US3688555A - Method of and an apparatus for determining an optimum schedule of operation for reversible hot rolling mills - Google Patents
Method of and an apparatus for determining an optimum schedule of operation for reversible hot rolling mills Download PDFInfo
- Publication number
- US3688555A US3688555A US851622A US3688555DA US3688555A US 3688555 A US3688555 A US 3688555A US 851622 A US851622 A US 851622A US 3688555D A US3688555D A US 3688555DA US 3688555 A US3688555 A US 3688555A
- Authority
- US
- United States
- Prior art keywords
- rolling
- schedule
- passes
- deformation
- initial
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 34
- 238000005098 hot rolling Methods 0.000 title claims abstract description 9
- 230000002441 reversible effect Effects 0.000 title claims abstract description 9
- 238000005096 rolling process Methods 0.000 claims abstract description 163
- 239000000463 material Substances 0.000 claims abstract description 60
- 238000002791 soaking Methods 0.000 claims description 14
- 238000004904 shortening Methods 0.000 claims description 3
- 230000001419 dependent effect Effects 0.000 claims 1
- 230000009467 reduction Effects 0.000 description 19
- 238000010586 diagram Methods 0.000 description 10
- 230000008569 process Effects 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 235000003625 Acrocomia mexicana Nutrition 0.000 description 1
- 244000202285 Acrocomia mexicana Species 0.000 description 1
- 241001251240 Marmax Species 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
- B21B37/46—Roll speed or drive motor control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/02—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling heavy work, e.g. ingots, slabs, blooms, or billets, in which the cross-sectional form is unimportant ; Rolling combined with forging or pressing
- B21B1/06—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling heavy work, e.g. ingots, slabs, blooms, or billets, in which the cross-sectional form is unimportant ; Rolling combined with forging or pressing in a non-continuous process, e.g. triplet mill, reversing mill
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B13/00—Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories
- B21B13/08—Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories with differently-directed roll axes, e.g. for the so-called "universal" rolling process
- B21B13/12—Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories with differently-directed roll axes, e.g. for the so-called "universal" rolling process axes being arranged in different planes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B2265/00—Forming parameters
- B21B2265/22—Pass schedule
Definitions
- ABSTRACT A method of and an apparatus for determining such an optimum schedule of operation as to provide a shortest total rolling time for reversible hot rolling mills, wherein an initial schedule of operation for initial passes is determined based upon the properties of a material to be rolled, rolling conditions and standard resistance to deformation of the material, and based upon the actual resistance to deformation obtained in the initial passes, an optimum schedule of operation for subsequent passes is determined so that it provides a shortest total rolling time.
- the sole schedule must be prepared to be applicable in spite of any possible deviation of the soaking temperature of ingots.
- This fact means that the driving motor will usually be operated with an excess i.e., spare, capacity, and therefore the rolling schedule can not be said to be an optimum one for obtaining the largest rolling capacity for a particular soaking temperature of an ingot.
- Such deviations of the schedule from the optimum condition have been compensated by proper modifications of the schedule based upon the experiences of skilled operators.
- the schedule when a rolling schedule is determined by a computer as in this invention, the schedule must be so determined as to provide the largest rolling capacity for a particular soaking temperature of an ingot to be rolled.
- the object of this invention is to provide a method of searching for and determining a rolling schedule which enables one to obtain the largest rolling capacity for a particular nature and soaking temperature of an ingot which will satisfy various limitations regarding ingots and a rolling plant as well as the finished shapes and dimensions of slabs.
- this invention has a first feature that an initial rolling schedule for an initial several passes is determined prior to the operation based upon an estimated soaking temperature of an ingot (or resistance to deformation of an ingot), the initial passes are performed according to the initial schedule, the rolling load or motor torque at a roll stand is measured during the initial passes, and a rolling schedule for the subsequent passes is determined based upon the soaking temperature or resistance to deformation of the ingot computed from the measured roll load or motor torque.
- a second feature of this invention is that a plurality of rolling schedules are computed by varying the amount of such a portion of an available motor torque that is available as a rolling torque thereby to determine an optimum schedule which provides a shortest rolling time.
