US3696268A - Arrangement including an electronic flash tube - Google Patents
Arrangement including an electronic flash tube Download PDFInfo
- Publication number
- US3696268A US3696268A US86522A US3696268DA US3696268A US 3696268 A US3696268 A US 3696268A US 86522 A US86522 A US 86522A US 3696268D A US3696268D A US 3696268DA US 3696268 A US3696268 A US 3696268A
- Authority
- US
- United States
- Prior art keywords
- tube
- flash
- circuit
- voltage
- input terminals
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000003990 capacitor Substances 0.000 claims abstract description 75
- 239000004065 semiconductor Substances 0.000 claims abstract description 21
- 230000001960 triggered effect Effects 0.000 claims description 4
- 230000008878 coupling Effects 0.000 claims description 2
- 238000010168 coupling process Methods 0.000 claims description 2
- 238000005859 coupling reaction Methods 0.000 claims description 2
- 230000001747 exhibiting effect Effects 0.000 claims description 2
- 230000000694 effects Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B41/00—Circuit arrangements or apparatus for igniting or operating discharge lamps
- H05B41/14—Circuit arrangements
- H05B41/30—Circuit arrangements in which the lamp is fed by pulses, e.g. flash lamp
- H05B41/32—Circuit arrangements in which the lamp is fed by pulses, e.g. flash lamp for single flash operation
- H05B41/325—Circuit arrangements in which the lamp is fed by pulses, e.g. flash lamp for single flash operation by measuring the incident light
Definitions
- an auxiliary capacitor is used which receives a voltage larger than the supply voltage of the arrangement.
- this auxiliary capacitor used to extinguish a further controlled rectifier arranged in series with the tube.
- An object of the present invention is to provide a circuit arrangement in which less energy is to be derived from the supply arrangement of the flash tube and in which a satisfactory extinguishing procedure of the flash tube may still be achieved.
- an arrangement including an electronic flash tube and a controlled semiconductor rectifier for extinguishing said tube and a control circuit for said controlled semiconductor rectifier including a photosensitive member, all this combined in a manner such that the flash duration is controlled as a function of the brightness of an object exposed by the tube.
- the arrangement is intended to be supplied with a direct current and is characterized in that the positive input terminal is connected to the negative input terminal of the arrangement by means of a series arrangement of at least a second controlled semiconductor rectifier and the flash tube, the tube prior to flashing being shunted by a second series arrangement which includes at least one chargeable element and a further circuit element, said further circuit element being highly resistive at least during flashing and the first controlled semiconductor rectifier being connected to the junction of the chargeable element and the further circuit element, the other side of the last-mentioned controlled semiconductor rectifier being connected to the positive input terminal of the arrangement, and the voltage across the chargeable element being directed oppositely to and being larger than the voltage on the input terminals of the arrangement at least a moment after the commencement of a flash so that the chargeable element has a voltage by which the second controlled semiconductor rectifier can be extinguished when the first controlled semiconductor rectifier is rendered conducting.
- An advantage of an arrangement according to the invention is that no energy is derived from the supply device of the arrangement when the flash tube is extinguished.
- a further advantage is that no further energy is derived from the chargeable element after the second controlled rectifier has been extinguished.
- the chargeable element may be, for example, a small battery. This chargeable element may be alternatively formed by a capacitor which is first charged by a separate direct current source.
- the arrangement is fed by a previously charged main capacitor and the chargeable element in the second series circuit is an auxiliary capacitor.
- the side of the auxiliary capacitor remote from the further circuit element is connected to the positive input terminal of the arrangement by means of a third series arrangement composed of a diode and a resistor.
