US3674632A - Process for moisture stabilizing cellulosic sheet material using a polyoxyalkylene glycol and a polyoxyethylene-oxypropylene glycol block polymer - Google Patents
Process for moisture stabilizing cellulosic sheet material using a polyoxyalkylene glycol and a polyoxyethylene-oxypropylene glycol block polymer Download PDFInfo
- Publication number
- US3674632A US3674632A US856201A US3674632DA US3674632A US 3674632 A US3674632 A US 3674632A US 856201 A US856201 A US 856201A US 3674632D A US3674632D A US 3674632DA US 3674632 A US3674632 A US 3674632A
- Authority
- US
- United States
- Prior art keywords
- glycol
- paper
- moisture
- sheet material
- block polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 title abstract description 94
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 title abstract description 44
- 239000000463 material Substances 0.000 title abstract description 44
- 229920000642 polymer Polymers 0.000 title abstract description 35
- -1 polyoxyethylene-oxypropylene Polymers 0.000 title abstract description 33
- 238000000034 method Methods 0.000 title abstract description 20
- 230000000087 stabilizing effect Effects 0.000 title description 12
- 239000000203 mixture Substances 0.000 abstract description 42
- 238000010521 absorption reaction Methods 0.000 abstract description 16
- 239000003381 stabilizer Substances 0.000 abstract description 8
- 239000000123 paper Substances 0.000 description 64
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 13
- 239000000243 solution Substances 0.000 description 12
- 238000012545 processing Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 230000002708 enhancing effect Effects 0.000 description 5
- 230000035515 penetration Effects 0.000 description 5
- 229920005862 polyol Polymers 0.000 description 5
- 150000003077 polyols Chemical class 0.000 description 5
- 229920006395 saturated elastomer Polymers 0.000 description 5
- 238000000576 coating method Methods 0.000 description 4
- 239000002657 fibrous material Substances 0.000 description 4
- 150000002334 glycols Chemical class 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- 125000006353 oxyethylene group Chemical group 0.000 description 4
- 238000011282 treatment Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 238000007598 dipping method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000000485 pigmenting effect Effects 0.000 description 3
- 229920001983 poloxamer Polymers 0.000 description 3
- 229920001451 polypropylene glycol Polymers 0.000 description 3
- 238000004513 sizing Methods 0.000 description 3
- RVGRUAULSDPKGF-UHFFFAOYSA-N Poloxamer Chemical compound C1CO1.CC1CO1 RVGRUAULSDPKGF-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 239000002655 kraft paper Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- ZBJVLWIYKOAYQH-UHFFFAOYSA-N naphthalen-2-yl 2-hydroxybenzoate Chemical compound OC1=CC=CC=C1C(=O)OC1=CC=C(C=CC=C2)C2=C1 ZBJVLWIYKOAYQH-UHFFFAOYSA-N 0.000 description 2
- 239000011087 paperboard Substances 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 230000037303 wrinkles Effects 0.000 description 2
- 229940058015 1,3-butylene glycol Drugs 0.000 description 1
- 241000859095 Bero Species 0.000 description 1
- 235000018185 Betula X alpestris Nutrition 0.000 description 1
- 235000018212 Betula X uliginosa Nutrition 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 240000000731 Fagus sylvatica Species 0.000 description 1
- 235000010099 Fagus sylvatica Nutrition 0.000 description 1
- 241000218657 Picea Species 0.000 description 1
- 229920001131 Pulp (paper) Polymers 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 239000011111 cardboard Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 235000011194 food seasoning agent Nutrition 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000003020 moisturizing effect Effects 0.000 description 1
- 238000007645 offset printing Methods 0.000 description 1
- 239000011022 opal Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- CZMAXQOXGAWNDO-UHFFFAOYSA-N propane-1,1,2-triol Chemical compound CC(O)C(O)O CZMAXQOXGAWNDO-UHFFFAOYSA-N 0.000 description 1
- DNIAPMSPPWPWGF-UHFFFAOYSA-N propylene glycol Substances CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 1
- 239000013055 pulp slurry Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 239000012085 test solution Substances 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/20—Macromolecular organic compounds
- D21H17/33—Synthetic macromolecular compounds
- D21H17/46—Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D21H17/53—Polyethers; Polyesters
Definitions
- a moisture-stabilizing composition is provided for cellulosic sheet material, such as paper, comprising a polyoxyalkylene glycol as a moisture-stabilizer, and a polyoxyethylene-oxypropylene glycol block polymer, to enhance the rate of absorption of the polyoxyalkylene glycol in the sheet material.
