US3674660A - Electrodeposition of copper - Google Patents

Electrodeposition of copper Download PDF

Info

Publication number
US3674660A
US3674660A US63954A US3674660DA US3674660A US 3674660 A US3674660 A US 3674660A US 63954 A US63954 A US 63954A US 3674660D A US3674660D A US 3674660DA US 3674660 A US3674660 A US 3674660A
Authority
US
United States
Prior art keywords
electrolyte
acid
brightener
auxiliary
auxiliary brightener
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US63954A
Inventor
Derek Martin Lyde
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Solvay Solutions UK Ltd
Original Assignee
Albright and Wilson Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Albright and Wilson Ltd filed Critical Albright and Wilson Ltd
Application granted granted Critical
Publication of US3674660A publication Critical patent/US3674660A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper

Definitions

  • ABSTRACT 30 Foreign A fi fl P -i it Data
  • a copper pyrophosphateelectroplating bath contains a known heterocychc additive in conjunction with an auxiliary y 1, 1967 Great Bmam 1 brightener selected from iminodiacetic acid, cinammic acid, aliphatic acid, diand polycarboxylic acids having at least i seven carbon atoms, salts of the aforesaid acids and hydrox- 58] g [52 R 52 44 1 yethylcellulose.
  • the auxiliary brightener prevents step plating which is normally caused by the presence of the heterocyclic brightener.
  • the present invention relates to improvements in the electrodeposition of copper.
  • a characteristic feature of these plating solutions is that in conjunction with suitable brightening additives they may be used to form highly specular mirror bright finishes which do not require subsequent mechanical polishing. In this they differ from the conventional acid copper plating systems and from copper cyanide systems, which produce matt finishes. Brighteners used in the former solutions are intended to improve the specularity of the bright finish whereas those used in the latter systems are designed to make the matt finish more amenable to mechanical polishing.
  • heterocyclic compounds have been proposed as brightener additives for alkaline pyrophosphate electroplating compositions and some of these have found particular favor in the art.
  • a group of these heterocyclic compounds is characterized by the presence of the grouping:
  • Some of the aforementioned specifications refer to the optional presence in the electroplating composition of other organic compounds, such as simple aliphatic or hydroxyaliphatic carboxylic acids including oxalic, citric, tartaric, acetic, propionic and phthalic acids and wetting agents. Certain of these compounds are stated, for example in specification No. 1,051,150, to improve the grain refinement of the electrodeposited material and to reduce the anodic polarization. These additives were originally described in the early work on copper pyrophosphate baths, before the advent of heterocyclic brighteners.
  • the heterocyclic brighteners have one disadvantage-they tend to cause a plating defect called step plating. This arises when in consequence of reduction of current density across the surface of the workpiece, such as commonly occurs in practice with contoured surfaces, the thickness of the coating varies. in normal plating there may be a continuous variation of the thickness of the coating across the surface without affecting the appearance or quality of the work. In step plating there is a sharp division between an area of relatively thick plating of high specular brightness and an area of relatively thin plating of inferior quality. This tendency can be avoided by keeping the concentration of heterocyclic brightener small, but that imposes limitations on the amount by which the specular brightness is improved.
  • An object of my invention is to inhibit the tendency of heterocyclic brighteners to cause step plating in copper pyrophosphate electroplating baths.
  • a further object of my invention is to provide copper pyrophosphate electroplating baths which produce work of improved specular brightness.
  • a further object of my invention is to provide copper pyrophosphate electroplating baths of improved levelling power.
  • the invention provides, in brightening compositions for addition to copper pyrophosphate electroplating baths and containing a heterocyclic brightener selected from the known group consisting of 2-mercaptothiazole, 2-mercap tobenzthiazole, Z-mercaptothiadiazole, Z-mercaptopyrimidine, Z-mercaptoiminazole, substituted homologs of the aforesaid heterocyclic brighteners and derivatives that form any of the aforesaid compounds when dissolved in copper pyrophosphate electroplating baths, the improvement which consists in that the brightening composition contains, in addition to the heterocyclic brightener, an auxiliary brightener selected from the group of step plating inhibitors consisting of aliphatic dicarboxylic and polycarboxylic acids having at least seven carbon atoms, malonic acid, cinammic acid, iminodiacetic acid,salts of the said acids and hydroxyethyl-cellulose.
  • a heterocyclic brightener selected from
  • the invention further provides an aqueous electrolyte for copper plating having dissolved therein a copper salt, an alkali metal pyrophosphate in an amount at least sufficient to form the complex X Cu(l O-,) where X represents an alkali metal, and a minor proportion of a brightening composition according to the invention.
  • the invention also provides a process for the electrodeposition of copper using an aqueous electrolyte of the invention.
  • heterocyclic brighteners for present use are exemplified by the mercapto-thiazole compounds described in specification No. 940,282, for example 2-mercapto-1, 3- thiazole and 2-mercapto-benthiazole; by the Z-mercapto- 1,3,4-thiadiazole compounds described in specification No. 939,997, for example 2,5-dimercapto-l,3,4-thiadiazole, 2- mercapto-5-methylmercapto-1,3,4-thiadiazole and 2-mercapto-5-n-butylmercapto-l,3,4-thiadiazole; and by the 2-mercapto-iminazole and Z-mercapto pyrimidines described in specification No.