- an optimum rolling schedule which provides a shortest total rolling time is determined by such a process that a plurality of schedules of rolling operation are computed by gradually decreasing the limit of available rolling torque starting from the maximum value of the available motor torque, and a schedule which. had been obtained just before the number of total rolling passes was increased or a schedule which was obtained at last when the number of total rolling passes was not increased even when the limit of available rolling torque has been decreased to a predetermined lower limit is adopted as an optimum schedule which provides a shortest total rolling time.
- FIG. la is a diagrammatic illustration of a control system for a universal blooming mill
- FIG. 1b is a diagram showing a pattern of a speed instruction for a horizontal roll stand in FIG. la;
- FIG. 2 is a block diagram for computing an initial schedule of rolling operation
- FIG. 3 is a diagram showing the behavior of the resistance to deformation different of ingots
- FIG. 4 is a block diagram for computing subsequent schedules of rolling operation
- FIG. 5 is a block diagram showing the process of determining a schedule of rolling operation for a pass at a roll stand
- FIG. 6 is a diagram showing a relation between the speed-torque performance of an electric motor and the limit of rolling torque
- FIG. 7 is a diagram showing the method of obtaining a schedule for a shortest total rolling time
- FIG. 8 is a diagram showing the effect of the resistance to deformation to a shift of the optimum schedule
- FIG. 9 is a diagram showing the effect of the limit of reduction rate to a shift of the optimum schedule.
- FIG. 10 is a diagrammatic illustration showing the details of device for determining an optimum subsequent schedule.
- a blooming mill is shown diagrammatically with its ingot receiving table 1, slab delivery table 2, a pair of vertical rolls 3, and a pair of horizontal rolls 4, wherein a material 5 is being rolled.
- the vertical and horizontal roll pairs are respectively driven by driving means designated by reference numerals 6 and 7, which are controlled by speed instruction signals N and N respectively, wherein the suffix i shows the order of pass. Since it is required that the ratio of speeds of the vertical and horizontal rolls is kept at a determined value DCi, which is called the draft compensating rate, the speed instruction signal N for the vertical rolls is computed from DCi and N as N DCi- N by a multiplier 8.
- the draft compensating rate is expressed by the following general formula:
- DCi K Fl/AMI wherein K is a constant, A is the cross-sectional area of the material at a section perpendicular to the longitudinal axis of the material when positioned between the vertical and horizontal rolls during the i-th pass, and A is the cross sectional area of the material after the completion of the i-th passage.
- the roll openings of the vertical and horizontal roll pairs 3 and 4 are adjusted by opening adjusting means 14 and 15, respectively, which are subjected to opening instruction signals S and S respectively.
- Signals of S S N and DCi are supplied from an automatic operation control means 400.
- the speed instruction signal N for the horizontal roll pairs 4 is generally so controlled that the speed diagram of the roll pair takes such a pattern as shown in FIG. 1b.
- the roll pair is accelerated up to an entry speed Net, and at this speed, a material is entered into the pair of rolls.
- the rolls are accelerated up to a maximum speed N with an acceleration AC1, which can be optionally determined or selected from several predetermined values.
- the speed of the rolls is then decreased at a proper time determined by the automatic operation control means 400 to a delivery speed Ndl, and at this speed, the material is discharged from the roll pair.
- the opening adjusting means 14 and 15 receive the next instruction signals S l and S I, respectively, and after the adjustment of the roll openings, the (i+l )-th pass is started by the automatic operation control means 400.
- the automatic operation of the blooming mill is continued under the control of the control means 400, while data necessary for the automatic operation such as S S N N ACi, DCi (called hereinunder PSi in general term) are provided by a rolling schedule determining means 300.
- the means 309 also provides an automatic operation starting or stopping signal SP to the means 400.
- the gist of this invention is, therefore, to provide the above-mentioned rolling schedule determining means 309 which provides an optimum schedule PSi to the automatic operation control means 460 for obtaining the largest rolling capacity of a blooming mill.
- the means 100 provides the automatic operation starting signal SP and the initial schedule PSi' to the means 400 to start the rolling operation of the initial passes.
- the initial schedule PSi' is also supplied to an initial schedule storing means 1 16 and is stored therein.
- Reference numeral 150 designates an actual data collecting means to which are fed actual opening Sy of the vertical roll pair 3 obtained from a detector 16, actual opening S of the horizontal roll pair 4 obtained from a detector 17, load of the vertical rolls P obtained from a detector 18, load of the horizontal rolls P obtained from a detector 19, torque signal of the vertical rolls r obtained from a detector 20 and torque signal of the horizontal rolls 1 obtained from a detector 21, the last two signals being used as a substitute for the load signals P P
- the load detectors l8, 19 are not installed the torques detected by the detectors 2%, 21 are used as a substitute for the load signals.