- An advantage of this preferred embodiment is that the auxiliary capacitor is first charged already to substantially the same voltage as that of the main capacitor, that is to say, before flashing takes place. When flashing takes place subsequently, the voltage on the main capacitor will decrease because this main capacitor supplies the flashing energy. When, after some time, the first controlled semiconductor rectifier is rendered conducting through the photosensitive member, the voltage on the auxiliary capacitor will be larger than that on the main capacitor. Then the voltage at the junction of the auxiliary capacitor and the further circuit element will be brought to a positive potential so that the auxiliary capacitor supplies a current having a direction opposite to the forward direction of the second controlled semiconductor rectifier which will be extinguished thereby.
- a cascade circuit of two or more thyristors may be used optionally.
- the further circuit element in the second series arrangement shunting the flash tube preferably comprises a resistor in series with a diode.
- the further circuit element is formed as a switching element
- this switching element is coupled to the shutter mechanism of a photo-camera in a manner such that this switching element is closed in the closed condition of the shutter and is open in the open condition of the shutter.
- auxiliary capacitor or any other chargeable element
- the terminals 1 and 2 are connected by means of a series arrangement of a thyristor 6, a coil 7 and an electronic flash tube 8.
- the junction of thyristor 6 and coil 7 is connected to the control electrode of afurther thyristor 9.
- the thyristor 9 together with a coil l'are connected in parallel with the series arrangement of thyristor6 and coil 7.
- the combination 6, 7, 9, 10 is referred to as a cascade circuit.
- the flash tube 8 is shunted by a series arrangement of a coil .11, a capacitor 12, a resistor 13 and a diode 14.
- the junction of capacitor 12 and resistor 13 is connected to a cathode of a controlled semiconductor rectifier (thyristor) 15.
- the anode of this thyristor 15 is connected to the input terminal 1 of the arrangement. Furthermore, there is provided a series arrangement of a diode 16 and a resistor 17. The latter. series arrangement is connected at one end to the terminal 1 of the arrangement and at the other end to a junction of coil 11 and capacitor 12.
- the reference numeral 18 denotes a terminal which is connected to the control electrode of thyristor 6 and the reference numeral 19 denotes a terminal which is connected to the junction of coil 7 and tube 8.
- the Figure shows a control electrode of the tube 8, which electrode is denoted by the reference numeral 20..
- the control circuit of thyristor 15 includes, inter alia: an energy source, for example, a battery 21.
- This energy source 21 is connected in series with a photosensitive element 22 and a variable resistor 23.
- the negative terminal of energy source 21 is connected through a switch 24 to the cathode of thyristor 15.
- the control electrode of thyristor 15 is connected to the variable resistor 23.
- a capacitor 25 and a variable resistor 26 are connected in parallel between the con trol electrode and the cathode of thyristor 15.
- the circuit described operates as follows: First the main capacitor 3 is charged up through the terminals 4, 5 via a device, not shown. Simultaneously, the auxiliary capacitor 12 is charged to the same voltage as that of the capacitor 3 through diode 16 and resistor 17. Subsequently, a voltage is applied between the points 18 and 19 and the trigger electrode of the tube 8 when a shutter mechanism of a photocamera is actuated. The shutter mechanism also closes the switch 24 in the con trol circuit of thyristor 15. The result of all this is that the thyristor 6 (and 9) begins to conduct and the flash tube 8 is ignited. In this case the main capacitor 3 will partially be discharged across the series circuit 1, 6, 7 (9, l0), 8, 2.
- the light emitted by the flash tube 8 is partly incident on an object to be photographed and is subsequently reflected and is incident on the photosensitive member 22 in the control circuit of thyristor 15.
- the thyristor 15 will be rendered conducting, namely because capacitor has received a given voltage.
- the junction between capacitor 12 and resistor 13 is brought to the positive potential of the input terminal 1.
- the capacitor 2, which has maintained. its initial voltage now has a higher voltage than that of the main capacitor 3.
- the result is that an opposite current starts to flow from capacitor 12 through coil 11, is distributed over the two parallel branches 7, 6, and 10, 9, respectively, and subsequently flows to thyristor 15 and then again to the other electrode of capacitor 12.
