US3678291A - Solid state relay - Google Patents

Solid state relay Download PDF

Info

Publication number
US3678291A
US3678291A US38471A US3678291DA US3678291A US 3678291 A US3678291 A US 3678291A US 38471 A US38471 A US 38471A US 3678291D A US3678291D A US 3678291DA US 3678291 A US3678291 A US 3678291A
Authority
US
United States
Prior art keywords
current
circuit
load
stage
output terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US38471A
Inventor
Ronald J Coe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanmina Corp
Original Assignee
SCI Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SCI Systems Inc filed Critical SCI Systems Inc
Application granted granted Critical
Publication of US3678291A publication Critical patent/US3678291A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • H03K17/0826Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in bipolar transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/52Circuit arrangements for protecting such amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/78Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used using opto-electronic devices, i.e. light-emitting and photoelectric devices electrically- or optically-coupled
    • H03K17/795Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used using opto-electronic devices, i.e. light-emitting and photoelectric devices electrically- or optically-coupled controlling bipolar transistors

Definitions

  • the load-carrying circuit When the load current rises above a pre-determined level, the load-carrying circuit automatically becomes a UNITED STATES PATENTS modified Darlington circuit, which is capable of carrying substantial overloads without being damaged, and with voltage 3 i s" drops within a desirable range.
  • means are provided for disabling the load circuit and, in efiect, opening the 2928'009 3/1960 f "307/254 relay, when a certain level of overload current is reached, 2?) i; i gl t) thereby turning the device into a circuit-breaker.
  • the present invention relates to electrical control devices, and particularly to electrical relays and circuit breakers. More particularly, the present invention relates to solid-state switching circuits for replacing the mechanical relays and circuit breakers.
  • a multistage semiconductor switching device which provides a very low-impedance path between a load and an electrical source. Only one stage of the device is activated when relatively low (rated) load currents flow through the device, but, when the load current increases above a pre-determined level, the second stage of the device is activated.
  • the device operates as a modified Darlington circuit during the overload mode, but operates as a simple saturated transistor switch at lower, rated load levels.
  • FIG. 1 is a schematic circuit diagram of one embodiment of the present invention.
  • FIG. 2 is a schematic circuit diagram of another embodiment of the present invention.
  • FIG. 1 shows a solid-state relay circuit which has a pair of input terminals 12, and a pair of output terminals 18. The function of the additional input circuitry to the left of input terminals 12 will be explained below.
  • the input terminals 12 are connected to a conventional constant current generator 14 which supplies constant current over an output lead 48 to a switching circuit 16 which is indicated in dashed outline.
  • a load 20 is connected between the output terminals 18.
  • the switching circuit 16 operates upon receiving a signal for the input terminals 12, to provide a low-impedance path between the output terminals 18 and the terminals 22 and 24 of a direct current power supply.
  • the switching circuit 16 includes two transistors 26 and 28,
  • the emitter lead 34 of the first transistor 26 is connected to terminal 22 of the power supply, and the collector lead of transistor 26 is connected to one of the load terminals 18.
  • the transistors 26 and 28 are connected together to form a modified Darlington circuit.
  • the base lead of transistor 26 is connected to the emitter lead 38 of transistor 28, and the collector lead 36 of transistor 26 is connected to the collector lead 40 of transistor 28 through the diode 46.
  • the switching circuit 16 would be an ordinary Darlington circuit.
  • the diode 46 changes the operation of the circuit quite significantly.
  • the constant current generator 14 When an input signal is received at terminals 12, the constant current generator 14 is activated and supplies a constant output current over lead 48 to the first transistor 28. This current turns on transistor 26, and, but for the presence of the diode 46, also would turn on the transistor 28. However, when the transistor 26 is turned on, at relatively low load current levels, the voltage on the collector lead 36 and, hence, the cathode of diode 46, is relatively high; that is, it is relatively close to V, the supply-voltage. The voltage on collector lead' 40 of transistor 28 is substantially less than the supply voltage, with the result that the diode 46 is back-biased and does not conduct current. Thus, the transistor 28 is disabled and the below its anode voltage so'that it now conducts negative feedback current.
  • the circuit 16 now is operating as a Darlington circuit which is capable of withstanding substantially greater overloads without burn out than would the transistor 26 alone.
  • the transistor 26 operates in a different region of its characteristic curves than it did when the diode 46 was back-biased.
  • the transistor 26 still operates within its saturation range so that it still presents low impedance to the flow of the current through it.
  • the voltage drop across the solid-state relay 10 is maintained at a consistently low level, one commensurate with the voltage drops usually experienced with mechanicel relays.
  • the portion of the circuit to the left of the input terminals 12 provides conductive isolation of two further input leads 52 from the remainder of the relay circuit.
  • This portion of the circuit which is optional, therefore serves to replace the solenoid or coil of an ordinary mechanical relay, without sacrificing the conductive isolation provided by such a coil.