- the actual data collecting means 150 supplies the collected data to a data storing means 160, and when the actual data of a predetermined k-th passage (2 g k i j M, wherein j is the number of the initial rolling passes, and M is a number of the total passes.) has been collected, dispatches a signal SR for demanding calculation of the schedule of the subsequent passes to a schedule determining means 200.
- the means 200 calculates and determines an optimum rolling schedule PSi" for the subsequent passes comprising the 0+1 )-th to M-th passes based upon the actual data of the initial passes stored in the data storing means 160, the data stored in the initial schedule storing means 110 and other various rolling specification CD, wherein as the actual data are not obtained beyond the k-th pass because of k j, the data of the (k+l)-th to j-th passes are assumed to be equal to the predetermined values stored in the means 110.
- the optimum rolling schedule PSi" is supplied to the automatic operation control means 400 for automatic operation of the mill.
- the initial schedule determining means is supplied with data A which are known and relate to constant properties of the ingot, data B regarding rolling conditions, data C regarding various limitational conditions and data Ss regarding standard resistance to deformation of the ingot at a standard soaking temperature, as shown in FIG. 2, to obtain a schedule PSi for the initial passes.
- data A which are known and relate to constant properties of the ingot
- data B regarding rolling conditions
- data C regarding various limitational conditions
- data Ss regarding standard resistance to deformation of the ingot at a standard soaking temperature, as shown in FIG. 2
- the data C regarding various limitational conditions include those for the passes, initial passes and subsequent passes.
- the initial schedule determining means 100 determines a set of initial schedule for the first and second, or in some cases the first, second and third passes, which accomplishes a largest reduction rate within the limitation conditions imposed by the above-mentioned data, without considering the rolling efficiency at the instant.
- the initial schedule PSi' thus obtained is supplied to the automatic operation control means 400 together with the rolling operation starting signal SP as shown in H6. 2, whereupon the initial passes of the rolling operation are started.
- the object of the initial passes (generally the first to j-th passes) is to obtain actual rollin g data for determining the actual resistance to deformation of an ingot, which is necessary to determine an optimum rolling schedule for the subsequent passes.
- the main object of the rolling is to remove scales and a taper of the ingot which generally has a shape of a truncated pyramid, and therefore, no highly reliable data for determining the resistance to deformation can be obtained in the first pass.
- the second pass wherein the ingot will already have a regular shape with little scale, the data obtained are usually highly reliable.
- cm is a curve of standard resistance to deformation, and is determined to be, for example, the curve (b) in F IG. 3.
- e is a modification factor for the kind of steel. If the actual resistance to deformation S in the second pass is known from Formula (1) and the rate of elongation E2 in the second pass is obtained, cm can be calculated as follows:
- a schedule for the subsequent passes is then determined based upon the resistance to deformation calculated from Formula (3) to give the shortest rolling time.
- the procedure is shown in FIG. 4.
- the subsequent schedule determining means 200 is supplied with data A regarding the properties of the ingot such as dimensions, weight, materiahetc.
- data B regarding rolling conditions such as'hot finished dimensions determined from cold finished dimensions and margins for safety, shrinkage and scarf
- data C regarding various limitational conditions such as limit of roll load, limit of motor torque, various limits of reduction rate such as limit of entry reduction rate, limit of reduction rate for preventing cracking of material determined from material and soaking temperature, and limit of reduction rate applied to later finishing passes .for finishing the material to required dimensions, resistance to deformation S, calculated from Formula (3), and actual roll opening F in the initial passes.
- the means 200 firstestimates the dimen- .sions of the material at the time of starting calculation of rolling schedule for the subsequent passes, and determines the rolling schedule according to the method as described hereinunder.
- the amount of reduction is determined in a manner that it is within the various limits of reduction rate as mentioned in the above, and that the rolling torque and the rolling load are also restricted within their limit.
- values of the reduction rate, rolling torque, rolling load and outlet dimensions of the material are determined, and the outlet dimensions are always checked if they have approached desired target values. Then, if the outlet dimensions have approached the desired target values, a final pass is so determined that the target dimensions are strictly obtained. Thus, a schedule for the subsequent passes is determined.