  • 1,051,150 for example Z-mercapto-lmethyliminazole, 2-mercaptopyrimidine, 6-hydroxy-2 mercaptopyrimidine and 6-hydroxy-2-mercapto-4-methylpyrimidine.
  • precursors of the compounds described above By precursor is meant herein a compound which when dissolved in the copper pyrophosphate electrolyte provides in solution a compound containing the structure (II).
  • auxiliary brighteners for present use are for the most part acids which will normally be used as sodium, potassium, or ammonium salts.
  • organic diand poly-carboxylic acids or anhydrides thereof having more than seven carbon atoms there may be used, usually in the form of water-soluble salts, organic diand poly-carboxylic acids or anhydrides thereof having more than seven carbon atoms.
  • these compounds there can be mentioned suberic acid, azelaic acid, and sebacic acid as well as adducts of the type formed when a dienophilic carboxylic acid such as maleic anhydride is condensed with a conjugally unsaturated hydrocarbon such as polyiso-butylene, for example the alkylor alkenyl-substituted succinic acids and anhydrides wherein the alkyl or alkenyl group contains from 30-150 carbon atoms.
  • the heterocyclic brightening agent is employed in a proportion of at least 0.001 grams per liter of the total weight of electrolyte and preferably from 1 to mg. per liter.
  • the optimum concentration may vary from 2 to 4 mg. per liter depending upon the nature of the auxiliary brightener present.
  • the auxiliary brightener is employed in a proportion of from 1 ppm to saturation, preferably from 2 to 100 ppm, for example 3 to 6 ppm.
  • the copper plating electrolytes of the invention have a similar constitution with respect to the concentration of copper salt and pyrophosphate as those conventionally employed, for example as described in the abovementioned specifications. These electrolytes may contain other additives that are conventionally employed in this type of electrolyte in addition to the heterocyclic brighteners.
  • the electrolyte may be employed for plating metal articles in accordance with known procedures.
  • the invention is particularly surprising because the compounds which have been found effective are similar chemically to a number of compounds which had already been tested and found totally inefiective. These ineffective compounds include oxalic acid, tartaric acid, citric acid, formic acid, acetic acid, propionic acid, benzoic acid and phthalic acid.
  • Standard solutions were made by using 3 heterocyclic brighteners, namely 4 ppm. 2,5-dimercapto- 1,3,4-thiadiazole, 6 ppm. Z-mercaptobenzimidazole and 10 ppm.Z-mercaptobenzthiazole. The solutions were obtained at a pH of 8.8 at a temperature of 55 C.
  • Plating was carried out on brass panels in a standard l-lull cell with a mean current density of 30 amp per sq. ft. under air agitation.
  • Cinnamic acid Aurine tricarboxylic acid Hydroxyethyl cellulose lminodiacetic acid Malonic acid Sebacic acid Azelaic acid Suberic acid Maleic anhydride/polyisobutylene adduct (Na salt) 10. Oxalic acid 1 l. Citric acid 12. Tartaric acid 13. Formic acid 14. Acetic acid 15. Propionic acid 16. Benzoic acid 17. Phthalic acid Examples 1 to 9 provided excellent specular brightness with improved leveling and negligible step plating in each of the electrolytes. Comparative Examples 10 to 17 on the other hand, although providing high specular brightness in regions of high current density, gave rise to serious step plating.
  • a copper pyrophosphate electroplating electrolyte consisting essentially of an alkaline aqueous solution containing dissolved therein a copper salt and an alkali metal pyrophosphate in an amount at least sufiicient to form the complex salt X Cu(P O-,),, and a known heterocyclic brightening additive in an amount sufficient to provide bright electrodeposits selected from the group consisting of mercaptothiazoles, mercaptobenzthiazoles, mercaptothiadiazoles, mercaptopyrimidines, and mercaptoiminazoles, the improvement wherein said electrolyte also contains an auxiliary brightener selected from the group of step plating inhibitors consisting of imino diacetic acid, malonic acid, cinnamic acid, aurine tricarboxylic acid, aliphatic dicarboxylic acids having at least seven carbon atoms, salts of the aforesaid acids and hydroxyethyl cellulose in a concentration
  • heterocyclic brightener is selected from the group consisting of 2-mercaptothiazole, 2-mercaptonbenzthiazole, 2-mercaptothiadiazole, 2-mercaptopyrimidines, and Z-mercapto iminazole, in a concentration of from 1 to 10 ppm, and wherein said auxiliary brightener is in a concentration of from 2 to ppm.
  • auxiliary brightener is an adduct of maleic acid with a polyolephine having from 30 to carbon atoms.
  • the electrolyte of claim 2 brightener is azelaic acid.
  • the electrolyte of claim 2 brightener is suberic acid.
  • the electrolyte of claim 2 brightener is cinnamic acid.
  • the electrolyte of claim 2 brightener is aurine tricarboxylic acid.
  • aqueous copper phyrophosphate electrolyte wherein copper is electrodeposited from electrolyte consisting essentially of an alkaline aqueous solution containing dissolved therein a copper salt and an alkali metal pyrophosphate in an amount at least sufiicient to form the complex salt X Cu(P O and of a known heterocyclic brightening additive in an amount sufficient to provide bright electrodeposits selected from the group consisting of mercaptothiazoles, mercaptobenzthiazoles, mercaptothiadiazoles, mercaptopyrimidines, and mercaptoiminazoles, the improvement comprising admixing in said electrolyte at least one part per million of an auxiliary brightener selected from the group of step plating inhibitors consisting of imino diacetic acid, malonic acid, cinnimac acid, aurine tricarboxylic acid, aliphatic dicarboxylic acids having at least seven