- a process for moisture-stabilizing cellulosic sheet material also is provided, which comprises incorporating such a composition in the cellulosic material.
- This invention relates to moisture-stabilizing composition for cellulosic sheet materials, and to a process for stabilizing cellulosic sheet materials against changes in physical dimensions with variations in air humidity, and more particularly to a moisture-stabilizing composition comprising a polyoxyalkylene-glycol moisture stabilizer, and a polyoxyethylene oxypropylene glycol block polymer, enhancing the rate of absorption of the composition, and to a process for enhancing the moisture stability of cellulosic sheet material by applying such a composition thereto.
- Variations in the moisture content of photographic paper, Ozalid paper, Xerox paper, and copy paper for the Thermofax process result in defective copies, distorted image's, and possible stoppage of the equipment, due to paper jams.
- High molecular weight polyols such as the polyoxyalkylene glycols
- these materials because of their high molecular weight are only slowly absorbed in the cellulosic sheet material, and consequently they are not very satisfactory, unless they are applied to the paper long in advance of processing. There simply is not time, when the paper is being processed through high speed machinery, to apply the polyoxyalkylene glycol or other high molecular weight material and wait for it to be absorbed by the paper in a sufiicient amount to impart the desired degree of moisture stability.
- a moisture stabilizing composition is provided that is characterized by a high rate of absorption in cellulosic fibrous material, and a low volatility.
- this composition can be applied to cellulosic sheet material in high speed machinery, with assurance that it will be absorbed quickly enough and in large enough amount to impart the degree of moisture stability desired for later processing of the sheet. It can also be applied to the cellulosic fibrous material before it is put in sheet form, such as to the cellulosic pulp, to the cellulosic fibers in the beater or in the furnish, or at any stage in the processing prior to or during sheet formation.
- the polyoxyethyleneoxypropylene glycol block polymer has the function of enhancing the moisture stabilizing effectiveness of the polyoxyalkylene glycol.
- the strength of the treated paper will be greater than if the composition is added to cellulose material in sheet form.
- the composition of polyoxyalkylene glycol moisture stabilizer and polyoxyethylene-oxypropylene glycol block polymer is incorporated in the cellulosic fibrous material, in the course of which the block polymer both enhances the rate of absorption of the polyoxyalkylene glycol and also may enhance its moisture stabilizing effectiveness.
- the sheet material is found to have good moisture stability.
- the moisture stabilizing compositions of the invention are based on a polyoxyalkylene glycol as the moisturestabilizing agent, and a polyoxyethylene-oxypropylene glycol block polymer to enhance the rate of penetration of the polyoxyalkylene glycol in the cellulosic sheet material, and in some cases enhance its moisture-stabilizing effectiveness.
- the polyoxyalkylene glycol block polymer although itself a polyoxyalkylene glycol, is rather different in structure, and has very different and synergizing effectiveness.
- the polyoxyethylene-oxypropylene glycol block polymer has a central core of a polyoxypropylene glycol polymer, to one or both the terminal hydroxyls of which are attached polyoxyethylene block polymer units, themselves terminating in hydroxyl groups.
- These block polymers are known materials, and are described in U.S. Pat. 'No. 2,674,619, issued Apr. 6, 1954, to L. G. Lundsted. They are defined by the general formula:
- n and m have values such that the oxyethylene groups constitute from 20 to 90% by weight of the compound, and either m or m can be zero.
- 11 is an integer corresponding to the number of C H O units, and the value of n is such that the molecular weight of the compound, exclusive of the oxyethylene units, is at least 900, as determined by hydroxyl number.
- p is an integer of one or more.
- block polymers are prepared by condensation of ethylene oxide with a polyoxypropylene glycol of at least 900 molecular weight. Other details on the preparation and characteristics of these compounds are found in U.S. Pat. No. 2,674,619.
- the sum of m, and m is within the range from 2 to 20, n is a number within the range from 1 to 25, p is a number within the range from 1 to 5, and the average molecular weight of the block polymer is within the range from about 1000 to about 5000.
- Block polymers of this type are available in commerce under the trademarks Pluronics and Berol.
- the Pluronics are identified by a letter L, P or F, and a number.
- the letter identifies the physical form, L for liquids, P for pastes, and S for solid forms hard enough to be flaked.
- the first digit or digits identify the typical molecular weight of the polyoxypropylene base, and the last digit indicatees the approximate percent of ethylene oxide in the total molecule.
