US3685731A - Large capacity steam trap - Google Patents

Large capacity steam trap Download PDF

Info

Publication number
US3685731A
US3685731A US95235A US3685731DA US3685731A US 3685731 A US3685731 A US 3685731A US 95235 A US95235 A US 95235A US 3685731D A US3685731D A US 3685731DA US 3685731 A US3685731 A US 3685731A
Authority
US
United States
Prior art keywords
valve
opening
sump
tubular box
valve seat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US95235A
Inventor
Katsuji Fujiwara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3685731A publication Critical patent/US3685731A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16TSTEAM TRAPS OR LIKE APPARATUS FOR DRAINING-OFF LIQUIDS FROM ENCLOSURES PREDOMINANTLY CONTAINING GASES OR VAPOURS
    • F16T1/00Steam traps or like apparatus for draining-off liquids from enclosures predominantly containing gases or vapours, e.g. gas lines, steam lines, containers
    • F16T1/20Steam traps or like apparatus for draining-off liquids from enclosures predominantly containing gases or vapours, e.g. gas lines, steam lines, containers with valves controlled by floats
    • F16T1/22Steam traps or like apparatus for draining-off liquids from enclosures predominantly containing gases or vapours, e.g. gas lines, steam lines, containers with valves controlled by floats of closed-hollow-body type

Definitions

  • An object of the present invention is to eliminate such a drawback and to assure an instant discharge of a large quantity of condensed water by keeping the valve port always opened maximally when the valve is opened.
  • Such an object may be attained, according to the present invention, by providing the composite valve mechanism with a bellows mechanism which operates thermostatically such that in the valve opening operation, the pressure at the valve portion of said composite valve mechanism is raised by the condensed water flowing out from the valve port of said bellows mechanism to prevent the valve body of said composite valve mechanism from being attracted to the valve seat.
  • a bellows mechanism which operates thermostatically such that in the valve opening operation, the pressure at the valve portion of said composite valve mechanism is raised by the condensed water flowing out from the valve port of said bellows mechanism to prevent the valve body of said composite valve mechanism from being attracted to the valve seat.
  • the float when the condensed water is accumulated, first the float will rise to open the composite valve.
  • the pressure within the valve chamber will rise and .come close to the pressure on the inlet side (primary pressure), so that the difference between the primary pressure acting on the bellows mechanism and the secondary pressure on the outlet side will disappear.
  • the bellows may be promptly contracted to open the valve due to .a slight temperature drop and pressure drop accompanied therewith.
  • a trap body 1 having an inlet 2 and an outlet 3, and defining a condensed water sump 6 is formed with an upper cover 4 and a side cover 5.
  • a valve box having upper and lower valve seats 7, 8 is fixed to form a valve chamber 9.
  • An upper valve body 11 comprises slide rods l2, l3, and a lower valve body 14 comprises slide rods l5, l6. Said upper valve body 11 and said lower valve body 14 are so adjusted that said valve bodies ll, 14 will seat simultaneously on said valve seats 7, 8 respectively by coupling said slide rods l3, 15 together with screw means secured by a bolt 17 and a nut 18.
  • a valve body holder 19, a bushing 20 and a snap ring 21 are also provided.
  • a float 22 is connected on said slide rod 12 of the upper valve body 11.
  • Said valve box 10 is provided with a bellows unit comprising a bellows 23, a bellows holder 24, a valve 25, a valve holder 26, a plug 27, a valve seat 28, a bellows receiving cylinder 29 and a snap ring 30.
  • the pressure within the valve chamber 10 will rise and come close to the pressure within the bellows 23 which is being cooled, so that the valve closing force due to said bellows becomes smaller.
  • the valve is opened by the pressure drop accompanied by a slight temperature drop.
  • the pressure of the valve portion of said composite valve mechanism is raised and the composite valve is prevented from being attracted onto the valve seat.
  • a large quantity of condensed water is discharged in a short time without reducing the discharge quantity due to the throttling of the valve port.
  • the float 22 will gradually lose its buoyancy and the composite valve will be closed again, and at the same time, the bellows 23 is also heated by steam and will expand to close the valve. Such actions are repeated to discharge large quantity of condensation.
  • the composite valve and the float are directly connected.
  • the present invention is byno means limited to such an example, and the same effect may be obtained by making the composite valve to open and close, through a lever mechanism actuated by ascent and descent of the float. The same effect may be obtained also, when a thermostatic bimetal mechanism is used in place of said bellows mechanism.
  • a large capacity steam trap comprising a housing defining a sump for condensate water, said housing having an inlet and an outlet therein spaced from one another, a valve body positioned within the sump in said housing and comprising a horizontally arranged tubular box, said tubular box having a first opening at one end in communication with the outlet from said housing and a second opening at its other end communicating with said sump, at least a first valve seat located in said tubular box intermediate its first and second openings, a second valve seat located at the second opening in said tubular box, first valve means associated with said first valve seat for opening and closing flow into said tubular box from said sump, a float position within said sump and in operative engagement with said first valve means for opening said first valve means in response to a predetermined increase in the level of condensate water in said sump, second valve means associated with said second valve seat and responsive to thermal conditions within said sump for opening and closing flow through said second opening into said tubular box.
  • a large capacity steam trap as set forth in claim 1, wherein said first valve seat comprises an upper opening in said tubular box and a lower opening in said tubular box vertically aligned below said upper opening, said first valve means includes an upper valve member associated with said upper first valve seat and a lower valve member associated with said lower first valve seat and means interconnecting said upper and lower valve members and said float for simultaneously opening and closing said upper and lower first valve seats in response to the movement of said float.
  • a large capacity steam trap as set forth in claim 2, wherein said second valve means comprises a valve support, a bellows mounted on said valve support and arranged to expand and contract in response to temperature increases and decreases within said sump, a valve attached to said bellows for movement into and out of contact with said second valve seat for controlling flow through said second opening into said tubular box.
  • a large capacity steam trap as set forth in claim 3, wherein said means interconnecting said upper and lower valve means comprises a vertically extending stem assembly, and the axis of said bellows disposed horizontally so that said bellows expands and contracts in the horizontally extending direction of said tubular box member.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Temperature-Responsive Valves (AREA)
  • Float Valves (AREA)