  • Isolation is provided by a conventional photoncoupled isolator circuit 50, which consists of a gallium arsenide lightemitting diode 56 which delivers light to a photo-diode 58.
  • a gallium arsenide lightemitting diode 56 which delivers light to a photo-diode 58.
  • An example of one such device is the HP 4310 isolator which is sold by the Hewlett-Packard Corp.
  • Another constant current generator circuit 54 is provided to supply current to the diode 56.
  • the circuit 54 supplies current to the diode 56, which emits and shines light on the diode 58, causing it to become conductive and send a signal through the terminals 12 to the constant current source 14. This causes the relay circuit 10 to operate in the manner described above.
  • the circuit 50 thus provides conductive insulation of the input from the output terminals 18.
  • the transistor 26 should be selected so that it has current gain (beta) values which are fairly constant over a reasonably broad range of currents. That is, the current gain should be relatively steady from rated" to overloa current values.
  • current gain (beta) values which are fairly constant over a reasonably broad range of currents. That is, the current gain should be relatively steady from rated" to overloa current values.
  • one transistor which has been tested and found to be satisfactory for a rated load of 1 amp and an overload of 10 amps is the Motorola 2N 4398 high-power PNP silicon transistor.
  • the Motorola 2N 4918 medium-power" plastic PNP silicon transistor has been used successfully as transistor 28.
  • the 2N 4398 transistor has a very low on" or saturation resistance at l ampere. By the use of the present invention, a similarly low saturation resistance at overload current also is provided.
  • the diode 46 should have as small a forward voltage drop as possible.
  • a diode which has been tested successfully is the UTX-2 l 0 diode which is sold by Unitrode Corporation.
  • FIG. 2 The alternative embodiment shown in FIG. 2 is identical to that shown in FIG. 1 except that the input isolation circuit is omitted, and NPN transistors 60 and 62 replace PNP transistors 28 and 26, respectively (with reversed emitter-collector connections, of course.)
  • a circuit-breaking function is provided by a circuit 68 which is a conventional amplifying level detector with a latching output. Detector circuit 68 detects the voltage drop across a very small (e.g. 0.05 ohm) resistor 66 which is connected in series with'the load.
  • the detector 68 supplies a current to the base lead 70 of transistor 60 in a sense opposing the base drive current flowing in lead 70, thus turning off transistors 60 and 62 and opening" the-.relay.
  • the output of the detector circuit 68 latches in its new condition until it receives a reset signal, or until the input signal is removed from the circuit.
  • the switching circuit portion of the circuit shown in FIG. 2 operates in the same manner as the circuit 16 shown in FIG. 1, except that the connections of the load to the transistors are reversed, in the manner shown in FIG. 2.
  • the solid-state relay of the present invention has numerous advantages. First, unlike some prior devices, it does not produce significantly large amounts of electrical noise. Furthermore, the relay has voltage drops across its output terminals which match those of ordinary relays having the same ratings. Also, the relay does not easily burn out due to sudden overload, thermal run-away or other effects. Additionally, the circuit is relatively simple and inexpensive to fabricate, it is compact, electrically efficient, relatively lightweight, and it is reliable. Other advantages have been explained above, and will be evident from the foregoing description.
  • a relay device comprising output terminal means, semiconductor means for selectively providing a very low impedance path between said load terminal means and an electrical source, said semiconductor means comprising a current amplifier having at least two stages, means for selectively enabling said current amplifier, and means for selectively disabling at least one stage of said current amplifier in response to the flow of relatively low-level load currents to said load terminal means.
  • a relay device as in claim 1 in which said current amplifier forms a substantially saturated semiconductor switch when said one stage is disabled.
  • a relay device as in claim 1 including a constant current source for supplying bias current to said current amplifier.
  • a device as in claim 1 including circuit-breaker means for selectively disabling both of said stages in response to the flow of load currents above a pre-determined level.
  • a switching device comprising output terminal means, a Darlington amplifier circuit for providing a very low impedance path for connecting said output terminal means to an electrical source, means for enabling said amplifier circuit in response to an input si nal, and means for selectively disabling one stage of said amp rfier circuit when the flow of current to said output terminal means is below a pre-determined minimum value.
  • said Darlington amplifier circuit includes a driver stage and a second stage, each stage including a transistor, the emitter-collector path of said second-stage transistor being connected between said output terminal means and a terminal for said source.
  • said disabling means comprises unidirectional conduction means connected between the collector leads of said transistors and adapted to conduct only when the load current through said device rises to a predetermined value.
  • a device as in claim 6 including circuit-breaker means for selectively disabling both of said stages in response to the flow of load currents above a pre-determined level.
  • a device as in claim 6 including isolator means at the input of said device for conductively isolating said input from said output terminal means.
  • said isolator means comprises a light-emitting diode positioned to shine light on a photo-diode when said light-emitting diode is energized by an input signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Electronic Switches (AREA)