- Available Pluronics that can be used in the compositions of the invention and their characteristics are shown in Table I.
- polyoxyalkylene glycols that are employed as moisture stabilizing agents correspond to the general formula:
- R is a hydrogen or methyl
- n has a value ranging from 1 to about 3
- n has a value within the range from about to about 350.
- the polyoxyalkylene glycol should be water-soluble, and can have a molecular weight within the range from about 150 to about 10,000.
- Exemplary polyoxyalkylene glycols are polyoxyethylene glycol, polyoxy-1,2-propylene glycol, polyoxy-1,2-butylene glycol, polyoxy-l,3-propylene glycol, polyoxy-1,4-butylene glycol, and polyoxy-1,3-butylene glycol.
- the relative proportions of the polyoxyalkylene glycol and the polyoxyalkylene glycol block polymer are in no way critical. However, there is no reason to employ more of the block polymer than is necessary to sufficiently enhance to the desired degree the rate of penetration of the cellulosic sheet material by the polyoxyalkylene glycol. In general, a considerably enhanced rate of absorption is observed when the amount of block polymer is as small as 1.0% by weight of the polyoxyalkylene glycol. The effect increases as the amount has increased, and reaches a practical maximum at approximately 2.5 to by weight of the polyoxyalkylene glycol.
- the invention is applicable to cellulosic sheet material of all kinds. It is of particular application to paper, paperboard, corrugated paperboard, Kraft paper, Kraft liner board, cardboard, and carton board.
- the type of cellulosic material can be widely varied also, and excellent effects will be found using papers of high rag content, as well as papers composed entirely of cellulosic pulp.
- Cellulosic sheet material derived from any pulp can be improved, including spruce pulp, pinewood pulp, beech pulp, birch pulp, and other wood pulp. The material can be bleached or unbleached, as desired.
- the composition of the invention is easily applied to the cellulosic sheet material from an aqueous solution.
- concentration of the solution is chosen so as to give the desired amount of polyoxyalkylene glycol on the paper following the treatment.
- the composition can be applied by dipping or immersion, by spraying or by brushing, or by other conventional techniques, as will be apparent to those skilled in this art. If dipping or immersion is used, the cellulosic sheet material can be pressed or squeezed so as to reduce the amount of solution absorbed to the desired pick-up. If desired, cellulosic material can then be dried, at room temperature, or in an oven.
- the moisture-stabilizing compositions of the invention can also be applied to the cellulosic material at any stage in the processing from pulp to sheet, such as in the pulp slurry or paper furnish, to the cellulosic fibers after sheetforming, during or after dewatering and laydown or the Fourdrinier wire, before, during and after drying of the sheet and before, during or after pressing. They can also be applied in conjunction with other treatments, such as during sizing, pigmenting, coating, moisturizing or seasoning, or wet-strength treating.
- the compositions are quite versatile in their application. Their unusually high rate of absorption is however observed only when applied to cellulosic fibrous material in sheet or bulk form, and not of course when applied to aqueous suspensions or furnishes thereof.
- polyoxyalkyleneg lycol block polymers of the invention is apparently unique, and is not displayed by other wetting agents or detergents.
- Such materials in combination with polyoxyalkylene glycols cause an undesired hygroscopicity and rewetting power in the cellulosic sheet material, and moreover do not give the noted increase in the rate of absorption in the polyoxyalkylene glycol by the sheet material.
- EXAMPLES 1 TO 3 A number of polyoxyethylene glycol moisture stabilizing compositions were tested, using paper sheet of unbleached quality, Dynapac extensible Clupac paper. The paper was dipped for two seconds in a 20% by weight aqueous solution of the polyoxyethylene glycol compositions shown in Table H below, after which excess solution was removed in a roll press. The sheets were allowed to dry for twentyfour hours in an oven held at C. The sheets were airconditioned weighed before and after the treatment, and the weights compared. The difference in weight is shown in Table II as the absorbed amount of polyethylene glycol, expressed in percent by weight of the dried paper.
- a polyoxyethylene-oxypropylene glycol, molecular weight cent ethylene oxide is A polyoxyethylene-oxypropylene glycol, molecular weight cent ethylene oxide.
- Example 1 doubles the rate of absorption of the polyoxyethylene glycol 400, as compared to Control A, because twice the amount was absorbed in the same time.
- Ethylene glycol in Control B only very slightly increased the rate of absorption of polyoxyethylene glycol, in contrast.