Abstract

This invention relates to an improvement of a large capacity steam trap, wherein certain disadvantages of a composite valve mechanism, which is opened and closed by utilizing the buoyancy of a float or the like, are eliminated by the addition of a bellows mechanism or the like, to obtain a steam trap which is accurate in operation, low in cost and easy to handle and maintain, as well as being capable of discharging a large quantity of condensed water.

Description

United States Patent [151 3,685,731 Aug. 22, 1972 Fujiwara [54] LARGE CAPACITY STEAM TRAP [72] Inventor: Katsuii Fuiiwara, 191, Nishitani Hiraoka-cho, Kakogawa-shi, l-lyogoken, Japan [22] Filed: Dec. 4, 1970 [211 Appl. No.: 95,235
30 Foreign Application Priority Data Dec. 6, 1969 Japan ..44/98119 [52] US. Cl ..236/53, 236/56 [51] Int. Cl. ..F16t H10 [58] Field of Search ..236/53, 56, 58
[56] References Cited UNI ED TAT SPA ENTS 895,073 8/ 1908 Chisolm ..236/53 2,043,074 6/1936 Simpson ..236/53 Primary Examiner-Edward J. Michael Attorney-MeGlew and Toren [57] ABSTRACT This invention relates to an improvement of a large 4 Clains, 1 Drawing Figure PATENTED M1822 I972 INVENTOR KATSUJI Fuzn WARR 1 LARGE CAPACITY STEAM TRAP SUMMARY OF THE INVENTION In a large capacity steam trap of the usual type, when the valve is opened the valve body is attracted by the drop of dynamic pressure caused by high velocity fluid flowing at the valve portion of a composite valve mechanism, according to Bemoullis theorem. Thus, the valve port is throttled, so that a large quantity of condensation could not be discharged in spite of the valve port having a larger aperture.
An object of the present invention is to eliminate such a drawback and to assure an instant discharge of a large quantity of condensed water by keeping the valve port always opened maximally when the valve is opened.
Such an object may be attained, according to the present invention, by providing the composite valve mechanism with a bellows mechanism which operates thermostatically such that in the valve opening operation, the pressure at the valve portion of said composite valve mechanism is raised by the condensed water flowing out from the valve port of said bellows mechanism to prevent the valve body of said composite valve mechanism from being attracted to the valve seat. Thus, there is no fear of throttling of the valve port and of decreasing the flow quantity of discharge, but it is always possible to keep the valve port opened maximally and yet the condensed water may be discharged also by said bellows mechanism, so that a large quantity of condensed water may be discharged in a short time. And, at the time of starting, said bellows mechanism is in the opened valve condition, so that air and cold condensed water in the piping and the apparatus may be discharged in a short time.
Further, in the steam trap according to the present invention, when the condensed water is accumulated, first the float will rise to open the composite valve. When the composite valve is opened, the pressure within the valve chamber will rise and .come close to the pressure on the inlet side (primary pressure), so that the difference between the primary pressure acting on the bellows mechanism and the secondary pressure on the outlet side will disappear. Thus, the bellows may be promptly contracted to open the valve due to .a slight temperature drop and pressure drop accompanied therewith.
BRIEF DESCRIPTION OF THE DRAWING A better understanding of the present invention will be had by reference to the following detailed description of the preferred embodiments thereof taken in connection with the accompanying drawing which is'a longitudinal sectional view of a steam trap embodying the present invention.
DESCRIPTION or THE PREFERRED EMBODIMENTS In the drawing, a trap body 1 having an inlet 2 and an outlet 3, and defining a condensed water sump 6 is formed with an upper cover 4 and a side cover 5. On the side communicating with said outlet 3 of the inner wall of said condensed water sump 6, a valve box having upper and lower valve seats 7, 8 is fixed to form a valve chamber 9.
An upper valve body 11 comprises slide rods l2, l3, and a lower valve body 14 comprises slide rods l5, l6. Said upper valve body 11 and said lower valve body 14 are so adjusted that said valve bodies ll, 14 will seat simultaneously on said valve seats 7, 8 respectively by coupling said slide rods l3, 15 together with screw means secured by a bolt 17 and a nut 18.
A valve body holder 19, a bushing 20 and a snap ring 21 are also provided. On said slide rod 12 of the upper valve body 11, a float 22 is connected. Said valve box 10 is provided with a bellows unit comprising a bellows 23, a bellows holder 24, a valve 25, a valve holder 26, a plug 27, a valve seat 28, a bellows receiving cylinder 29 and a snap ring 30.
