US3673061A - Process for the recovery of metals from sulfide ores through electrolytic dissociation of the sulfides - Google Patents
Process for the recovery of metals from sulfide ores through electrolytic dissociation of the sulfides Download PDFInfo
- Publication number
- US3673061A US3673061A US113751A US3673061DA US3673061A US 3673061 A US3673061 A US 3673061A US 113751 A US113751 A US 113751A US 3673061D A US3673061D A US 3673061DA US 3673061 A US3673061 A US 3673061A
- Authority
- US
- United States
- Prior art keywords
- metal
- electrolyte
- recovered
- sulfide
- sulfides
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 96
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 85
- 239000002184 metal Substances 0.000 title claims abstract description 85
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 title claims abstract description 43
- 150000002739 metals Chemical class 0.000 title claims abstract description 38
- 238000011084 recovery Methods 0.000 title claims abstract description 27
- 230000005592 electrolytic dissociation Effects 0.000 title description 3
- 150000003568 thioethers Chemical class 0.000 title 1
- 239000003792 electrolyte Substances 0.000 claims abstract description 66
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 49
- 229910001617 alkaline earth metal chloride Inorganic materials 0.000 claims abstract description 13
- 229910001514 alkali metal chloride Inorganic materials 0.000 claims abstract description 12
- 239000002245 particle Substances 0.000 claims abstract description 12
- 229910021645 metal ion Inorganic materials 0.000 claims abstract description 11
- 230000000737 periodic effect Effects 0.000 claims abstract description 11
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 11
- 230000002378 acidificating effect Effects 0.000 claims abstract description 10
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 5
- 150000001340 alkali metals Chemical class 0.000 claims abstract description 4
- 239000011133 lead Substances 0.000 claims description 27
- 229910052717 sulfur Inorganic materials 0.000 claims description 25
- 239000011593 sulfur Substances 0.000 claims description 25
- 150000004763 sulfides Chemical class 0.000 claims description 23
- 239000010949 copper Substances 0.000 claims description 22
- 235000002639 sodium chloride Nutrition 0.000 claims description 22
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 20
- 229910052802 copper Inorganic materials 0.000 claims description 20
- 229910052725 zinc Inorganic materials 0.000 claims description 17
- 239000011701 zinc Substances 0.000 claims description 17
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 16
- 238000005868 electrolysis reaction Methods 0.000 claims description 11
- 229910052709 silver Inorganic materials 0.000 claims description 11
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical class [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 claims description 10
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 10
- 239000004332 silver Substances 0.000 claims description 10
- 229910052787 antimony Inorganic materials 0.000 claims description 9
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 9
- 239000000243 solution Substances 0.000 claims description 9
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims description 7
- 229910052785 arsenic Inorganic materials 0.000 claims description 7
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims description 7
- 150000003841 chloride salts Chemical class 0.000 claims description 7
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 7
- 229910052737 gold Inorganic materials 0.000 claims description 7
- 239000010931 gold Substances 0.000 claims description 7
- 229910052976 metal sulfide Inorganic materials 0.000 claims description 7
- 229910052711 selenium Inorganic materials 0.000 claims description 7
- 239000011669 selenium Substances 0.000 claims description 7
- MBMLMWLHJBBADN-UHFFFAOYSA-N Ferrous sulfide Chemical class [Fe]=S MBMLMWLHJBBADN-UHFFFAOYSA-N 0.000 claims description 6
- 229910052797 bismuth Inorganic materials 0.000 claims description 6
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 6
- 229910052793 cadmium Inorganic materials 0.000 claims description 6
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 claims description 6
- 235000011164 potassium chloride Nutrition 0.000 claims description 6
- 239000007864 aqueous solution Substances 0.000 claims description 5
- 238000010494 dissociation reaction Methods 0.000 claims description 4
- 230000005593 dissociations Effects 0.000 claims description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 3
- 239000011575 calcium Substances 0.000 claims description 3
- 229910052791 calcium Inorganic materials 0.000 claims description 3
- 229910052708 sodium Inorganic materials 0.000 claims description 3
- 239000011734 sodium Substances 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 3
- WDIHJSXYQDMJHN-UHFFFAOYSA-L barium chloride Chemical class [Cl-].[Cl-].[Ba+2] WDIHJSXYQDMJHN-UHFFFAOYSA-L 0.000 claims description 2
- 238000004070 electrodeposition Methods 0.000 claims description 2
- 238000004090 dissolution Methods 0.000 abstract description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 32
- DVRDHUBQLOKMHZ-UHFFFAOYSA-N chalcopyrite Chemical compound [S-2].[S-2].[Fe+2].[Cu+2] DVRDHUBQLOKMHZ-UHFFFAOYSA-N 0.000 description 17
- 229910052951 chalcopyrite Inorganic materials 0.000 description 17
- 239000012141 concentrate Substances 0.000 description 16