Abstract

A solid-state switching device capable of replacing mechanical relays. When the relay is conducting rated load current, a single saturated transistor carries the current with a very low voltage drop. When the load current rises above a pre-determined level, the load-carrying circuit automatically becomes a modified Darlington circuit, which is capable of carrying substantial overloads without being damaged, and with voltage drops within a desirable range. Optionally, means are provided for disabling the load circuit and, in effect, opening the relay, when a certain level of overload current is reached, thereby turning the device into a circuit-breaker.

Description

United States Patent 15] 3,678,291 Coe [451 July 18, 1972 54] SOLID STATE RELAY OTHER PUBLICATIONS [72] Inventor: Ronald J. Coe, Huntsville, Ala. Circuit Breaker" by Erdman, Jr. in IBM Tech Disclosure Assignee: SCI y Inc. Huntsville, Ala. gglltletin, Vol. 5, No. 11, April 1963, page 51, copy in 307- 22 i May 18, 1970 Current Supply" by May, Jr. in IBM Tech Disclosure Bulletin, Vol. 10, No. 7, Dec. 1967, pages 1045- l046, copy in [21] Appl. No.: 38,471 307-- 315 Y i I Primary Examiner-Stanley D. Miller, Jr. [52] U.S. Cl ..307/202, 307/254, 307/297,
, 307/315, 317/33 R, 317/60 R, 330/207 P [51] Int. Cl .....l-l02h 7/20, H03k 3/26 TR! (58] Field of Search ..307/202, 253, 254, 297, 315; I57] ABS CT 330/207 P; 323/ l, 2, l6, l7, l9-22 T; 317/33 R, 58, A solid-state switching device capable of replacing mechani- 60 R, 148, 5 R cal relays. When the relay is conducting rated load current, a single saturated transistor carries the current with a very low 56 Rd (jif d voltage drop. When the load current rises above a pre-determined level, the load-carrying circuit automatically becomes a UNITED STATES PATENTS modified Darlington circuit, which is capable of carrying substantial overloads without being damaged, and with voltage 3 i s" drops within a desirable range. Optionally, means are provided for disabling the load circuit and, in efiect, opening the 2928'009 3/1960 f "307/254 relay, when a certain level of overload current is reached, 2?) i; i gl t) thereby turning the device into a circuit-breaker.
isen erg 2,949,543 8/1960 Nordahl et'al. 307/315 X 11 Chins, 2 Drawing figures /a gimp l/VPUT {4 L4 Lu 20 Z I d o 52 CONSTANT \CONSTAN 2 CURRENT CURRENT SOURCE SOURCE PATENIED Jun 8 m2 \CONSTANT CURRENT SOURCE \CONSTANT CURRENT SOURCE LEVEL DETECTOR AMPLIFYING CONSTANT CURRENT SOURCE F/GZ ' INVENTOIR P044410 J, 605 BY ATT RNEYS SOLID STATE RELAY The present invention relates to electrical control devices, and particularly to electrical relays and circuit breakers. More particularly, the present invention relates to solid-state switching circuits for replacing the mechanical relays and circuit breakers.
lt'long has been desired to provide a solid-state circuit device which will satisfactorily replace the mechanical relay. Such a device would have the advantage of having no mechanical contacts to become fouled, and would be more reliable in operation. However, it is believed that prior attempts to provide such a device have met with only limited success. There, are various reasons for the limited nature of this success. One such reason is believed to be that many prior devices burn out when excessive load currents pass through them,
although the same currents do not burn out mechanical relays. Another shortcomingofsuch prior. devices is that they are relatively large and unreliable, and they produce relatively large amounts of electrical. noise. Furthermore, some prior devices are relatively inefficient and have relatively high voltage losses across the relay when inoperation.
In accordance with the foregoing, it' ,is an object of the present invention to provide a reliable, light-weight, compact, noise-free and rugged solid-state switching 'device which is usable in place of mechanical relays. vIt is another'object to provide such a device which will not burn out when operated with rated overload current, which is relatively efficient at normal load currents, and has relatively low voltage losses across it at rated current levels. It is a further object to provide such a device withoverload circuit-breaker capabilities.
In accordance with the present invention, the foregoing objects are satisfied by the provision of a multistage semiconductor switching device which provides a very low-impedance path between a load and an electrical source. Only one stage of the device is activated when relatively low (rated) load currents flow through the device, but, when the load current increases above a pre-determined level, the second stage of the device is activated. This enables the device to conduct substantial overload currents without damage, and with voltage drops which are within desired low limits. Preferably, the device operates as a modified Darlington circuit during the overload mode, but operates as a simple saturated transistor switch at lower, rated load levels.
The foregoing objects and advantages of the present invention will be in part described in and in part apparentfrom the following description and drawings.
In the Drawings:
FIG; 1 is a schematic circuit diagram of one embodiment of the present invention; and
FIG. 2 is a schematic circuit diagram of another embodiment of the present invention.