In the operation of said steam trap, at the time of starting, the float 22 will lower and the composite valve will close, while the bellows 23 will contract or close and air and cold condensed water'within the piping and the apparatus will be discharged under the condition of an opened valve. When hot condensed water and steam flow in, said bellows 23 is expanded to close the valve. Thereupon, respective areas of the upper and lower valve bodies l1, 14 are exposed to equal pressures, so that the effect of pressure acting on said composite valve is to create equilibrium conditions. Thus, the condition of a closed valve is maintained by operation of the float 22 and the composite valve. When a large quantity of condensed water flows in, the float 22 will first promptly rise to pull up the composite valve and to open the valve. When said composite valve is opened,
the pressure within the valve chamber 10 will rise and come close to the pressure within the bellows 23 which is being cooled, so that the valve closing force due to said bellows becomes smaller. Thus, the valve is opened by the pressure drop accompanied by a slight temperature drop. After opening of the valve of said bellows mechanism, the pressure of the valve portion of said composite valve mechanism is raised and the composite valve is prevented from being attracted onto the valve seat. Thus, a large quantity of condensed water is discharged in a short time without reducing the discharge quantity due to the throttling of the valve port. As the quantity of condensed water decreases, the float 22 will gradually lose its buoyancy and the composite valve will be closed again, and at the same time, the bellows 23 is also heated by steam and will expand to close the valve. Such actions are repeated to discharge large quantity of condensation.
In the above mentioned embodiment, the composite valve and the float are directly connected. However, the present invention is byno means limited to such an example, and the same effect may be obtained by making the composite valve to open and close, through a lever mechanism actuated by ascent and descent of the float. The same effect may be obtained also, when a thermostatic bimetal mechanism is used in place of said bellows mechanism.
What is claimed is:
1. A large capacity steam trap comprising a housing defining a sump for condensate water, said housing having an inlet and an outlet therein spaced from one another, a valve body positioned within the sump in said housing and comprising a horizontally arranged tubular box, said tubular box having a first opening at one end in communication with the outlet from said housing and a second opening at its other end communicating with said sump, at least a first valve seat located in said tubular box intermediate its first and second openings, a second valve seat located at the second opening in said tubular box, first valve means associated with said first valve seat for opening and closing flow into said tubular box from said sump, a float position within said sump and in operative engagement with said first valve means for opening said first valve means in response to a predetermined increase in the level of condensate water in said sump, second valve means associated with said second valve seat and responsive to thermal conditions within said sump for opening and closing flow through said second opening into said tubular box.
2. A large capacity steam trap, as set forth in claim 1, wherein said first valve seat comprises an upper opening in said tubular box and a lower opening in said tubular box vertically aligned below said upper opening, said first valve means includes an upper valve member associated with said upper first valve seat and a lower valve member associated with said lower first valve seat and means interconnecting said upper and lower valve members and said float for simultaneously opening and closing said upper and lower first valve seats in response to the movement of said float.
3. A large capacity steam trap, as set forth in claim 2, wherein said second valve means comprises a valve support, a bellows mounted on said valve support and arranged to expand and contract in response to temperature increases and decreases within said sump, a valve attached to said bellows for movement into and out of contact with said second valve seat for controlling flow through said second opening into said tubular box.'
4. A large capacity steam trap, as set forth in claim 3, wherein said means interconnecting said upper and lower valve means comprises a vertically extending stem assembly, and the axis of said bellows disposed horizontally so that said bellows expands and contracts in the horizontally extending direction of said tubular box member.