- this capacitor 12 had a higher initial voltage than the instantaneous value of the voltage of capacitor 3, this current is sufficient to extinguish the two thyristors 6 and 9. Consequently the flash tube 8 is extinguished.
- the capacitor 12 cannot be discharged through a different path and this is due to the presence of diode 14.
- the thyristors 6and 9 become non-conducting no further energy is derived from the main capacitor 3.
- At the most some current is derived from capacitor 3 so as to bring capacitor 12 to the same voltage as that on capacitor 3.
- a great advantage of this invention is that in the first place main capacitor 3 is not discharged to a zero value and in addition capacitor 12 need not always be discharged to a voltage of zero. This means that all energy may be utilized advantageously. All this may lead to a longer lifetime of the supply source of the flashing arrangement.
- the combination of resistor 13 and diode 14 might be replaced by a switching element (for example, a mechanical switch or a transistor) which switching element is operated (in a manner not further shown) simultaneously with the previously mentioned shutter mechanism of the photocamera and thus also simultaneously with the switch 24.
- a switching element for example, a mechanical switch or a transistor
- the switching element is closed when no flash photograph is taken (shutter closed) and is opened when the flash photograph is taken.
- the capacitor 12 In the closed condition of this switching element the capacitor 12 can be charged through this switching element.
- the auxiliary capacitor 12 In the open condition of this switching element the auxiliary capacitor 12 is prevented from being discharged through the flash tube 8.
- the main capacitor 3 had a capacitance of approximately 550 uuF and the capacitor 12 had a value of approximately 40 ,u.uF.
- the resistors 17 and 13 had values of 10 kOhms and kOhms, respectively.
- the inductors 7, 10 and 11 had values of 0.2 ,uuH, 0.2 rul-I and 60 ml-l, respectively.
- the initial voltage across the main capacitor 3 was approximately 350 Volts.
- An ignition control circuit for an electronic flash tube comprising, first and second input terminals adapted to be connected to a source of DC voltage, first and second semiconductor controlled rectifiers, means serially connecting said first controlled rectifier and the flash tube to said first and second input terminals, at least one chargeable elementand a further circuit impedance element serially connected in shunt with said flash tube prior to the tube flash, said further circuit element exhibiting a high impedance at least during the flash period of the tube, means connecting the second controlled rectifier between the first input terminal and the junction of the chargeable element and the further circuit element, a control circuit including a photosensitive member coupled to the control electrode of said second controlled rectifier, said photosensitive member being arranged to respond to the flash tube light reflected thereto by an object exposed to the tube flash such that the second controlled rectifier is triggered into conduction as a function of the brightness of said object thereby to extinguish the flash tube and thus limit the flash duration as a function of the object brightness, and means for applying an electric charge to said chargeable element of a polar
- An ignition circuit as claimed in claim 1 further comprising a main capacitor connected across the input terminals and directly charged by the DC voltage applied thereto, and wherein the chargeable element comprises an auxiliary capacitor and said charge applying means comprises a series arrangement of a diode and a resistor connected between the first input terminal and the side of the auxiliary capacitor that is remote from said further circuit element.
- An ignition circuit as claimed in claim 1 wherein the further circuit element comprises a resistor in series with a diode.
- An ignition circuit as claimed in claim 1 wherein the further circuit element comprises a switch which is coupled to the shutter mechanism of a photocamera in a manner such that said switch is closed in the closed condition of the shutter and is open in the open condition of the shutter.
