diameter central portion having a second diameter greater than said first diameter, b. maintaining a predetermined portion of the body at the first diameter to provide a neck on the body intermediate the expanded portion and one end of the body, and c. turning the one end of the body outwardly in a uniform manner to form a closure-receiving flange thereon.
18. The method of reforming the wall of a straight, uniform diameter, hollow cylindrical body into a reformed straight, uniform diameter, hollow cylindrical body, suitable to serve as a container, in which the reformed diameter is greater than the original uniform diameter comprising the steps of exerting a pressure on the interior of the body along a central portion thereof, thereby a. expanding it to the reformed diameter, b. maintaining relatively short predetermined portions at opposite ends of the central portion at the original uniform diameter to form necks thereon, and c. turning the portions of the body on the sides of the necks away from the central portion outwardly to form closure-receiving flanges thereon.
19. The method of reforming the wall of a hollow, non-flanged cylindrical body of uniform diameter comprising the steps of positioning the cylindrical body between a female die and a male mandrel, forming a neck adjacent at least one of the ends of the cylindrical body by exerting a force on said male mandrel, thereby a. restraining a longitudinal section of said cylindrical body adjacent said at least one end from moving in a radial direction relative to the axis of the cylindrical body, b. forming a radially outwardly directed flange at the at least one end of said cylindrical body adjacent said neck, and c. forcing substantially the remainder of the cylindrical body radially outwardly against the face of the female die.
20. The method of reforming the wall of a non-flanged hollow cylindrical body having a uniform diameter throughout the length of the wall thereof comprising the steps of positioning the body within a die and thereafter exerting a force within the body, thereby forming a neck adjacent at least one end of the wall of the cylindrical body by restraining a longitudinal section thereof adjacent the at least one end of the wall from moving in a radial direction relative to the body axis, forming a radially outwardly directed flange between the neCk thus formed and the adjacent end of the body wall by turning the portion of the body wall extending from the neck thus formed and the adjacent end of the body wall outwardly into a flange-receiving portion on the die, and expanding the cylindrical portion of he body wall on the opposite side of the neck from the flange by forcing it outwardly into contact with the die.
21. The method of claim 20 wherein said step of expanding the cylindrical portion of the body wall on the opposite side of the neck from the flange includes enlarging the diameter of at least a portion thereof to a dimension at least as large as that defined by a can closure end wall when the latter is subsequently mounted on the radially outwardly directed flange.
22. The method of claim 20 wherein said step of expanding the cylindrical portion of the body on the opposite side of the neck from the flange includes enlarging a portion of the cylindrical portion of the body against at least one area of distinctive diameter on the die to form a decorative arrangement on a predetermined portion of the body wall.
23. The method of claim 20 wherein said step of expanding the cylindrical portion of the body on the opposite side of the neck from the flange includes moving the cylindrical portion of the body against a preformed configuration on the surface of the die to reform the cylindrical portion of the body into a non-cylindrical configuration.
US884299A 1969-12-11 1969-12-11 Can bodies and method and apparatus for manufacture thereof Expired - Lifetime US3698337A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US88429969A 1969-12-11 1969-12-11

Publications (1)

Publication Number Publication Date
US3698337A true US3698337A (en) 1972-10-17

Family

ID=25384342

Family Applications (1)

Application Number Title Priority Date Filing Date
US884299A Expired - Lifetime US3698337A (en) 1969-12-11 1969-12-11 Can bodies and method and apparatus for manufacture thereof

Country Status (7)