- Example 2 Similar results are shown in Example 2 for polyoxyethylene glycol 1500 as compared to Controls C and D, and in Example 3 for polyoxyethylene glycol 4000, as compared to Controls E and F.
- the time is measured from the time the sheet is placed on the surface of the solution until the light is no longer visible to the same extent, and undergoes no further diminution in intensity. After 120 seconds, if the paper was still not saturated, the test was discontinued and the result taken as over 120 seconds.
- the addition of a polyoxyethylene glycol moisture stabilizing composition during different stages of the manufacture of paper on the paper machine was also tested.
- the paper manufactured during these tests was an MG grade.
- the moisture stabilizing composition was an aqueous solution of polyoxyethylene glycol 400 (97%) and Berol TVM 370 block polymer (3%).
- the control samples (P and Q) were prepared in an identical manner, except for the substitution of plain water for the moisture stabilizing composition.
- EXAM PL'E 2 1 In the press part of the paper machine, when the paper had a dry content of about 30% (the second press), a 20% water solution of the moisture stabilizer composition, described above, was sprayed onto the upper press roll using a sprinkler tube fed by a proportioning pump.
- EXAMPLE 22 In the size press of the paper machine, when the paper had a dry content of about 95%, the paper was treated with a 5% water solution of the moisture stabilizer composition, described above. The physical properties of the paper product for each Example were determined, and are tabulated in Table V, below.
- the moisture stabilization of the paper was tested according to the following method:
- An elastic adhesive is applied on one side of samples of dry test sheets of the paper prepared according to the above examples.
- the paper sheets are mounted on a flat board plate.
- the test pieces are exposed to a 65% relative humidity during a period of 24 hours.
- the test sheets of Examples 21 and 22 showed no change in appearance following this exposure to the humid conditions.
- the controls P and Q were blistered and showed surface unevenness.
- R is selected from the group consisting of hydrogen and methyl, n; has a value within the range from about 1 to about 3, and n has a value within the range from about 5 to about 350, and a polyoxyethylene-oxypropylene glycol block polymer having the formula wherein m, and m have values such that the oxyethylene groups constitute from 20% to by weight of the compound and either m, or m can be zero, n is an integer corresponding to the number of C H O units, and has a value such that the molecular weight of the compound exclusive of the oxyethylene units is at least 900 as determined by hydroxyl number, and p is an integer of one or more, the block polymer both enhancing the rate of absorption of the polyoxyalkylene glycol and also enhancing its moisture stabilizing effectiveness.
- composition is applied to paper by dipping in an aqueous solution of the composition.
- composition is applied to paper during the sheet-forming, dewatering and couching on a paper machine.
- composition is applied to paper on the paper machine in connection with surface-sizing, pigmenting, or coating processes.
- composition is applied to paper in connection with surface treatment in a paper machine.
- composition is applied to paper in connection with and by means of surface-sizing pigmenting, or coating processes in separate operations outside the paper machine.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Paper (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE12172/68A SE322412B (enrdf_load_html_response) | 1968-09-10 | 1968-09-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3674632A true US3674632A (en) | 1972-07-04 |
Family
ID=20295280
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US856201A Expired - Lifetime US3674632A (en) | 1968-09-10 | 1969-09-08 | Process for moisture stabilizing cellulosic sheet material using a polyoxyalkylene glycol and a polyoxyethylene-oxypropylene glycol block polymer |
Country Status (8)