- An ignition control circuit for a flash discharge tube comprising, a pair of input terminals adapted to be connected to a source of DC voltage, a supply capacitor connected across said input terminals so as to be charged to a given ignition voltage, a first controlled switching element connected in series with the flash tube across said input terminals, an auxiliary capacitor, impedance means, means connecting the auxiliary capacitor and the impedance means in a series circuit across the terminals of the flash tube, a second controlled switching element connectedin series with said impedance means across the input terminals, a photosensitive member arranged to respond to the flash tube light reflected thereto by an exposedobject, a control circuit including said photosensitive member coupled to a control electrode of the second switching element to trigger same into conduction at a time determined by the brightness of the exposed object thereby to extinguish the flash tube, and means for triggering said first switching element into conduction thereby to at least partially discharge the supply capacitor across the flash tube, said auxiliary capacitor being coupled to said first switching element to bias same into cut-off in response to conduction in
- An ignition circuit as claimed in claim 5 further comprising a charge circuit coupling the auxiliary capacitor to the input terminals so that the uxiliary capacitor is charge up independently of said irst controlled switching element and with a polarity opposed to that of the voltage on the supply capacitor.
- said charge circuit comprises a second diode connected in series with said auxiliary capacitor and said first diode across the input terminals and poled with the same polarity as the first diode.
- said impedance means comprises a diode poled so as to prevent the discharge of said auxiliary capacitor across the flash discharge tube.
Landscapes
- Discharge-Lamp Control Circuits And Pulse- Feed Circuits (AREA)
- Stroboscope Apparatuses (AREA)
- Exposure Control For Cameras (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL6916884.A NL160141C (nl) | 1969-11-08 | 1969-11-08 | Inrichting, voorzien van een elektronische flitslamp en een voedingscondensator daarvoor. |
Publications (1)
Publication Number | Publication Date |
---|---|
US3696268A true US3696268A (en) | 1972-10-03 |
Family
ID=19808347
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US86522A Expired - Lifetime US3696268A (en) | 1969-11-08 | 1970-11-03 | Arrangement including an electronic flash tube |
Country Status (9)
Country | Link |
---|---|
US (1) | US3696268A (nl) |
JP (1) | JPS4840420B1 (nl) |
AT (1) | AT324120B (nl) |
BE (1) | BE758644A (nl) |
CH (1) | CH527545A (nl) |
FR (1) | FR2069109A5 (nl) |
GB (1) | GB1328655A (nl) |
NL (1) | NL160141C (nl) |
SE (1) | SE354768B (nl) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3835351A (en) * | 1971-11-25 | 1974-09-10 | Rollei Werke Franke Heidecke | Photographic flash apparatus |
US3849703A (en) * | 1971-07-06 | 1974-11-19 | Shindengen Electric Mfg | Electronic flash apparatus |
US3940659A (en) * | 1973-01-31 | 1976-02-24 | Mitsubishi Denki Kabushiki Kaisha | Discharge device control circuit including a thyristor |
US20070146273A1 (en) * | 2005-12-28 | 2007-06-28 | Song Ryol You | Apparatus and method for driving liquid crystal display device |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2128703B2 (nl) * | 1968-02-13 | 1977-12-23 | Lumina Sprl | |
DE3041590C2 (de) * | 1979-11-07 | 1985-01-17 | Fuji Koeki Corp. | Schaltungsanordnung für ein Elektroblitzgerät |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3418904A (en) * | 1965-07-10 | 1968-12-31 | Agfa Gevaert Ag | Photographic camera with automatic electronic flash and daylight diaphragm control |
US3473084A (en) * | 1967-12-06 | 1969-10-14 | Automatic Power Inc | Constant intensity lamp control with an optical feedback control |