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

A copper pyrophosphate electroplating bath contains a known heterocyclic additive in conjunction with an auxiliary brightener selected from iminodiacetic acid, cinammic acid, aliphatic acid, di- and poly- carboxylic acids having at least seven carbon atoms, salts of the aforesaid acids and hydroxyethylcellulose. The auxiliary brightener prevents step plating which is normally caused by the presence of the heterocyclic brightener.

Description

& llmte States Patent [151 3,674,660
Lyde July 4, 1972 [54] ELECTRODEPOSITION OF COPPER [56] References Cited [72] Inventor: Derek Martin Lyde, Stourbridge, England UNITED STATES PATENTS 73 Assignee; m & Wilson Limited, Oldbury near 2,195,409 4/1940 Flett ..204/49 X Birmingham, England 3 3/1943 2,700,019 1/1955 I22] hled. Aug. 14, 1970 116L575 IZHQM 3,341,433 9/l967 [2| I Appl. No: 63,954
Primary ExaminerG. L. Kaplan Related Apphcamn Data Attorney-Herbert H. Goodman [63] Continuation-impart of Ser. No. 724,225, April 25,
1968. [57] ABSTRACT 30 Foreign A fi fl P -i it Data A copper pyrophosphateelectroplating bath contains a known heterocychc additive in conjunction with an auxiliary y 1, 1967 Great Bmam 1 brightener selected from iminodiacetic acid, cinammic acid, aliphatic acid, diand polycarboxylic acids having at least i seven carbon atoms, salts of the aforesaid acids and hydrox- 58] g [52 R 52 44 1 yethylcellulose. The auxiliary brightener prevents step plating which is normally caused by the presence of the heterocyclic brightener.
13 Claims, No Drawings ELECTRODEPOSITION OF COPPER This application is a continuation-in-part application of copending application Ser. No. 724,225, filed Apr. 25, 1968, now abandoned. v
The present invention relates to improvements in the electrodeposition of copper.
It is known to carry out the electrodeposition of copper from alkaline solutions containing an alkali metal copper pyrophosphate complex of the formula X,Cu( 2 where X represents an alkali metal.
A characteristic feature of these plating solutions is that in conjunction with suitable brightening additives they may be used to form highly specular mirror bright finishes which do not require subsequent mechanical polishing. In this they differ from the conventional acid copper plating systems and from copper cyanide systems, which produce matt finishes. Brighteners used in the former solutions are intended to improve the specularity of the bright finish whereas those used in the latter systems are designed to make the matt finish more amenable to mechanical polishing.
Various heterocyclic compounds have been proposed as brightener additives for alkaline pyrophosphate electroplating compositions and some of these have found particular favor in the art. A group of these heterocyclic compounds is characterized by the presence of the grouping:
contained in a fiveor six-membered heterocyclic ring system where Q represents a nitrogen atom (either as a =-=Nor N-grouping) or a sulphur atom. Examples of these mercaptoheterocyclic compounds are described in UK. Specifications Nos. 939,997; 940,282 and 1,051,150.
Some of the aforementioned specifications refer to the optional presence in the electroplating composition of other organic compounds, such as simple aliphatic or hydroxyaliphatic carboxylic acids including oxalic, citric, tartaric, acetic, propionic and phthalic acids and wetting agents. Certain of these compounds are stated, for example in specification No. 1,051,150, to improve the grain refinement of the electrodeposited material and to reduce the anodic polarization. These additives were originally described in the early work on copper pyrophosphate baths, before the advent of heterocyclic brighteners. In practice, however, we have discovered that although these known carboxylic acid additives and wetting agents caused some slight improvements in the unbrightened copper pyrophosphate baths for which they were originally proposed, they do not produce any noticeable effect in the presence of heterocyclic brighteners. This may be because the heterocyclic brighteners introduce such a striking improvement in the specular brightness and appearance of the work as completely to overide any effects of these previously known additives. Certainly these additives, such as citric acid, have not in commercial practice been used in conjunction with the more successful heterocyclic brighteners.
The heterocyclic brighteners have one disadvantage-they tend to cause a plating defect called step plating. This arises when in consequence of reduction of current density across the surface of the workpiece, such as commonly occurs in practice with contoured surfaces, the thickness of the coating varies. in normal plating there may be a continuous variation of the thickness of the coating across the surface without affecting the appearance or quality of the work. In step plating there is a sharp division between an area of relatively thick plating of high specular brightness and an area of relatively thin plating of inferior quality. This tendency can be avoided by keeping the concentration of heterocyclic brightener small, but that imposes limitations on the amount by which the specular brightness is improved.