Country | Link |
---|---|
US (1) | US3674632A (enrdf_load_html_response) |
DE (1) | DE1944159A1 (enrdf_load_html_response) |
DK (1) | DK122825B (enrdf_load_html_response) |
FI (1) | FI51970C (enrdf_load_html_response) |
FR (1) | FR2018000A1 (enrdf_load_html_response) |
GB (1) | GB1281914A (enrdf_load_html_response) |
NO (1) | NO123902B (enrdf_load_html_response) |
SE (1) | SE322412B (enrdf_load_html_response) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4096311A (en) * | 1975-10-31 | 1978-06-20 | Scott Paper Company | Wipe dry improvement of non-woven, dry-formed webs |
US4341597A (en) * | 1979-05-04 | 1982-07-27 | Rockwool Ab | Fibrous material having good dimensional and heat stability |
US4600462A (en) * | 1981-09-29 | 1986-07-15 | James River/Dixie-Northern, Inc. | Incorporation of a hydrophile in fibrous webs to enhance absorbency |
US4766030A (en) * | 1985-08-21 | 1988-08-23 | Hervey Laurence R B | Oxonated poly(alkylene oxide) surface treatment agents |
DE4105886A1 (de) * | 1990-02-26 | 1991-08-29 | Brown & Williamson Tobacco | Verfahren zum behandeln von pappe sowie ein pappebogen und ein aus dem pappebogen hergestellter behaelter |
US5176795A (en) * | 1990-02-26 | 1993-01-05 | Brown & Williamson Tobacco Corporation | Water resistant paperboard and method of making same |
US5298335A (en) * | 1992-08-28 | 1994-03-29 | P. H. Glatfelter Company | Method for making coated paper and a paper coating composition |
FR2719060A1 (fr) * | 1994-04-20 | 1995-10-27 | Keskuslaboratorio | Méthode destinée à protéger les produits lignocellulosiques contre le jaunissement. |
US5589034A (en) * | 1993-12-16 | 1996-12-31 | Kimberly-Clark Corporation | Polymer-reinforced paper having improved cross-direction tear |
WO1997013922A1 (en) * | 1995-10-09 | 1997-04-17 | Ab Klippans Finpappersbruk | Method of fixing cellulose fibres |
US20030226649A1 (en) * | 2002-06-07 | 2003-12-11 | Kinsley Homan B. | Low water paper |
US20050121157A1 (en) * | 2002-02-28 | 2005-06-09 | Klaus Doelle | Method for the fabrication of a fiber web |
US20060100370A1 (en) * | 2003-02-12 | 2006-05-11 | Wellisz Tadeusz Z | Random and non-random alkylene oxide polymer alloy compositions |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2248842A (en) * | 1990-10-16 | 1992-04-22 | American Cyanamid Co | Film-forming polymer compositions |
-
1968
- 1968-09-10 SE SE12172/68A patent/SE322412B/xx unknown
-
1969
- 1969-08-30 DE DE19691944159 patent/DE1944159A1/de not_active Withdrawn
- 1969-09-08 US US856201A patent/US3674632A/en not_active Expired - Lifetime
- 1969-09-09 DK DK481269AA patent/DK122825B/da unknown
- 1969-09-09 NO NO3591/69A patent/NO123902B/no unknown
- 1969-09-09 GB GB44576/69A patent/GB1281914A/en not_active Expired
- 1969-09-09 FR FR6930622A patent/FR2018000A1/fr not_active Withdrawn
- 1969-09-10 FI FI692597A patent/FI51970C/fi active
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4096311A (en) * | 1975-10-31 | 1978-06-20 | Scott Paper Company | Wipe dry improvement of non-woven, dry-formed webs |
US4341597A (en) * | 1979-05-04 | 1982-07-27 | Rockwool Ab | Fibrous material having good dimensional and heat stability |
US4600462A (en) * | 1981-09-29 | 1986-07-15 | James River/Dixie-Northern, Inc. | Incorporation of a hydrophile in fibrous webs to enhance absorbency |
US4766030A (en) * | 1985-08-21 | 1988-08-23 | Hervey Laurence R B | Oxonated poly(alkylene oxide) surface treatment agents |
DE4105886A1 (de) * | 1990-02-26 | 1991-08-29 | Brown & Williamson Tobacco | Verfahren zum behandeln von pappe sowie ein pappebogen und ein aus dem pappebogen hergestellter behaelter |
US5176795A (en) * | 1990-02-26 | 1993-01-05 | Brown & Williamson Tobacco Corporation | Water resistant paperboard and method of making same |
US5298335A (en) * | 1992-08-28 | 1994-03-29 | P. H. Glatfelter Company | Method for making coated paper and a paper coating composition |
US5690787A (en) * | 1993-12-16 | 1997-11-25 | Kimberly-Clark Worldwide, Inc. | Polymer reinforced paper having improved cross-direction tear |
US5589034A (en) * | 1993-12-16 | 1996-12-31 | Kimberly-Clark Corporation | Polymer-reinforced paper having improved cross-direction tear |