Claims (4)

1. A large capacity steam trap comprising a housing defining a sump for condensate water, said housing having an inlet and an outlet therein spaced from one another, a valve body positioned within the sump in said housing and comprising a horizontally arranged tubular box, said tubular box having a first opening at one end in communication with the outlet from said housing and a second opening at its other end communicating with said sump, at least a first valve seat located in said tubular box intermediate its first and second openings, a second valve seat located at the second opening in said tubular box, first valve means associated with said first valve seat for opening and closing flow into said tubular box from said sump, a float position within said sump and in operative engagement with said first valve means for opening said first valve means in response to a predetermined increase in the level of condensate water in said sump, second valve means associated with said second valve seat and responsive to thermal conditions within said sump for opening and closing flow through said second opening intO said tubular box.
2. A large capacity steam trap, as set forth in claim 1, wherein said first valve seat comprises an upper opening in said tubular box and a lower opening in said tubular box vertically aligned below said upper opening, said first valve means includes an upper valve member associated with said upper first valve seat and a lower valve member associated with said lower first valve seat and means interconnecting said upper and lower valve members and said float for simultaneously opening and closing said upper and lower first valve seats in response to the movement of said float.
3. A large capacity steam trap, as set forth in claim 2, wherein said second valve means comprises a valve support, a bellows mounted on said valve support and arranged to expand and contract in response to temperature increases and decreases within said sump, a valve attached to said bellows for movement into and out of contact with said second valve seat for controlling flow through said second opening into said tubular box.
4. A large capacity steam trap, as set forth in claim 3, wherein said means interconnecting said upper and lower valve means comprises a vertically extending stem assembly, and the axis of said bellows disposed horizontally so that said bellows expands and contracts in the horizontally extending direction of said tubular box member.
US95235A 1969-12-06 1970-12-04 Large capacity steam trap Expired - Lifetime US3685731A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP44098119A JPS4815650B1 (en) 1969-12-06 1969-12-06