I have discovered that certain compounds may be used as auxiliary brighteners in conjunction with heterocyclic brighteners to provide higher levels of specular brightness with negligible tendency to step plating. An object of my invention is to inhibit the tendency of heterocyclic brighteners to cause step plating in copper pyrophosphate electroplating baths. A further object of my invention is to provide copper pyrophosphate electroplating baths which produce work of improved specular brightness. A further object of my invention is to provide copper pyrophosphate electroplating baths of improved levelling power.
The invention provides, in brightening compositions for addition to copper pyrophosphate electroplating baths and containing a heterocyclic brightener selected from the known group consisting of 2-mercaptothiazole, 2-mercap tobenzthiazole, Z-mercaptothiadiazole, Z-mercaptopyrimidine, Z-mercaptoiminazole, substituted homologs of the aforesaid heterocyclic brighteners and derivatives that form any of the aforesaid compounds when dissolved in copper pyrophosphate electroplating baths, the improvement which consists in that the brightening composition contains, in addition to the heterocyclic brightener, an auxiliary brightener selected from the group of step plating inhibitors consisting of aliphatic dicarboxylic and polycarboxylic acids having at least seven carbon atoms, malonic acid, cinammic acid, iminodiacetic acid,salts of the said acids and hydroxyethyl-cellulose.
The invention further provides an aqueous electrolyte for copper plating having dissolved therein a copper salt, an alkali metal pyrophosphate in an amount at least sufficient to form the complex X Cu(l O-,) where X represents an alkali metal, and a minor proportion of a brightening composition according to the invention. The invention also provides a process for the electrodeposition of copper using an aqueous electrolyte of the invention.
The heterocyclic brighteners for present use are exemplified by the mercapto-thiazole compounds described in specification No. 940,282, for example 2-mercapto-1, 3- thiazole and 2-mercapto-benthiazole; by the Z-mercapto- 1,3,4-thiadiazole compounds described in specification No. 939,997, for example 2,5-dimercapto-l,3,4-thiadiazole, 2- mercapto-5-methylmercapto-1,3,4-thiadiazole and 2-mercapto-5-n-butylmercapto-l,3,4-thiadiazole; and by the 2-mercapto-iminazole and Z-mercapto pyrimidines described in specification No. 1,051,150, for example Z-mercapto-lmethyliminazole, 2-mercaptopyrimidine, 6-hydroxy-2 mercaptopyrimidine and 6-hydroxy-2-mercapto-4-methylpyrimidine. Also included among the classes of brighteners are precursors of the compounds described above. By precursor is meant herein a compound which when dissolved in the copper pyrophosphate electrolyte provides in solution a compound containing the structure (II). For example there may be used mercapto salts, or heterocyclic disulphides containing the grouping:
(III) The auxiliary brighteners for present use are for the most part acids which will normally be used as sodium, potassium, or ammonium salts.
There may be used, usually in the form of water-soluble salts, organic diand poly-carboxylic acids or anhydrides thereof having more than seven carbon atoms. As examples of these compounds there can be mentioned suberic acid, azelaic acid, and sebacic acid as well as adducts of the type formed when a dienophilic carboxylic acid such as maleic anhydride is condensed with a conjugally unsaturated hydrocarbon such as polyiso-butylene, for example the alkylor alkenyl-substituted succinic acids and anhydrides wherein the alkyl or alkenyl group contains from 30-150 carbon atoms.
Normally the heterocyclic brightening agent is employed in a proportion of at least 0.001 grams per liter of the total weight of electrolyte and preferably from 1 to mg. per liter. The optimum concentration may vary from 2 to 4 mg. per liter depending upon the nature of the auxiliary brightener present. Normally the auxiliary brightener is employed in a proportion of from 1 ppm to saturation, preferably from 2 to 100 ppm, for example 3 to 6 ppm.
It is preferred that the copper plating electrolytes of the invention have a similar constitution with respect to the concentration of copper salt and pyrophosphate as those conventionally employed, for example as described in the abovementioned specifications. These electrolytes may contain other additives that are conventionally employed in this type of electrolyte in addition to the heterocyclic brighteners. The electrolyte may be employed for plating metal articles in accordance with known procedures.