FIG. 1 shows a solid-state relay circuit which has a pair of input terminals 12, and a pair of output terminals 18. The function of the additional input circuitry to the left of input terminals 12 will be explained below. The input terminals 12 are connected to a conventional constant current generator 14 which supplies constant current over an output lead 48 to a switching circuit 16 which is indicated in dashed outline. A load 20 is connected between the output terminals 18. The switching circuit 16 operates upon receiving a signal for the input terminals 12, to provide a low-impedance path between the output terminals 18 and the terminals 22 and 24 of a direct current power supply.
The switching circuit 16 includes two transistors 26 and 28,
a pair of bias resistors 32 and 44, and a diode 46. The emitter lead 34 of the first transistor 26 is connected to terminal 22 of the power supply, and the collector lead of transistor 26 is connected to one of the load terminals 18. The transistors 26 and 28 are connected together to form a modified Darlington circuit. Thus, the base lead of transistor 26 is connected to the emitter lead 38 of transistor 28, and the collector lead 36 of transistor 26 is connected to the collector lead 40 of transistor 28 through the diode 46. But for the presence of the diode 46, the switching circuit 16 would be an ordinary Darlington circuit. However, the diode 46 changes the operation of the circuit quite significantly.
When an input signal is received at terminals 12, the constant current generator 14 is activated and supplies a constant output current over lead 48 to the first transistor 28. This current turns on transistor 26, and, but for the presence of the diode 46, also would turn on the transistor 28. However, when the transistor 26 is turned on, at relatively low load current levels, the voltage on the collector lead 36 and, hence, the cathode of diode 46, is relatively high; that is, it is relatively close to V, the supply-voltage. The voltage on collector lead' 40 of transistor 28 is substantially less than the supply voltage, with the result that the diode 46 is back-biased and does not conduct current. Thus, the transistor 28 is disabled and the below its anode voltage so'that it now conducts negative feedback current. Under'these conditions, the circuit 16 now is operating as a Darlington circuit which is capable of withstanding substantially greater overloads without burn out than would the transistor 26 alone. In this mode of operation, the transistor 26 operates in a different region of its characteristic curves than it did when the diode 46 was back-biased.
The result is that the transistor 26 still operates within its saturation range so that it still presents low impedance to the flow of the current through it. Thus, the voltage drop across the solid-state relay 10 is maintained at a consistently low level, one commensurate with the voltage drops usually experienced with mechanicel relays.
The portion of the circuit to the left of the input terminals 12 provides conductive isolation of two further input leads 52 from the remainder of the relay circuit. This portion of the circuit, which is optional, therefore serves to replace the solenoid or coil of an ordinary mechanical relay, without sacrificing the conductive isolation provided by such a coil.
Isolation is provided by a conventional photoncoupled isolator circuit 50, which consists of a gallium arsenide lightemitting diode 56 which delivers light to a photo-diode 58. An example of one such device is the HP 4310 isolator which is sold by the Hewlett-Packard Corp. Another constant current generator circuit 54 is provided to supply current to the diode 56. When input signals are received at the terminals 52, the circuit 54 supplies current to the diode 56, which emits and shines light on the diode 58, causing it to become conductive and send a signal through the terminals 12 to the constant current source 14. This causes the relay circuit 10 to operate in the manner described above. The circuit 50 thus provides conductive insulation of the input from the output terminals 18.
The transistor 26 should be selected so that it has current gain (beta) values which are fairly constant over a reasonably broad range of currents. That is, the current gain should be relatively steady from rated" to overloa current values. For example, one transistor which has been tested and found to be satisfactory for a rated load of 1 amp and an overload of 10 amps is the Motorola 2N 4398 high-power PNP silicon transistor. Similarly, the Motorola 2N 4918 medium-power" plastic PNP silicon transistor has been used successfully as transistor 28. The 2N 4398 transistor has a very low on" or saturation resistance at l ampere. By the use of the present invention, a similarly low saturation resistance at overload current also is provided.
The diode 46 should have as small a forward voltage drop as possible. A diode which has been tested successfully is the UTX-2 l 0 diode which is sold by Unitrode Corporation.