- the schedule is the optimum one for obtaining the highest rolling capacity.
- the rolling torque limit is the only quantity which is left to free selection by the determiner of the schedule, while other limitational quantities are restricted from some objective conditions.
- the torque performance of a direct current motor for driving a blooming mill is generally expressed as shown in FIG. 6 by a curve JKL with respect to the motor speed. Therefore, a problem is that how much per cent of the motor torque is to be used as the rolling torque with the rest per cent being used as the accelerating torque, and this allocation has a great in-' fluence on the rolling capacity. If, as an extreme example, the rolling torque is selected to be the full per cent of the motor torque limit or W Oil, a large reduction rate can be obtained, whereby the number of passes is decreased, while on the other hand, since the acceleration torque is zero, the entry speed of the material which is generally low can not be accelerated, and therefore, the rolling time of one pass is very long, resulting in a long total rolling time. On the contrary, if
- the rolling torque is selected to be very small, a large torque is available as the accelerating torque, whereby the rolling speed is much increased with a natural shortening of a rolling time.
- the amount of reduction by one pass is small, the number of passes increases, thus resulting also in an increase of the total roiling time.
- the abscissa represents the rolling torque limit, which is to be smaller than 225 percent of a normal motor torque, and the ordinate represents the total rolling time.
- the numerals in the Figure show the numbers of passes.
- the value of the rolling torque limit which provides the shortest rolling time is transferred as A, B, C in FIG. 8 according to changes of the resistance to deformation of steel materials.
- curve a shows a change of the total rolling time of a material of a standard resistance to deformation and provides the optimum point A.
- curve b comes under the case, wherein point B is the optimum point.
- point C of curve c becomes the optimum point.
- an optimum rolling schedule which accomplishes a shortest rolling time differs as the resistance to deformation and/or the limit of reduction ratechanges.
- an optimum schedule which accomplishes a shortest rolling time can be obtained by calculating a series of rolling schedules with gradually lowered rolling torque limits starting from the maximum torque allowable for a driving motor and selecting a schedule which had been calculated just before the number of passes was increased in the calculating process.
- this calculating process if each amount of reduction of the rolling torque limit-is selected to be very small, the strict optimum points such as shown in F IGS. 7 to 9 can be obtained.
- the number of times of calculation increases and it requires a long time for the calculation.
- the determination of a schedule for the subsequent passes based upon the actual resistance to deformation of an ingot detected during the initial passes must be finished by the end of the initial passes and therefore, the number of times of calculation which is allowable during the initial passes or the amount of successive diminution of the rolling torque limit is determined from the above-mentioned requirement. According to our experiences, it is found to be preferable to select the amount of reduction of the rolling torque limit at the horizontal roll stand to be 15 to 20 percent of the maximum motor torque, which generally results in the increase of the number of passes within three or four times of calculation. These calculations can generally be finished within about 2 seconds, though it largely depends upon the processing machines.
- the first and second passes were taken as the initial passes, and in the beginning an initial rolling schedule for these two passes was determined based upon a standard value of the resistance to deformation. Then, actual rolling operation of an ingot was performed according to the initial schedule, and upon detecting the actual resistance to deformation of the ingot from the actual rolling load at the horizontal roll stand and other data obtained during the second pass, a schedule for the third and subsequent passes was determined according to the above-mentioned method. As the results of this method, two passes were reduced as compared to a conventional schedule for manual operation, and this corresponds to a saving of about 10 seconds in the total roiling time.
- the rolling operation of the third pass was started after the optimum schedule for the third and subsequent passes had been determined, and to wait the determination of the schedule, there occurred an idle time of l to 2 seconds. This idle time of course abates the effect of this method of reducing the total rolling time.
- the first three passes were taken as the initial passes, and the initial schedule therefor was determined prior to the starting of rolling operation.
- the actual resistance to deformation of an ingot was detected from the data obtained during the second pass as before, and based upon the actual resistance to deformationed thus obtained an optimum schedule for the fourth and subsequent passes was determined in the same manner as before.
- the schedule for the fourth and subsequent passes is only to be determined by the end of the third pass, and therefore, there are about six seconds available for the calculation, in which the determination of schedule can be sufficiently completed.