The invention is particularly surprising because the compounds which have been found effective are similar chemically to a number of compounds which had already been tested and found totally inefiective. These ineffective compounds include oxalic acid, tartaric acid, citric acid, formic acid, acetic acid, propionic acid, benzoic acid and phthalic acid.
The invention is illustrated by the following examples wherein there were employed electrolytes of the following constitution:
Copper pyrophosphate 94 g/l, potassium pyrophosphate 300 g/l, ammonia 1 g/l. Standard solutions were made by using 3 heterocyclic brighteners, namely 4 ppm. 2,5-dimercapto- 1,3,4-thiadiazole, 6 ppm. Z-mercaptobenzimidazole and 10 ppm.Z-mercaptobenzthiazole. The solutions were obtained at a pH of 8.8 at a temperature of 55 C. Plating was carried out on brass panels in a standard l-lull cell with a mean current density of 30 amp per sq. ft. under air agitation.
Tests were repeated with the three standard electrolytes containing the following auxiliary brighteners at a concentration of 10 ppm;
. Cinnamic acid Aurine tricarboxylic acid Hydroxyethyl cellulose lminodiacetic acid Malonic acid Sebacic acid Azelaic acid Suberic acid Maleic anhydride/polyisobutylene adduct (Na salt) 10. Oxalic acid 1 l. Citric acid 12. Tartaric acid 13. Formic acid 14. Acetic acid 15. Propionic acid 16. Benzoic acid 17. Phthalic acid Examples 1 to 9 provided excellent specular brightness with improved leveling and negligible step plating in each of the electrolytes. Comparative Examples 10 to 17 on the other hand, although providing high specular brightness in regions of high current density, gave rise to serious step plating.
It was found that Examples 1 to 9, when tested in an electrolyte containing no heterocyclic brightener, either gave no detectable improvement, or else were actually disadvantageous.
We claim:
1. In a copper pyrophosphate electroplating electrolyte consisting essentially of an alkaline aqueous solution containing dissolved therein a copper salt and an alkali metal pyrophosphate in an amount at least sufiicient to form the complex salt X Cu(P O-,),, and a known heterocyclic brightening additive in an amount sufficient to provide bright electrodeposits selected from the group consisting of mercaptothiazoles, mercaptobenzthiazoles, mercaptothiadiazoles, mercaptopyrimidines, and mercaptoiminazoles, the improvement wherein said electrolyte also contains an auxiliary brightener selected from the group of step plating inhibitors consisting of imino diacetic acid, malonic acid, cinnamic acid, aurine tricarboxylic acid, aliphatic dicarboxylic acids having at least seven carbon atoms, salts of the aforesaid acids and hydroxyethyl cellulose in a concentration effective to inhibit step plating.
2. The electrolyte of claim 1 wherein said heterocyclic brightener is selected from the group consisting of 2-mercaptothiazole, 2-mercaptonbenzthiazole, 2-mercaptothiadiazole, 2-mercaptopyrimidines, and Z-mercapto iminazole, in a concentration of from 1 to 10 ppm, and wherein said auxiliary brightener is in a concentration of from 2 to ppm.
3. The electrolyte of claim 2 wherein said auxiliary brightener is an adduct of maleic acid with a polyolephine having from 30 to carbon atoms.
4. The electrolyte of claim 3 wherein said polyolephine is polyisobutylene.
5. The electrolyte of claim 2 wherein said auxiliary brightener is sebacic acid.
6. The electrolyte of claim 2 brightener is azelaic acid.
7. The electrolyte of claim 2 brightener is suberic acid.
8. The electrolyte of claim 2 brightener is cinnamic acid.
9. The electrolyte of claim 2 brightener is aurine tricarboxylic acid.
10. The electrolyte of claim 2 wherein brightener is hydroxyethyl cellulose.
11. The electrolyte of claim 2 wherein brightener is iminodiacetic acid.
12. The electrolyte of claim 9 wherein brightener is malonic acid.
13. In a process for electrodepositing bright copper from an aqueous copper phyrophosphate electrolyte wherein copper is electrodeposited from electrolyte consisting essentially of an alkaline aqueous solution containing dissolved therein a copper salt and an alkali metal pyrophosphate in an amount at least sufiicient to form the complex salt X Cu(P O and of a known heterocyclic brightening additive in an amount sufficient to provide bright electrodeposits selected from the group consisting of mercaptothiazoles, mercaptobenzthiazoles, mercaptothiadiazoles, mercaptopyrimidines, and mercaptoiminazoles, the improvement comprising admixing in said electrolyte at least one part per million of an auxiliary brightener selected from the group of step plating inhibitors consisting of imino diacetic acid, malonic acid, cinnimac acid, aurine tricarboxylic acid, aliphatic dicarboxylic acids having at least seven carbon atoms, salts of the aforesaid acids and hydroxyethyl cellulose.
wherein said auxiliary wherein said auxiliary wherein said auxiliary wherein said auxiliary said auxiliary said auxiliary said auxiliary