In a circuit using the components specified above, and with a supply voltage V of 20 volts, a voltage drop of less than millivolt was measured across the emitter-collector path of the transistor 26 when rated load current of 1 ampere was flowing. At l amperes load current the voltage at the same location was 1.8 volts. Both of these voltage drops are substantially identical to the voltage drops across the contacts of a typical mechanical relay having the same load ratings. Moreover, the overload current of amperes was sustained for substantial periods of time without burn out and without approaching the condition of thermal run-away which would cause burnout.
The alternative embodiment shown in FIG. 2 is identical to that shown in FIG. 1 except that the input isolation circuit is omitted, and NPN transistors 60 and 62 replace PNP transistors 28 and 26, respectively (with reversed emitter-collector connections, of course.) In addition, a circuit-breaking function is provided by a circuit 68 which is a conventional amplifying level detector with a latching output. Detector circuit 68 detects the voltage drop across a very small (e.g. 0.05 ohm) resistor 66 which is connected in series with'the load. When the voltage across resistor 66 exceeds a pre-determined value, indicating the flow of a load current above a desired limit, the detector 68 supplies a current to the base lead 70 of transistor 60 in a sense opposing the base drive current flowing in lead 70, thus turning off transistors 60 and 62 and opening" the-.relay. The output of the detector circuit 68 latches in its new condition until it receives a reset signal, or until the input signal is removed from the circuit. Thus, a convenient, safe relay with an integral circuit-breaker function has been provided.
The switching circuit portion of the circuit shown in FIG. 2 operates in the same manner as the circuit 16 shown in FIG. 1, except that the connections of the load to the transistors are reversed, in the manner shown in FIG. 2.
The solid-state relay of the present invention has numerous advantages. First, unlike some prior devices, it does not produce significantly large amounts of electrical noise. Furthermore, the relay has voltage drops across its output terminals which match those of ordinary relays having the same ratings. Also, the relay does not easily burn out due to sudden overload, thermal run-away or other effects. Additionally, the circuit is relatively simple and inexpensive to fabricate, it is compact, electrically efficient, relatively lightweight, and it is reliable. Other advantages have been explained above, and will be evident from the foregoing description.
The above description of the invention is intended to be illustrative and not limiting. Various changes or modifications in the embodiments described may occur to those skilled in the art and these can be made without departing from the spirit or scope of the invention.
Iclaim:
I. A relay device comprising output terminal means, semiconductor means for selectively providing a very low impedance path between said load terminal means and an electrical source, said semiconductor means comprising a current amplifier having at least two stages, means for selectively enabling said current amplifier, and means for selectively disabling at least one stage of said current amplifier in response to the flow of relatively low-level load currents to said load terminal means.
2. A relay device as in claim 1 in which said current amplifier forms a substantially saturated semiconductor switch when said one stage is disabled.
3. A relay device as in claim 1 in which said current amplifier comprises a Darlington amplifier during the flow of relatively high-level load currents to said load terminal means.
4. A relay device as in claim 1 including a constant current source for supplying bias current to said current amplifier.
5. A device as in claim 1 including circuit-breaker means for selectively disabling both of said stages in response to the flow of load currents above a pre-determined level.
6. A switching device comprising output terminal means, a Darlington amplifier circuit for providing a very low impedance path for connecting said output terminal means to an electrical source, means for enabling said amplifier circuit in response to an input si nal, and means for selectively disabling one stage of said amp rfier circuit when the flow of current to said output terminal means is below a pre-determined minimum value.
7. A device as in claim 6 in which said Darlington amplifier circuit includes a driver stage and a second stage, each stage including a transistor, the emitter-collector path of said second-stage transistor being connected between said output terminal means and a terminal for said source.
8. A device as in claim 7 in which said disabling means comprises unidirectional conduction means connected between the collector leads of said transistors and adapted to conduct only when the load current through said device rises to a predetermined value.
9. A device as in claim 6 including circuit-breaker means for selectively disabling both of said stages in response to the flow of load currents above a pre-determined level.
10. A device as in claim 6 including isolator means at the input of said device for conductively isolating said input from said output terminal means.
11. A device as in claim 10in which said isolator means comprises a light-emitting diode positioned to shine light on a photo-diode when said light-emitting diode is energized by an input signal.