Country Link
US (1) US3698337A (en)
CA (1) CA976039A (en)
CH (1) CH542669A (en)
DE (1) DE2061109A1 (en)
FR (1) FR2070806B1 (en)
GB (1) GB1337994A (en)
NL (1) NL7018152A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3807209A (en) * 1972-01-28 1974-04-30 Continental Can Co Can body shaper
US3951083A (en) * 1973-11-21 1976-04-20 Km-Engineering Ag Device for forming a smooth, i.e. in particular a crease- and undulation-free inwards convex flange-bearing edge-groove or -corrugation onto the open end of a metal hollow body or container formed in a press
US4446714A (en) * 1982-02-08 1984-05-08 Cvacho Daniel S Methods of necking-in and flanging tubular can bodies
US4953376A (en) * 1989-05-09 1990-09-04 Merlone John C Metal spinning process and apparatus and product made thereby
US5533373A (en) * 1994-09-21 1996-07-09 The Coca-Cola Company Method and apparatus for making shaped cans
US5755130A (en) * 1997-03-07 1998-05-26 American National Can Co. Method and punch for necking cans
US5794474A (en) * 1997-01-03 1998-08-18 Ball Corporation Method and apparatus for reshaping a container body
US5899104A (en) * 1995-02-16 1999-05-04 Thomassen & Drijver-Verblifa B.V. Method and apparatus for shaping a can
US5916317A (en) * 1996-01-04 1999-06-29 Ball Corporation Metal container body shaping/embossing
US6079244A (en) * 1996-01-04 2000-06-27 Ball Corporation Method and apparatus for reshaping a container body
US6151939A (en) * 1996-01-04 2000-11-28 Delaware Capital Formation, Inc. Can shaping apparatus
US6484550B2 (en) 2001-01-31 2002-11-26 Rexam Beverage Can Company Method and apparatus for necking the open end of a container
US6655764B2 (en) * 2001-02-01 2003-12-02 Nokia Mobile Phones Limited Method of manufacturing a cover for communication devices
EP1400291A2 (en) * 2000-02-10 2004-03-24 Envases (UK) Limited Deformation of thin walled bodies
WO2005061149A2 (en) * 2003-12-22 2005-07-07 Glud & Marstrand A/S A method and an installation for forming a metal container and a metal container for storing of foodstuff
US20060060601A1 (en) * 2004-09-21 2006-03-23 Kubacki Edward F Dry hydraulic can shaping
US20060156777A1 (en) * 2000-02-10 2006-07-20 Envases (Uk) Limited Deformation of thin walled bodies
EP1886740A1 (en) * 2005-05-17 2008-02-13 Toyo Seikan Kaisha, Ltd. Three-piece square can and method of manufacturing the same
US7380429B1 (en) * 2007-02-28 2008-06-03 Gm Global Technology Operations, Inc. Tubular local expansion apparatus and method of locally expanding tubular member for vehicles
US20080217823A1 (en) * 2007-03-07 2008-09-11 Ball Corporation Mold construction for a process and apparatus for manufacturing shaped containers
US20130306659A1 (en) * 2012-05-15 2013-11-21 Silgan Containers Llc Strengthened food container and method
US8978922B2 (en) 2012-05-15 2015-03-17 Silgan Containers Llc Strengthened food container and method
US20170182540A1 (en) * 2015-12-28 2017-06-29 Spirit Aerosystems, Inc. Apparatus and method for stabilizing a formable material while forming
CN107413982A (en) * 2017-08-03 2017-12-01 台山市万通罐机工业有限公司 A kind of swollen cone power set of flange
CN107598008A (en) * 2017-08-03 2018-01-19 台山市万通罐机工业有限公司 One kind tank processing unit (plant)
CN109746341A (en) * 2019-01-15 2019-05-14 上海佳田药用包装有限公司 One kind can make miniature laughable ampuliform Closing in die
GB2573402B (en) * 2017-06-08 2020-09-16 Envases(Uk) Ltd A Method for Forming an Embossed Container Body using Dies in a Necking Machine

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996020798A1 (en) * 1995-01-04 1996-07-11 Oberburg Engineering Ag Rotary turret with expansion tools
FR2731927B1 (en) * 1995-03-21 1997-06-13 Lorraine Laminage PROCESS FOR MANUFACTURING A SHAPED METAL BOX
FR2942597B1 (en) * 2009-02-27 2012-04-06 Sabatier DEVICE FOR CONFORMING THE OPENING EDGE OF A METAL CONTAINER

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2298132A (en) * 1940-10-11 1942-10-06 Irving Seidman Means for forming hollow structures
US2742873A (en) * 1951-05-19 1956-04-24 Williston Seamless Can Co Inc Apparatus for reforming seamless metal containers
BE536197A (en) * 1954-03-03 1900-01-01
NL291159A (en) * 1962-08-17
DE1281988B (en) * 1963-10-30 1968-11-07 Kopat Ges Fuer Konstruktion En Tool for producing a spatially curved frame from a tubular sheet metal ring