Claims (12)

  1. 2. The electrolyte of claim 1 wherein said heterocyclic brightener is selected from the group consisting of 2-mercaptothiazole, 2-mercaptonbenzthiazole, 2-mercaptothiadiazole, 2-mercaptopyrimidines, and 2-mercapto iminazole, in a concentration of from 1 to 10 ppm, and wherein said auxiliary brightener is in a concentration of from 2 to 100 ppm.
  2. 3. The electrolyte of claim 2 wherein said auxiliary brightener is an adduct of maleic acid with a polyolephine having from 30 to 150 carbon atoms.
  3. 4. The electrolyte of claim 3 wherein said polyolephine is polyisobutylene.
  4. 5. The electrolyte of claim 2 wherein said auxiliary brightener is sebacic acid.
  5. 6. The electrolyte of claim 2 wherein said auxiliary brightener is azelaic acid.
  6. 7. The electrolyte of claim 2 wherein said auxiliary brightener is suberic acid.
  7. 8. The electrolyte of claim 2 wherein said auxiliary brightener is cinnamic acid.
  8. 9. The electrolyte of claim 2 wherein said auxiliary brightener is aurine tricarboxylic acid.
  9. 10. The electrolyte of claim 2 wherein said auxiliary brightener is hydroxyethyl cellulose.
  10. 11. The electrolyte of claim 2 wherein said auxiliary brightener is iminodiacetic acid.
  11. 12. The electrolyte of claim 9 wherein said auxiliary brightener is malonic acid.
  12. 13. In a process for electrodepositing bright copper from an aqueous copper phyrophosphate electrolyte wherein copper is electrodeposited from electrolyte consisting essentially of an alkaline aqueous solution containing dissolved therein a copper salt and an alkali metal pyrophosphate in an amount at least sufficient to form the complex salt X6Cu(P2O7)2, and of a known heterocyclic brightening additive in an amount sufficient to provide bright electrodeposits selected from the group consisting of mercaptothiazoles, mercaptobenzthiazoles, mercaptothiadiazoles, mercaptopyrimidines, and mercaptoiminazoles, the improvement comprising admixing in said electrolyte at least one part per million of an auxiliary brightener selected from the group of step plating inhibitors consisting of imino diacetic acid, malonic acid, cinnimac acid, aurine tricarboxylic acid, aliphatic dicarboxylic acids having at least seven carbon atoms, salts of the aforesaid acids and hydroxyethyl cellulose.
US63954A 1967-05-01 1970-08-14 Electrodeposition of copper Expired - Lifetime US3674660A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB09989/67A GB1235101A (en) 1967-05-01 1967-05-01 Improvements relating to electrodeposition of copper

Publications (1)

Publication Number Publication Date
US3674660A true US3674660A (en) 1972-07-04

Family

ID=10138480

Family Applications (3)

Application Number Title Priority Date Filing Date
US63954A Expired - Lifetime US3674660A (en) 1967-05-01 1970-08-14 Electrodeposition of copper
US00132236A Expired - Lifetime US3729393A (en) 1967-05-01 1971-04-07 Electrodeposition of copper
US00209004A Expired - Lifetime US3784454A (en) 1967-05-01 1971-12-16 Additive for the electrodeposition of copper

Family Applications After (2)