US3568582A (en) * | 1967-09-27 | 1971-03-09 | Konishiroku Photo Ind | Electronic shutter |
-
0
- BE BE758644D patent/BE758644A/xx unknown
-
1969
- 1969-11-08 NL NL6916884.A patent/NL160141C/nl active
-
1970
- 1970-11-03 US US86522A patent/US3696268A/en not_active Expired - Lifetime
- 1970-11-05 AT AT996370A patent/AT324120B/de not_active IP Right Cessation
- 1970-11-05 GB GB5271470A patent/GB1328655A/en not_active Expired
- 1970-11-05 SE SE14980/70A patent/SE354768B/xx unknown
- 1970-11-05 CH CH1643370A patent/CH527545A/de not_active IP Right Cessation
- 1970-11-05 JP JP45096924A patent/JPS4840420B1/ja active Pending
- 1970-11-06 FR FR7039956A patent/FR2069109A5/fr not_active Expired
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3418904A (en) * | 1965-07-10 | 1968-12-31 | Agfa Gevaert Ag | Photographic camera with automatic electronic flash and daylight diaphragm control |
US3568582A (en) * | 1967-09-27 | 1971-03-09 | Konishiroku Photo Ind | Electronic shutter |
US3473084A (en) * | 1967-12-06 | 1969-10-14 | Automatic Power Inc | Constant intensity lamp control with an optical feedback control |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3849703A (en) * | 1971-07-06 | 1974-11-19 | Shindengen Electric Mfg | Electronic flash apparatus |
US3835351A (en) * | 1971-11-25 | 1974-09-10 | Rollei Werke Franke Heidecke | Photographic flash apparatus |
US3940659A (en) * | 1973-01-31 | 1976-02-24 | Mitsubishi Denki Kabushiki Kaisha | Discharge device control circuit including a thyristor |
US20070146273A1 (en) * | 2005-12-28 | 2007-06-28 | Song Ryol You | Apparatus and method for driving liquid crystal display device |
US9837031B2 (en) * | 2005-12-28 | 2017-12-05 | Lg Display Co., Ltd. | Apparatus and method for driving liquid crystal display device |
Also Published As
Publication number | Publication date |
---|---|
BE758644A (fr) | 1971-05-06 |
JPS4840420B1 (nl) | 1973-11-30 |
AT324120B (de) | 1975-08-11 |
CH527545A (de) | 1972-08-31 |
GB1328655A (en) | 1973-08-30 |
FR2069109A5 (nl) | 1971-09-03 |
NL160141B (nl) | 1979-04-17 |
NL6916884A (nl) | 1971-05-11 |
DE2053429A1 (de) | 1971-05-19 |
NL160141C (nl) | 1979-09-17 |
SE354768B (nl) | 1973-03-19 |
DE2053429B2 (de) | 1977-05-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3375403A (en) | Electrical system for discharge device | |
US3517255A (en) | Flash apparatus with automatic light termination using light activated silicon controlled rectifier | |
US3814985A (en) | Electronic flash unit having protective circuit for flash terminating switch | |
US3541387A (en) | Control system for terminating the discharge of a flash lamp | |
US3696268A (en) | Arrangement including an electronic flash tube | |
US3912968A (en) | Flash tube discharge-producing circuit | |
US3716753A (en) | Arrangement including an electronic flash tube | |
US3896333A (en) | Electronic flash device | |
US3740610A (en) | Switch arrangement including a thyristor | |
US3864600A (en) | Electronic flash apparatus | |
US3781602A (en) | Electronic flash circuits | |
US4330737A (en) | Electronic flash system | |
US3743859A (en) | Electric switching device including thyristors | |
US3979639A (en) | Correct exposure annunciator circuit | |
US3577174A (en) | Circuit for starting and maintaining a discharge through a gas discharge tube | |
US4384776A (en) | Charge detection display type electronic flash | |
US3646865A (en) | Electronic flashlamp control network | |
US3650189A (en) | Low energy level electronic flash modulator | |
US4085353A (en) | Remote sensor trigger circuit | |
US3497768A (en) | One shot operation circuit for a gas discharge lamp | |
US3940659A (en) | Discharge device control circuit including a thyristor | |
JPS6230411B2 (nl) | ||
US3790847A (en) | Arrangement provided with an electronic flash bulb | |
US3502943A (en) | Timing circuitry for a flash camera | |
US4095141A (en) | Electronic flash device |