US5658431A (en) * | 1994-04-20 | 1997-08-19 | Oy Keskuslaboratorio-Centrallaboratorium Ab | Method for preventing yellowing of lignocellulosic products |
FR2719060A1 (fr) * | 1994-04-20 | 1995-10-27 | Keskuslaboratorio | Méthode destinée à protéger les produits lignocellulosiques contre le jaunissement. |
WO1997013922A1 (en) * | 1995-10-09 | 1997-04-17 | Ab Klippans Finpappersbruk | Method of fixing cellulose fibres |
US20050121157A1 (en) * | 2002-02-28 | 2005-06-09 | Klaus Doelle | Method for the fabrication of a fiber web |
US20030226649A1 (en) * | 2002-06-07 | 2003-12-11 | Kinsley Homan B. | Low water paper |
WO2003104559A1 (en) * | 2002-06-07 | 2003-12-18 | Fibermark, Inc. | Low water paper |
US20060100370A1 (en) * | 2003-02-12 | 2006-05-11 | Wellisz Tadeusz Z | Random and non-random alkylene oxide polymer alloy compositions |
US7553913B2 (en) * | 2003-02-12 | 2009-06-30 | Syncera, Inc. | Random and non-random alkylene oxide polymer alloy compositions |
US7829616B2 (en) | 2003-02-12 | 2010-11-09 | Syncera, Inc. | Random ethylene oxide copolymer and non-random alkylene oxide(s) polymer |
US20110002974A1 (en) * | 2003-02-12 | 2011-01-06 | Syncera, Inc. | Random and non-random alkylene oxide polymer alloy compositions |
US20110002915A1 (en) * | 2003-02-12 | 2011-01-06 | Syncera, Inc | Random and non-random alkylene oxide polymer alloy compositions |
US8124687B2 (en) | 2003-02-12 | 2012-02-28 | Syncera, Inc. | Random ethylene oxide copolymer and non-random alkylene oxide(s) polymer with bioactive agent |
US9919074B2 (en) | 2003-02-12 | 2018-03-20 | Syncera, Inc. | Random ethylene oxide and non-random alkylene oxide(s) polymers |
Also Published As
Publication number | Publication date |
---|---|
SE322412B (enrdf_load_html_response) | 1970-04-06 |
FI51970C (fi) | 1977-05-10 |
GB1281914A (en) | 1972-07-19 |
FR2018000A1 (enrdf_load_html_response) | 1970-05-29 |
DE1944159A1 (de) | 1970-03-19 |
FI51970B (enrdf_load_html_response) | 1977-01-31 |
DK122825B (da) | 1972-04-17 |
NO123902B (enrdf_load_html_response) | 1972-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3674632A (en) | Process for moisture stabilizing cellulosic sheet material using a polyoxyalkylene glycol and a polyoxyethylene-oxypropylene glycol block polymer | |
US8221895B2 (en) | Base paper for decorative coating materials | |
US4513056A (en) | Cellulosic materials rendered transparent | |
EP0723047B1 (en) | Improving the strength of paper made from pulp containing surface active carboxyl compounds | |
US4028172A (en) | Process of making paper | |
KR102732477B1 (ko) | 다층 섬유성 웹을 제조하는 방법, 및 다층 섬유성 웹 | |
US2943013A (en) | High ash content absorbent paper for the decorative laminating industry and a process for preparing the same | |
KR20180119634A (ko) | 연화제 조성물 | |
US4191610A (en) | Upgrading waste paper by treatment with sulfite waste liquor | |
CN109790685B (zh) | 用于提高纸张或纸板产品的尺寸稳定性的方法 | |
US3305435A (en) | Method of making paper stiffened with waste pulp liquor solids | |
PL198822B1 (pl) | Dekoracyjny papier podłożowy i jego zastosowanie | |
EP0610895A1 (en) | Surface sizing composition and method | |
US8308904B2 (en) | Printable product and a method for manufacturing a printable product | |
US4289808A (en) | Process for producing dry finished paperboard | |
US3644167A (en) | Preparation of corrugating linerboard | |
FI63083B (fi) | Foerfarande foer eliminering av konventionell ytappretering avapper | |
US20030127210A1 (en) | Sizing paper by wet-end addition of water dispersibility polyester | |
EP1697587B1 (en) | Paper comprising quaternary nitrogen containing cellulose ether | |
US3989416A (en) | Dense paper and method of manufacturing | |
US3096229A (en) | Carbon impregnated paper and method of making same | |
CA2146944C (en) | Method for preventing yellowing of lignocellulosic products | |
US4058648A (en) | Dense paper | |
US3481829A (en) | Method of sizing paper with silicone resin and of making gypsum wallboard therefrom | |
US3386880A (en) | Process of forming paper containing polyethyleneimine cross-linked with methylene-bis-acrylamide and paper thereof |