Application Number Title Priority Date Filing Date
US00132236A Expired - Lifetime US3729393A (en) 1967-05-01 1971-04-07 Electrodeposition of copper
US00209004A Expired - Lifetime US3784454A (en) 1967-05-01 1971-12-16 Additive for the electrodeposition of copper

Country Status (8)

Country Link
US (3) US3674660A (en)
BE (1) BE714454A (en)
DE (1) DE1771228C3 (en)
ES (1) ES353094A1 (en)
FR (1) FR1564283A (en)
GB (1) GB1235101A (en)
NL (1) NL6805947A (en)
SE (1) SE332744B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4948474A (en) * 1987-09-18 1990-08-14 Pennsylvania Research Corporation Copper electroplating solutions and methods
US5051154A (en) * 1988-08-23 1991-09-24 Shipley Company Inc. Additive for acid-copper electroplating baths to increase throwing power
GB2262288A (en) * 1991-11-27 1993-06-16 Hitachi Metals Ltd Copper electroplated permanent magnet of rare-earth element/transition metal system
WO1997049549A1 (en) * 1996-06-26 1997-12-31 Park Electrochemical Corporation A process for producing polytetrafluoroethylene (ptfe) dielectric boards on metal plates
US20030010646A1 (en) * 1999-05-17 2003-01-16 Barstad Leon R. Electrolytic copper plating solutions
US20030094376A1 (en) * 2000-12-20 2003-05-22 Shipley Company, L.L.C. Electrolytic copper plating solution and method for controlling the same
US6709564B1 (en) * 1999-09-30 2004-03-23 Rockwell Scientific Licensing, Llc Integrated circuit plating using highly-complexed copper plating baths
CN103173812A (en) * 2013-03-21 2013-06-26 山东金宝电子股份有限公司 Mixed additive for removing internal stress of electrolytic copper foil and method for producing low-stress copper foil
SE2150946A1 (en) * 2021-07-15 2023-01-16 Seolfor Ab Compositions, methods and preparations of cyanide-free copper solutions, suitable for electroplating of copper deposits and alloys thereof

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5167234A (en) * 1974-12-09 1976-06-10 Hitachi Ltd PIRORINSANDOMETSUKIZEIKAHIMAKUBOSHIHO
US4134803A (en) * 1977-12-21 1979-01-16 R. O. Hull & Company, Inc. Nitrogen and sulfur compositions and acid copper plating baths
US4877518A (en) * 1988-05-02 1989-10-31 Phillips Petroleum Company Ore flotation employing dimercaptothiadiazoles
US4966688A (en) * 1988-06-23 1990-10-30 Phillips Petroleum Company Ore flotation employing amino mercaptothiadiazoles
EP0442187B1 (en) * 1990-02-16 1994-02-02 Furukawa Circuit Foil Co., Ltd. Method of making electrodeposited copper foil
US5252196A (en) * 1991-12-05 1993-10-12 Shipley Company Inc. Copper electroplating solutions and processes
US5730854A (en) * 1996-05-30 1998-03-24 Enthone-Omi, Inc. Alkoxylated dimercaptans as copper additives and de-polarizing additives
AU2003248060A1 (en) 2003-07-11 2005-01-28 Shishiai-Kabushikigaisha Cooling fluid composition for fuel battery
EP1698678A1 (en) * 2003-12-25 2006-09-06 Shishiai-Kabushikigaisha Heat carrier composition
WO2010055825A1 (en) * 2008-11-11 2010-05-20 ユケン工業株式会社 Zincate zinc plating bath
WO2010092579A1 (en) * 2009-02-12 2010-08-19 Technion Research & Development Foundation Ltd. A process for electroplating of copper

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2195409A (en) * 1936-07-31 1940-04-02 Nat Aniline & Chem Co Inc Electrodeposition
US2437865A (en) * 1943-09-25 1948-03-16 United Chromium Inc Method of electrodepositing copper and baths and compositions therefor
US2700019A (en) * 1951-07-05 1955-01-18 Westinghouse Electric Corp Acid copper plating
US3161575A (en) * 1960-07-23 1964-12-15 Albright & Wilson Mfg Ltd Copper pyrophosphate electroplating solutions
US3341433A (en) * 1964-05-01 1967-09-12 M & T Chemicals Inc Electrodeposition of nickel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2195409A (en) * 1936-07-31 1940-04-02 Nat Aniline & Chem Co Inc Electrodeposition
US2437865A (en) * 1943-09-25 1948-03-16 United Chromium Inc Method of electrodepositing copper and baths and compositions therefor
US2700019A (en) * 1951-07-05 1955-01-18 Westinghouse Electric Corp Acid copper plating
US3161575A (en) * 1960-07-23 1964-12-15 Albright & Wilson Mfg Ltd Copper pyrophosphate electroplating solutions
US3341433A (en) * 1964-05-01 1967-09-12 M & T Chemicals Inc Electrodeposition of nickel