Claims (11)

1. A relay device comprising output terminal means, semiconductor means for selectively providing a very low impedance path between said load terminal means and an electrical source, said semiconductor means comprising a current amplifier having at least two stages, means for selectively enabling said current amplifier, and means for selectively disabling at least one stage of said current amplifier in response to the flow of relatively low-level load currents to said load terminal means.
2. A relay device as in claim 1 in which said current amplifier forms a substantially saturated semiconductor switch when said one stage is disabled.
3. A relay device as in claim 1 in which said current amplifier comprises a Darlington amplifier during the flow of relatively high-level load currents to said load terminal means.
4. A relay device as in claim 1 including a constant current source for supplying bias current to said current amplifier.
5. A device as in claim 1 including circuit-breaker means for selectively disabling both of said stages in response to the flow of load currents above a pre-determined level.
6. A switching device comprising output terminal means, a Darlington amplifier circuit for providing a very low impedance path for connecting said output terminal means to an electrical source, means for enabling said amplifier circuit in response to an input signal, and means for selectively disabling one stage of said amplifier circuit when the flow of current to said output terminal means is below a pre-determined minimum value.
7. A device as in claim 6 in which said Darlington amplifier circuit includes a driver stage and a second stage, each stage including a transistor, the emitter-collector path of said second-stage transistor being connected between said output terminal means and a terminal for said source.
8. A device as in claim 7 in which said disabling means comprises unidirectional conduction means connected between the collector leads of said transistors and adapted to conduct only when the load current through said device rises to a pre-determined value.
9. A device as in claim 6 including circuit-breaker means for selectively disabling both of said stages in response to the flow of load currents above a pre-determined level.
10. A device as in claim 6 including isolator means at the input of said device for conductively isolating said input from said output terminal means.
11. A device as in claim 10 in which said isolator means comprises a light-emitting diode positioned to shine light on a photo-diode when said light-emitting diode is energized by an input signal.
US38471A 1970-05-18 1970-05-18 Solid state relay Expired - Lifetime US3678291A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US3847170A 1970-05-18 1970-05-18

Publications (1)

Publication Number Publication Date
US3678291A true US3678291A (en) 1972-07-18

Family

ID=21900161

Family Applications (1)

Application Number Title Priority Date Filing Date
US38471A Expired - Lifetime US3678291A (en) 1970-05-18 1970-05-18 Solid state relay

Country Status (3)

Country Link
US (1) US3678291A (en)
CA (1) CA929241A (en)
DE (1) DE2121812A1 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3889137A (en) * 1972-12-20 1975-06-10 Philips Corp Circuit arrangements comprising a switching transistor
US3908667A (en) * 1973-01-17 1975-09-30 Robert I Bernstein Cardiac pacer
US4016460A (en) * 1975-02-04 1977-04-05 Bertold Stadler Electronic protection for power amplifier
US4058775A (en) * 1976-01-27 1977-11-15 Rca Corporation Over-current prevention circuitry for transistor amplifiers
US4188547A (en) * 1976-06-21 1980-02-12 Westinghouse Electric Corp. Multi-mode control logic circuit for solid state relays
EP0008668A1 (en) * 1978-09-01 1980-03-19 Licentia Patent-Verwaltungs-GmbH Constant current switch and its use for powering infrared light-emitting diodes
FR2447628A1 (en) * 1979-01-24 1980-08-22 Materiel Telephonique Overload protection circuit for electronic switch - has switch in series with PTC resistor and controlled via low-voltage
US4320434A (en) * 1979-12-10 1982-03-16 General Electric Company Power semiconductor protection circuit with fault detection
US4396882A (en) * 1981-05-22 1983-08-02 Kellenbenz Carl W Inrush current limiter
US4575740A (en) * 1982-03-25 1986-03-11 International Business Machines Corporation Transistor circuit for reducing current after ignition in a metal paper printer
US4950930A (en) * 1987-07-21 1990-08-21 Sgs-Thomson Microelectronics S.A. Bridge base control circuit with controlled blocking even in the avalanche mode
US5168417A (en) * 1991-02-19 1992-12-01 Electronics Diversified, Inc. Isolated solid state relay
US5287007A (en) * 1988-12-24 1994-02-15 Heidelberger Druckmaschinen Ag Device for coupling additional equipment to a machine
US5338980A (en) * 1989-10-04 1994-08-16 Texas Instruments Incorporated Circuit for providing a high-speed logic transition
US6804094B2 (en) 2002-04-04 2004-10-12 Power Electronic Systems, Inc. Ground fault circuit interrupter
US20090021880A1 (en) * 2007-07-16 2009-01-22 Honeywell International Inc. Multi-level electronic protection system providing safe fault recovery for multiple digital control outputs
US20110037323A1 (en) * 2009-08-11 2011-02-17 Leviton Manufacturing Co., Inc. Automatic switch configuration
US20110118890A1 (en) * 2009-11-13 2011-05-19 Leviton Manufacturing Co., Inc. Intelligent metering demand response
US20110115448A1 (en) * 2009-11-13 2011-05-19 Leviton Manufacturing Co., Inc. Electrical switching module
US20110115460A1 (en) * 2009-11-13 2011-05-19 Leviton Manufacturing Co., Inc. Electrical switching module
US8664886B2 (en) 2011-12-22 2014-03-04 Leviton Manufacturing Company, Inc. Timer-based switching circuit synchronization in an electrical dimmer
US8736193B2 (en) 2011-12-22 2014-05-27 Leviton Manufacturing Company, Inc. Threshold-based zero-crossing detection in an electrical dimmer
US9681526B2 (en) 2014-06-11 2017-06-13 Leviton Manufacturing Co., Inc. Power efficient line synchronized dimmer
US10879878B1 (en) 2019-12-16 2020-12-29 Altec Industries, Inc. Drop-in solid-state relay