- the first to j-th passes are taken as the initial passes and the means 200 is adapted to determine the schedule for the (j+l)-th and subsequent passes.
- the means 150 dispatches the signal SR for demanding the calculation of the subsequent schedule to the means 200, or in more detail, actual material section watching means 202.
- the means 202 receives actual data F of roll openings of the first to k-th passes or S S (1' 1 z k) from the data storing means 160 and calculates sectional dimensions thickness and width) 81-1,, of the material at the entrance of the (k+l)-th pass.
- the means 200 receives the predetermined data F of roll opening or S S m (i 1 z j) from the initial schedule storing means 110 and calculates sectional dimensions BI-I of the material at the entrance of the (j 1)-th pass, the calculated sectional dimensions being supplied to a schedule calculating means 218.
- the rate of elongation E of the material at the entrance of the k-th pass is calculated from a formula E A IA where A, is sectional area of the ingot and A is sectional area of the material at the outlet of the (k1)-th pass.
- This E and the draft Ah at the horizontal or vertical roll stand to which the material is first introduced in the k-th pass are supplied as a signal 203 to a deformation resistance determining means 204.
- the means 204 is further suppled with the rolling load PK (means P or Pl/k) at the horizontal or vertical roll stand to which the material is first introduced in the k-th pass and the data A regarding the properties of the ingot, whereby the means 204 determines Formula (3) for estimating the subsequent resistance to deformation Sm of the material.
- the obtained Sm is supplied to the schedule calculating means 218.
- the means 204 also dispatches an operation starting signal 205 to a rolling torque limit setting means 206.
- the means 206 is supplied with the data A regarding the properties of the ingot and the data C comprising limits of motor maximum torque r r and first sets a trial frequency counter 208 at 1 via a signal 207 and at the same time supplies maximum trial frequency L to a judging means 226. Furthermore, the means 206 supplies amounts of successive diminution of rolling torque limit ATV, A7,, to a successive diminution amount storing means 210 as a signal 209. ATV and AT are selected to be one per a few of the maximum accelerating torque of the vertical and horizontal roll stands, respectively. The means 206 also supplies nominal values of the motor torque limits r' T (These values do not necessarily coincide with 1 r to a motor torque limit storing means 212 as a signal 21 1.
- Means collectively shown by numeral 220 functions as a rolling torque limit determining means, wherein a means 214 is a multiplier and means 216 is an adder.
- the output 217 of the means 220 or the rolling torque limits *r 7 are expressed by using the content L of the trial frequency counter 208 as follows:
- the draft compensating rates are really determined by the schedule calculating means 218, but since the values are not yet determined at this stage, they are assumed, and if the actual values of DC, are determined by the means 218 are not much different from the assumed values, corrections by the actual values are omitted.
- formula (5) means the decreasing of rolling torque by every step Ar A rH if it is a horizontal roll and ATV if it is a vertical roll) in order to obtain the value L.
- L'DCATV or L- A'TH orders an accelerating torque. Usually the accelerating torque should be determined within an optimum amount and so, L max is determined by following formula:
- Lmax [1-A max/Ar] where 'rA max is an accelerating torque to give the maximum acceleration.
- the schedule calculating means 218 is supplied with the above-mentioned signal 217 and other data such as 3H,, S A, B and C by some conventional method, and calculates the rolling schedules for the (j-l-l )-th to last (or M-th) passes, or the roll openings S S velocities N N N draft compensating rate DC, and other data which are required for the automatic operation of the mill, the calculated data being stored in a first schedule storing means 222.
- a rolling torque limit which is the only selected value shown by FIG. 5
- the drafts of each passes are determined so as to satisfy the various limits and the roll outlet dimensions are checked if they are equal to the target dimensions and then the last pass number M is determined.
- the means 218 dispatches the last pass number M to an optimum schedule judging means 226, whereby the means 226 is started.
- the output 217 of the rolling torque limit determining means is lOlOSZ Ol93 reduced according to Formula and based upon the new reduced rolling torque limits, a new schedule is calculated by the means 218.
- the new calculated schedule is stored in the first schedule storing means 222, and a new pass number M is supplied to the optimum schedule judging means 226.
- the means 226 dispatches a signal 232 to a transfer gate 236 to transfer the schedule stored in the means 222 to the automatic operation control means 400.