Publications (1)

Publication Number Publication Date
US3685731A true US3685731A (en) 1972-08-22

Family

ID=14211397

Family Applications (1)

Application Number Title Priority Date Filing Date
US95235A Expired - Lifetime US3685731A (en) 1969-12-06 1970-12-04 Large capacity steam trap

Country Status (9)

Country Link
US (1) US3685731A (en)
JP (1) JPS4815650B1 (en)
BE (1) BE759928A (en)
CA (1) CA924605A (en)
DE (1) DE2060174B2 (en)
FR (1) FR2072887A5 (en)
GB (1) GB1260830A (en)
NL (1) NL7017746A (en)
ZA (1) ZA708257B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4300719A (en) * 1980-02-20 1981-11-17 The Clark-Reliance Corporation Steam traps
EP2562465A1 (en) * 2011-08-23 2013-02-27 Yu Shen Machinery Co., Ltd. Auto flow steam trap
CN103195404A (en) * 2013-04-10 2013-07-10 甘肃红峰机械有限责任公司 Zero leakage drain valve for natural gas with vertically-installed sealing pair

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100739615B1 (en) 2000-12-01 2007-07-13 엘지전자 주식회사 drum type washing machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US895073A (en) * 1906-08-06 1908-08-04 Frank Hyde Chisholm Exhaust-valve.
US2043074A (en) * 1932-07-28 1936-06-02 Hoffman Specialty Company Steam trap

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US895073A (en) * 1906-08-06 1908-08-04 Frank Hyde Chisholm Exhaust-valve.
US2043074A (en) * 1932-07-28 1936-06-02 Hoffman Specialty Company Steam trap

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4300719A (en) * 1980-02-20 1981-11-17 The Clark-Reliance Corporation Steam traps
EP2562465A1 (en) * 2011-08-23 2013-02-27 Yu Shen Machinery Co., Ltd. Auto flow steam trap
CN103195404A (en) * 2013-04-10 2013-07-10 甘肃红峰机械有限责任公司 Zero leakage drain valve for natural gas with vertically-installed sealing pair
CN103195404B (en) * 2013-04-10 2015-07-22 甘肃红峰机械有限责任公司 Zero leakage drain valve for natural gas with vertically-installed sealing pair

Also Published As

Publication number Publication date
FR2072887A5 (en) 1971-09-24
BE759928A (en) 1971-05-17
JPS4815650B1 (en) 1973-05-16
NL7017746A (en) 1971-06-08
DE2060174B2 (en) 1973-05-17
CA924605A (en) 1973-04-17
ZA708257B (en) 1972-07-26
GB1260830A (en) 1972-01-19
DE2060174A1 (en) 1971-06-24

Similar Documents

Publication Publication Date Title
US4243062A (en) Thermostatic self-powered drain valve
US3685731A (en) Large capacity steam trap
US4623091A (en) Integrated float and thermostatic steam trap
US3790306A (en) Pumping trap for condensate
US2101338A (en) Temperature relief valve device
US3400887A (en) Discharge valve for steam traps or the like
US2810527A (en) Temperature and pressure relief valve
US2234387A (en) Steam trap
US2757870A (en) Piston steam trap
US3302878A (en) Thermo-synchronous steam trap
US2793814A (en) Temperature controlled steam trap
US2107551A (en) Steam trap and balanced valve
GB2112907A (en) Valve and system incorporating same
US2127649A (en) Steam trap
US3189275A (en) Heating and cooling plant
US1830051A (en) Steam heating system
US2929559A (en) Condensate discharging device
US3963177A (en) Thermostatic control valve for a one-pipe steam system
US2396400A (en) Radiator valve
US1889311A (en) Automatic valve
JPS6054553B2 (en) Float type steam trap
US1408478A (en) Vapor heating system
US2537809A (en) Steam trap
US1004684A (en) Thermostatic valve device.
JPH0520944Y2 (en)