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4044296A (en) * 1976-01-14 1977-08-23 Sundstrand Corporation Electronic voltage regulator for three-phase generators

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2928009A (en) * 1956-04-11 1960-03-08 Ncr Co Transistor switching circuit
US2949543A (en) * 1957-07-22 1960-08-16 Sperry Rand Corp Electronic amplifier
US3126490A (en) * 1964-03-24 High current pulse driver using darlington circuit
US3210561A (en) * 1961-05-03 1965-10-05 Sylvania Electric Prod Compound transistor circuits
US3359483A (en) * 1963-11-29 1967-12-19 Texas Instruments Inc High voltage regulator
US3508162A (en) * 1968-06-05 1970-04-21 Hewlett Packard Co Means for limiting current in a power supply amplifier

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3126490A (en) * 1964-03-24 High current pulse driver using darlington circuit
US2928009A (en) * 1956-04-11 1960-03-08 Ncr Co Transistor switching circuit
US2949543A (en) * 1957-07-22 1960-08-16 Sperry Rand Corp Electronic amplifier
US3210561A (en) * 1961-05-03 1965-10-05 Sylvania Electric Prod Compound transistor circuits
US3359483A (en) * 1963-11-29 1967-12-19 Texas Instruments Inc High voltage regulator
US3508162A (en) * 1968-06-05 1970-04-21 Hewlett Packard Co Means for limiting current in a power supply amplifier

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Circuit Breaker by Erdman, Jr. in IBM Tech Disclosure Bulletin, Vol. 5, No. 11, April 1963, page 51, copy in 307 254 *
Current Supply by May, Jr. in IBM Tech Disclosure Bulletin, Vol. 10, No. 7, Dec. 1967, pages 1045 1046, copy in 307 315 *