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3807209A (en) * 1972-01-28 1974-04-30 Continental Can Co Can body shaper
US3951083A (en) * 1973-11-21 1976-04-20 Km-Engineering Ag Device for forming a smooth, i.e. in particular a crease- and undulation-free inwards convex flange-bearing edge-groove or -corrugation onto the open end of a metal hollow body or container formed in a press
US4446714A (en) * 1982-02-08 1984-05-08 Cvacho Daniel S Methods of necking-in and flanging tubular can bodies
US4953376A (en) * 1989-05-09 1990-09-04 Merlone John C Metal spinning process and apparatus and product made thereby
US5533373A (en) * 1994-09-21 1996-07-09 The Coca-Cola Company Method and apparatus for making shaped cans
US5899104A (en) * 1995-02-16 1999-05-04 Thomassen & Drijver-Verblifa B.V. Method and apparatus for shaping a can
US5916317A (en) * 1996-01-04 1999-06-29 Ball Corporation Metal container body shaping/embossing
US6079244A (en) * 1996-01-04 2000-06-27 Ball Corporation Method and apparatus for reshaping a container body
US6151939A (en) * 1996-01-04 2000-11-28 Delaware Capital Formation, Inc. Can shaping apparatus
US6343496B1 (en) 1996-01-04 2002-02-05 Delaware Capital Formation, Ltd. Can shaping apparatus and method
US5794474A (en) * 1997-01-03 1998-08-18 Ball Corporation Method and apparatus for reshaping a container body
US5755130A (en) * 1997-03-07 1998-05-26 American National Can Co. Method and punch for necking cans
US20070214858A1 (en) * 2000-02-10 2007-09-20 Campo Santiago G Deformation of Thin Walled Bodies
US20100011828A1 (en) * 2000-02-10 2010-01-21 Santiago Garcia Campo Deformation of Thin Walled Bodies
EP1400291A2 (en) * 2000-02-10 2004-03-24 Envases (UK) Limited Deformation of thin walled bodies
EP1405683A2 (en) * 2000-02-10 2004-04-07 Envases (UK) Limited Deformation of thin walled bodies
EP1405683A3 (en) * 2000-02-10 2004-05-26 Envases (UK) Limited Deformation of thin walled bodies
EP1400291A3 (en) * 2000-02-10 2004-05-26 Envases (UK) Limited Deformation of thin walled bodies
US20110023567A1 (en) * 2000-02-10 2011-02-03 Santiago Garcia Campo Deformation of Thin Walled Bodies
US7398665B2 (en) 2000-02-10 2008-07-15 Envases (Uk) Limited Deformation of thin walled bodies
US8245556B2 (en) 2000-02-10 2012-08-21 Envases (Uk) Limited Deformation of thin walled bodies
US20060156777A1 (en) * 2000-02-10 2006-07-20 Envases (Uk) Limited Deformation of thin walled bodies
US20080202182A1 (en) * 2000-02-10 2008-08-28 Santiago Garcia Campo Deformation of Thin Walled Bodies
US8627698B2 (en) 2000-02-10 2014-01-14 Envases (Uk) Limited Deformation of thin walled bodies
EP1595616B1 (en) 2000-02-10 2012-06-06 Envases (UK) Limited Method and apparatus for deforming thin walled bodies
CZ306579B6 (en) * 2000-02-10 2017-03-15 Envases (Uk) Limited A device for transforming a thin-walled cylindrical vessel, and the method of its transformation on this device
US7395685B2 (en) 2000-02-10 2008-07-08 Envases (Uk) Limited Deformation of thin walled bodies
US6484550B2 (en) 2001-01-31 2002-11-26 Rexam Beverage Can Company Method and apparatus for necking the open end of a container
US6655764B2 (en) * 2001-02-01 2003-12-02 Nokia Mobile Phones Limited Method of manufacturing a cover for communication devices
WO2005061149A3 (en) * 2003-12-22 2006-06-15 Glud & Marstrand As A method and an installation for forming a metal container and a metal container for storing of foodstuff
WO2005061149A2 (en) * 2003-12-22 2005-07-07 Glud & Marstrand A/S A method and an installation for forming a metal container and a metal container for storing of foodstuff
US7296449B2 (en) * 2004-09-21 2007-11-20 Ball Corporation Dry hydraulic can shaping
US20060060601A1 (en) * 2004-09-21 2006-03-23 Kubacki Edward F Dry hydraulic can shaping
EP1886740A1 (en) * 2005-05-17 2008-02-13 Toyo Seikan Kaisha, Ltd. Three-piece square can and method of manufacturing the same
EP1886740A4 (en) * 2005-05-17 2012-09-26 Toyo Seikan Kaisha Ltd Three-piece square can and method of manufacturing the same
US7380429B1 (en) * 2007-02-28 2008-06-03 Gm Global Technology Operations, Inc. Tubular local expansion apparatus and method of locally expanding tubular member for vehicles
US20080217823A1 (en) * 2007-03-07 2008-09-11 Ball Corporation Mold construction for a process and apparatus for manufacturing shaped containers
US7568369B2 (en) * 2007-03-07 2009-08-04 Ball Corporation Mold construction for a process and apparatus for manufacturing shaped containers
US8978922B2 (en) 2012-05-15 2015-03-17 Silgan Containers Llc Strengthened food container and method
US9382034B2 (en) * 2012-05-15 2016-07-05 Silgan Containers Llc Strengthened food container and method
US20130306659A1 (en) * 2012-05-15 2013-11-21 Silgan Containers Llc Strengthened food container and method
US20170182540A1 (en) * 2015-12-28 2017-06-29 Spirit Aerosystems, Inc. Apparatus and method for stabilizing a formable material while forming
US9919352B2 (en) * 2015-12-28 2018-03-20 Spirit Aerosystems, Inc. Apparatus and method for stabilizing a formable material while forming
GB2573402B (en) * 2017-06-08 2020-09-16 Envases(Uk) Ltd A Method for Forming an Embossed Container Body using Dies in a Necking Machine
CN107413982A (en) * 2017-08-03 2017-12-01 台山市万通罐机工业有限公司 A kind of swollen cone power set of flange
CN107598008A (en) * 2017-08-03 2018-01-19 台山市万通罐机工业有限公司 One kind tank processing unit (plant)
CN107598008B (en) * 2017-08-03 2019-06-07 台山市万通罐机工业有限公司 A kind of tank processing unit (plant) processed
CN109746341A (en) * 2019-01-15 2019-05-14 上海佳田药用包装有限公司 One kind can make miniature laughable ampuliform Closing in die