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4948474A (en) * 1987-09-18 1990-08-14 Pennsylvania Research Corporation Copper electroplating solutions and methods
US5051154A (en) * 1988-08-23 1991-09-24 Shipley Company Inc. Additive for acid-copper electroplating baths to increase throwing power
GB2262288A (en) * 1991-11-27 1993-06-16 Hitachi Metals Ltd Copper electroplated permanent magnet of rare-earth element/transition metal system
US5314756A (en) * 1991-11-27 1994-05-24 Hitachi Metals, Ltd. Permanent magnet of rare-earth-element/transition-metal system having improved corrosion resistance and manufacturing method thereof
GB2262288B (en) * 1991-11-27 1995-10-11 Hitachi Metals Ltd Permanent magnet of rare-earth element/transition metal system
WO1997049549A1 (en) * 1996-06-26 1997-12-31 Park Electrochemical Corporation A process for producing polytetrafluoroethylene (ptfe) dielectric boards on metal plates
US20030010646A1 (en) * 1999-05-17 2003-01-16 Barstad Leon R. Electrolytic copper plating solutions
US6709564B1 (en) * 1999-09-30 2004-03-23 Rockwell Scientific Licensing, Llc Integrated circuit plating using highly-complexed copper plating baths
US20030094376A1 (en) * 2000-12-20 2003-05-22 Shipley Company, L.L.C. Electrolytic copper plating solution and method for controlling the same
US6881319B2 (en) * 2000-12-20 2005-04-19 Shipley Company, L.L.C. Electrolytic copper plating solution and method for controlling the same
CN103173812A (en) * 2013-03-21 2013-06-26 山东金宝电子股份有限公司 Mixed additive for removing internal stress of electrolytic copper foil and method for producing low-stress copper foil
CN103173812B (en) * 2013-03-21 2015-12-09 山东金宝电子股份有限公司 A kind ofly eliminate the mixed additive of electrolytic copper foil internal stress and the method for the production of low-stress Copper Foil
SE2150946A1 (en) * 2021-07-15 2023-01-16 Seolfor Ab Compositions, methods and preparations of cyanide-free copper solutions, suitable for electroplating of copper deposits and alloys thereof
SE545031C2 (en) * 2021-07-15 2023-03-07 Seolfor Ab Compositions, methods and preparations of cyanide-free copper solutions, suitable for electroplating of copper deposits and alloys thereof

Also Published As

Publication number Publication date
DE1771228A1 (en) 1973-04-26
NL6805947A (en) 1968-11-04
US3729393A (en) 1973-04-24
SE332744B (en) 1971-02-15
DE1771228B2 (en) 1974-01-24
US3784454A (en) 1974-01-08
GB1235101A (en) 1971-06-09
FR1564283A (en) 1969-04-18
BE714454A (en) 1968-09-16
DE1771228C3 (en) 1974-08-22
DE1796337A1 (en) 1974-02-28
ES353094A1 (en) 1969-10-01
DE1796337B2 (en) 1976-09-02

Similar Documents

Publication Publication Date Title
US3674660A (en) Electrodeposition of copper
US3785939A (en) Tin/lead plating bath and method
US3905878A (en) Electrolyte for and method of bright electroplating of tin-lead alloy
US4098656A (en) Bright palladium electroplating baths
US2647866A (en) Electroplating of nickel
US4054494A (en) Compositions for use in chromium plating
US2663684A (en) Method of and composition for plating copper
US2191813A (en) Electrodeposition of nickel from an acid bath
US3318787A (en) Electrodeposition of zinc
US3000800A (en) Copper-electroplating baths
US4699696A (en) Zinc-nickel alloy electrolyte and process
US4176017A (en) Brightening composition for acid zinc electroplating bath and process
US4179343A (en) Electroplating bath and process for producing bright, high-leveling nickel iron electrodeposits
GB2152535A (en) Zinc and zinc alloy electroplating
US3729394A (en) Composition and method for electrodeposition of zinc
US4251331A (en) Baths and additives for the electroplating of bright zinc
US2700020A (en) Plating copper
US2678910A (en) Electroplating of nickel
US2196588A (en) Electroplating
US2648627A (en) Bright nickel plating composition and process
US2809156A (en) Electrodeposition of iron and iron alloys
US2859159A (en) Bright copper plating bath containing mixtures of metal compounds
US3580821A (en) Bright silver electroplating
US4297179A (en) Palladium electroplating bath and process
US2648628A (en) Electroplating of nickel