- this invention provides a method of and an apparatus for determining an optimum rolling schedule, which is generally applicable to reversible hot rolling mills and improves the rolling efficiencies thereof.
- rolling schedule used in the above are not only included the roll opening but also the entry speed, maximum rolling speed, delivery speed, acceleration and draft compensating rate of a material and all other data required for the control of rolling mills, and therefore, it may be called the schedule of operation. If such a schedule of operation is given to an automatic operation control means of a rolling mill, a fully automated operation of the rolling mill is performed with the highest efficiency thereof.
- a method of determining an optimum schedule of operation for reversible hot rolling mills comprising the steps of determining an initial schedule of operation for initial passes based upon the properties of a material to he rolled, rolling conditions and standard resistance to deformation of material; performing the rolling operation of the initial passes; obtaining the actual resistance to deformation from the actual rolling load or torque and roll opening in the initial passes; and determining such an optimum schedule of operation for subsequent passes that the optimum schedule provides a shortest total rolling time said optimum schedule being determined in a manner that a series of schedules are calculated by successively reducing rolling torque limit by a predetermined amount starting from a maximum motor torque of the roll and a schedule which was calculated just before a number of passes is increased is determined to be the optimum schedule.
- An apparatus for determining an optimum schedule of operation for reversible hot rolling mills comprising means for determining an initial schedule of operation for initial passes based upon the properties of a material to be rolled, rolling conditions and standard resistance to deformation of the material; means for measuring the actual rolling load or torque and roll opening in the initial passes; means for calculating the actual resistance to deformation of the material from the actual rolling load or torque and roll opening; and means for determining such an optimum schedule of operation for subsequent passes that the optimum schedule provides a shortest total rolling time said means for determining the optimum schedule of operation for the subsequent passes including means for calculating a series of schedules by successively reducing rolling torque limit by a predetermined amount starting from a maximum motor torque of the roll and means for checking the number of passes in each one of the series of schedules to select the optimum schedule which was calculated just before the number of passes is increased.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Control Of Metal Rolling (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP44009407A JPS4918910B1 (enrdf_load_stackoverflow) | 1969-02-08 | 1969-02-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3688555A true US3688555A (en) | 1972-09-05 |
Family
ID=11719543
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US851622A Expired - Lifetime US3688555A (en) | 1969-02-08 | 1969-08-20 | Method of and an apparatus for determining an optimum schedule of operation for reversible hot rolling mills |
Country Status (3)
Country | Link |
---|---|
US (1) | US3688555A (enrdf_load_stackoverflow) |
JP (1) | JPS4918910B1 (enrdf_load_stackoverflow) |
GB (1) | GB1271140A (enrdf_load_stackoverflow) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3927545A (en) * | 1974-04-17 | 1975-12-23 | Hitachi Ltd | Rolling method for rolling mills |
DE3236877A1 (de) * | 1981-10-05 | 1983-07-07 | Kawasaki Steel Corp., Kobe, Hyogo | Verfahren zum steuern des walzdurchsatzes beim warmwalzen |
GB2193348A (en) * | 1986-07-01 | 1988-02-03 | Sendzimir Inc T | Rolling mill management system |
WO2000038853A1 (de) * | 1998-12-28 | 2000-07-06 | Siemens Aktiengesellschaft | Verfahren und einrichtung zum walzen von metallband |