Also Published As

Publication number Publication date
DE2061109A1 (en) 1971-06-16
FR2070806A1 (en) 1971-09-17
FR2070806B1 (en) 1974-03-22
CH542669A (en) 1973-10-15
CA976039A (en) 1975-10-14
NL7018152A (en) 1971-06-15
GB1337994A (en) 1973-11-21

Similar Documents

Publication Publication Date Title
US3698337A (en) Can bodies and method and apparatus for manufacture thereof
US3953994A (en) Can bodies and method and apparatus for manufacture thereof
US3964413A (en) Methods for necking-in sheet metal can bodies
US5394727A (en) Method of forming a metal container body
US4781047A (en) Controlled spin flow forming
US1698999A (en) Necking-in or reforming tubular bodies
US6038910A (en) Method and apparatus for forming tapered metal container bodies
US5557963A (en) Method and apparatus for necking a metal container and resultant container
US9573183B2 (en) Container, and selectively formed shell, and tooling and associated method for providing same
US4587826A (en) Container end panel forming method and apparatus
US4587825A (en) Shell reforming method and apparatus
US4261193A (en) Necked-in aerosol container-method of forming
US5713235A (en) Method and apparatus for die necking a metal container
US4854149A (en) Reducing the diameter of tubular bodies
US4574608A (en) Single station, in-die curling of can end closures
US3786667A (en) Apparatus for and method of making a nestable container
EA000657B1 (en) Hydroforming die assembly and method for pinch-free tube forming
CA2667452A1 (en) Spinning process for metallic packages forming with pre-flap forming and spinning equipment for metallic packages forming with pre-flap forming
GB2179284A (en) Apparatus for necking and flanging containers
US5590558A (en) Draw-processing of can bodies for sanitary can packs
US4914937A (en) Method for forming tall tapered containers
EP0215906A1 (en) Drawn can body method, apparatus and products.
CA2787546C (en) Can manufacture
JP2610958B2 (en) Method and apparatus for forming tall tapered containers
US4696177A (en) Method and apparatus for forming containers