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3889137A (en) * 1972-12-20 1975-06-10 Philips Corp Circuit arrangements comprising a switching transistor
US3908667A (en) * 1973-01-17 1975-09-30 Robert I Bernstein Cardiac pacer
US4016460A (en) * 1975-02-04 1977-04-05 Bertold Stadler Electronic protection for power amplifier
US4058775A (en) * 1976-01-27 1977-11-15 Rca Corporation Over-current prevention circuitry for transistor amplifiers
US4188547A (en) * 1976-06-21 1980-02-12 Westinghouse Electric Corp. Multi-mode control logic circuit for solid state relays
EP0008668A1 (en) * 1978-09-01 1980-03-19 Licentia Patent-Verwaltungs-GmbH Constant current switch and its use for powering infrared light-emitting diodes
FR2447628A1 (en) * 1979-01-24 1980-08-22 Materiel Telephonique Overload protection circuit for electronic switch - has switch in series with PTC resistor and controlled via low-voltage
US4320434A (en) * 1979-12-10 1982-03-16 General Electric Company Power semiconductor protection circuit with fault detection
US4396882A (en) * 1981-05-22 1983-08-02 Kellenbenz Carl W Inrush current limiter
US4575740A (en) * 1982-03-25 1986-03-11 International Business Machines Corporation Transistor circuit for reducing current after ignition in a metal paper printer
US4950930A (en) * 1987-07-21 1990-08-21 Sgs-Thomson Microelectronics S.A. Bridge base control circuit with controlled blocking even in the avalanche mode
US5287007A (en) * 1988-12-24 1994-02-15 Heidelberger Druckmaschinen Ag Device for coupling additional equipment to a machine
US5338980A (en) * 1989-10-04 1994-08-16 Texas Instruments Incorporated Circuit for providing a high-speed logic transition
US5168417A (en) * 1991-02-19 1992-12-01 Electronics Diversified, Inc. Isolated solid state relay
US6804094B2 (en) 2002-04-04 2004-10-12 Power Electronic Systems, Inc. Ground fault circuit interrupter
US7800875B2 (en) * 2007-07-16 2010-09-21 Honeywell Int Inc Multi-level electronic protection system providing safe fault recovery for multiple digital control outputs
US20090021880A1 (en) * 2007-07-16 2009-01-22 Honeywell International Inc. Multi-level electronic protection system providing safe fault recovery for multiple digital control outputs
US8154154B2 (en) 2009-08-11 2012-04-10 Leviton Manufacturing Co., Inc. Automatic switch configuration
US20110037323A1 (en) * 2009-08-11 2011-02-17 Leviton Manufacturing Co., Inc. Automatic switch configuration
US8463453B2 (en) 2009-11-13 2013-06-11 Leviton Manufacturing Co., Inc. Intelligent metering demand response
US20110115460A1 (en) * 2009-11-13 2011-05-19 Leviton Manufacturing Co., Inc. Electrical switching module
US20110115448A1 (en) * 2009-11-13 2011-05-19 Leviton Manufacturing Co., Inc. Electrical switching module
US8324761B2 (en) 2009-11-13 2012-12-04 Leviton Manufacturing Co., Inc. Electrical switching module
US20110118890A1 (en) * 2009-11-13 2011-05-19 Leviton Manufacturing Co., Inc. Intelligent metering demand response
US8755944B2 (en) 2009-11-13 2014-06-17 Leviton Manufacturing Co., Inc. Electrical switching module
US8880232B2 (en) 2009-11-13 2014-11-04 Leviton Manufacturing Co., Inc. Intelligent metering demand response
US8664886B2 (en) 2011-12-22 2014-03-04 Leviton Manufacturing Company, Inc. Timer-based switching circuit synchronization in an electrical dimmer
US8736193B2 (en) 2011-12-22 2014-05-27 Leviton Manufacturing Company, Inc. Threshold-based zero-crossing detection in an electrical dimmer
US9681526B2 (en) 2014-06-11 2017-06-13 Leviton Manufacturing Co., Inc. Power efficient line synchronized dimmer
US9974152B2 (en) 2014-06-11 2018-05-15 Leviton Manufacturing Co., Inc. Power efficient line synchronized dimmer
US10879878B1 (en) 2019-12-16 2020-12-29 Altec Industries, Inc. Drop-in solid-state relay

Also Published As

Publication number Publication date
CA929241A (en) 1973-06-26
DE2121812A1 (en) 1971-12-02

Similar Documents

Publication Publication Date Title
US3678291A (en) Solid state relay
US3959713A (en) Solid state current limit circuit
US2801374A (en) Relay device
US3735151A (en) Output circuit for comparators
GB1601999A (en) Protection circuit for transistorised switch
JPH05300726A (en) Circuit for turning on and turning off power transistor
US3050636A (en) High speed transistor switch
US2866925A (en) Transistor operated relay
US3396314A (en) Overdrive circuit for inductive loads
US3898552A (en) DC Static switch circuit with improved transistor surge current pass capability
US4924343A (en) Solid state optical relay
US3924158A (en) Electronic overload protection device
US4319301A (en) Circuits for electromagnet energization control
US3912941A (en) Isolation circuit for arc reduction in a dc circuit
JPH02179266A (en) Solid-state power controller
US4490631A (en) Totem pole/open collector selectable output circuit
US4520416A (en) Shunt-foldback voltage source
US4403157A (en) Control circuit for light emitting diode
EP0280327A2 (en) Audio output amplifier
US4369380A (en) Circuit for controlling a transistor static switch for d.c. loads with high turn-on current
JP2685272B2 (en) Integrated logic circuit
US3633051A (en) Transistorized load control circuit
US3051847A (en) Transistor switching circuit with thermistor biasing means
US3109981A (en) Over-voltage protective circuit
US3023326A (en) Overload protection circuit