CN116511256A (zh) * | 2023-05-16 | 2023-08-01 | 中铝瑞闽股份有限公司 | 一种冷轧机操作数据采样及评估方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3104566A (en) * | 1958-10-16 | 1963-09-24 | Square D Co | Rolling mill control |
US3177346A (en) * | 1959-11-06 | 1965-04-06 | United Steel Companies Ltd | Apparatus for use in controlling a rolling mill |
US3253438A (en) * | 1962-09-21 | 1966-05-31 | Westinghouse Electric Corp | Automatic strip gauge control for a rolling mill |
US3289444A (en) * | 1962-09-28 | 1966-12-06 | Hitachi Ltd | Program control device for rolling mills |
US3332263A (en) * | 1963-12-10 | 1967-07-25 | Gen Electric | Computer control system for metals rolling mill |
US3543548A (en) * | 1968-08-27 | 1970-12-01 | Westinghouse Electric Corp | Method and computer control system for operating a slabbing mill |
-
1969
- 1969-02-08 JP JP44009407A patent/JPS4918910B1/ja active Pending
- 1969-08-20 US US851622A patent/US3688555A/en not_active Expired - Lifetime
- 1969-08-21 GB GB41719/69D patent/GB1271140A/en not_active Expired
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3104566A (en) * | 1958-10-16 | 1963-09-24 | Square D Co | Rolling mill control |
US3177346A (en) * | 1959-11-06 | 1965-04-06 | United Steel Companies Ltd | Apparatus for use in controlling a rolling mill |
US3253438A (en) * | 1962-09-21 | 1966-05-31 | Westinghouse Electric Corp | Automatic strip gauge control for a rolling mill |
US3289444A (en) * | 1962-09-28 | 1966-12-06 | Hitachi Ltd | Program control device for rolling mills |
US3332263A (en) * | 1963-12-10 | 1967-07-25 | Gen Electric | Computer control system for metals rolling mill |
US3543548A (en) * | 1968-08-27 | 1970-12-01 | Westinghouse Electric Corp | Method and computer control system for operating a slabbing mill |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3927545A (en) * | 1974-04-17 | 1975-12-23 | Hitachi Ltd | Rolling method for rolling mills |
DE3236877A1 (de) * | 1981-10-05 | 1983-07-07 | Kawasaki Steel Corp., Kobe, Hyogo | Verfahren zum steuern des walzdurchsatzes beim warmwalzen |
GB2193348A (en) * | 1986-07-01 | 1988-02-03 | Sendzimir Inc T | Rolling mill management system |
GB2193348B (en) * | 1986-07-01 | 1990-07-11 | Sendzimir Inc T | Rolling mill management system |
WO2000038853A1 (de) * | 1998-12-28 | 2000-07-06 | Siemens Aktiengesellschaft | Verfahren und einrichtung zum walzen von metallband |
CN116511256A (zh) * | 2023-05-16 | 2023-08-01 | 中铝瑞闽股份有限公司 | 一种冷轧机操作数据采样及评估方法 |
Also Published As
Publication number | Publication date |
---|---|
JPS4918910B1 (enrdf_load_stackoverflow) | 1974-05-14 |
GB1271140A (en) | 1972-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101934292A (zh) | 热轧带钢粗轧机组镰刀弯和楔形自动控制方法 | |
CN111346929A (zh) | 防止带钢断带堆钢的方法、装置、冷轧机组及存储介质 | |
DE69404527T2 (de) | Walzwerk und Verfahren | |
US4506197A (en) | Method of controlling mill motors speeds in a cold tandem mill | |
US3592031A (en) | Automatic control of rolling mills | |
US3688555A (en) | Method of and an apparatus for determining an optimum schedule of operation for reversible hot rolling mills | |
US3940598A (en) | Method and apparatus for controlling roll gaps of cold rolling mills | |
EP1833624B1 (de) | Betriebsverfahren für eine walzstrasse und hiermit korrespondierende einrichtungen | |
US3733866A (en) | Method of controlling a continuous hot rolling mill | |
US3852983A (en) | Work strip gauge change during rolling in a tandem rolling mill | |
US4137741A (en) | Workpiece shape control | |
CA1156329A (en) | Setting of a multi-stand rolling-mill train for the cold rolling of metal strips | |
US4063438A (en) | Method of controlling tandem rolling mills | |
US4691546A (en) | Rolling mill control for tandem rolling | |
JP3743253B2 (ja) | 調質圧延機の伸び率制御方法 | |
KR100354209B1 (ko) | 연연속 압연에서의 설정치 변경방법_ | |
US4665729A (en) | Thickness control method and system for a single-stand/multi-pass rolling mill | |
KR20020053926A (ko) | 일정한 연신율로 연신하는조질압연기 | |
US3766762A (en) | Control method of tension in rolling mills (2) | |
RU2717251C1 (ru) | Способ прокатки рельсов | |
JPH04262815A (ja) | 圧延機のロールギャップ設定方法 | |
JPH069702B2 (ja) | 熱間連続圧延機の板厚制御方法 | |
KR100328930B1 (ko) | 열간압연판선단부의두께및판폭불량발생방지를위한압연방법 | |
KR100325334B1 (ko) | 연속냉간압연에서의판두께제어방법 | |
JPH0241367B2 (enrdf_load_stackoverflow) |