- 239000011780 sodium chloride Substances 0.000 description 16
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- 229910052500 inorganic mineral Inorganic materials 0.000 description 10
- 239000011707 mineral Substances 0.000 description 10
- 235000010755 mineral Nutrition 0.000 description 10
- 230000000694 effects Effects 0.000 description 7
- 235000019647 acidic taste Nutrition 0.000 description 6
- 229910052947 chalcocite Inorganic materials 0.000 description 5
- 229910052949 galena Inorganic materials 0.000 description 5
- XCAUINMIESBTBL-UHFFFAOYSA-N lead(ii) sulfide Chemical compound [Pb]=S XCAUINMIESBTBL-UHFFFAOYSA-N 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 229910052683 pyrite Inorganic materials 0.000 description 4
- NIFIFKQPDTWWGU-UHFFFAOYSA-N pyrite Chemical compound [Fe+2].[S-][S-] NIFIFKQPDTWWGU-UHFFFAOYSA-N 0.000 description 4
- 239000011028 pyrite Substances 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- WWNBZGLDODTKEM-UHFFFAOYSA-N sulfanylidenenickel Chemical compound [Ni]=S WWNBZGLDODTKEM-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- BWFPGXWASODCHM-UHFFFAOYSA-N copper monosulfide Chemical class [Cu]=S BWFPGXWASODCHM-UHFFFAOYSA-N 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 229910052955 covellite Inorganic materials 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000009853 pyrometallurgy Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 150000001805 chlorine compounds Chemical class 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 230000000135 prohibitive effect Effects 0.000 description 2
- 229910052950 sphalerite Inorganic materials 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910052569 sulfide mineral Inorganic materials 0.000 description 2
- 230000000153 supplemental effect Effects 0.000 description 2
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical class [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 241000053208 Porcellio laevis Species 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 241000982035 Sparattosyce Species 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- 239000005083 Zinc sulfide Substances 0.000 description 1
- HJCRDHDDIDLLGZ-UHFFFAOYSA-N [Zn].[Ag].[Pb] Chemical compound [Zn].[Ag].[Pb] HJCRDHDDIDLLGZ-UHFFFAOYSA-N 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- -1 argentite Inorganic materials 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 229910052956 cinnabar Inorganic materials 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- GRWZHXKQBITJKP-UHFFFAOYSA-L dithionite(2-) Chemical compound [O-]S(=O)S([O-])=O GRWZHXKQBITJKP-UHFFFAOYSA-L 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- QUCZBHXJAUTYHE-UHFFFAOYSA-N gold Chemical compound [Au].[Au] QUCZBHXJAUTYHE-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910001510 metal chloride Inorganic materials 0.000 description 1
- 238000010310 metallurgical process Methods 0.000 description 1
- 229910052953 millerite Inorganic materials 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- FZUJWWOKDIGOKH-UHFFFAOYSA-N sulfuric acid hydrochloride Chemical compound Cl.OS(O)(=O)=O FZUJWWOKDIGOKH-UHFFFAOYSA-N 0.000 description 1
- DHCDFWKWKRSZHF-UHFFFAOYSA-N sulfurothioic S-acid Chemical compound OS(O)(=O)=S DHCDFWKWKRSZHF-UHFFFAOYSA-N 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229910021654 trace metal Inorganic materials 0.000 description 1
- ZNRSXPDDVNZGEN-UHFFFAOYSA-K trisodium;chloride;sulfate Chemical compound [Na+].[Na+].[Na+].[Cl-].[O-]S([O-])(=O)=O ZNRSXPDDVNZGEN-UHFFFAOYSA-K 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C1/00—Electrolytic production, recovery or refining of metals by electrolysis of solutions
Definitions
- ABSTRACT Assignee: Cyprus Metallurgical Processes Corpora- "on, Los Angela Calm A pollution-free process for the electrolytic dissolution of sulfide ores of the metals of Groups lB, ll B, V A, VI A, of the 1 Flledl 1971 Periodic Table and lead in aqueous acidic media with the formation of metal ions and elemental sulfur followed by Appl' recovery of the metal ions from solution in the electrolyte media, the process characterized by certain critical process [52] [1.8. CI. ..204/105 R, 204/107, 204/ l l 1, conditions, these being the use of:
- U.S. Pat. No. 2,331,395 discloses the electrolytic recovery from sulfides of certain metals utilizing an alkaline electrolyte
- U.S. Bureau of Mines Technical Progress Report 26, June 1970, entitled Electrolytic Recovery of Metals teaches the recovery by electrolysis of mercury from cinnabar in an alkaline electrolyte.
- antimony experimentation has shown that the metals of Groups I B, II B, V A, VI A of the Periodic Table and lead cannot be economically recovered by electrolytic processes in an alkaline media. While antimony can be so economically recovered it is more economic to recover it from acidic media. This is supported by theoretical considerations.
- the limit of efficiency in the electrolytic dissolution of metal ions is the electric current required to oxidize the sulfur present from sulfide ion (-2) to sulfate ion (+6).
- the electric current required to ionize a given quantity of the desired element is readily calculated.
- the ampere hours/pound of metal ionized varies from 452 for argentite to 3,240 for chalcopyrite.
- U.S. Pat. No. 2,839,461 discloses an electrolytic process for the recovery of nickel from nickel sulfide utilizing an acid sulfate-chloride electrolyte and which is dependent upon a highly conductive nickel sulfide anode, the anode current being passed through a nickel matte anode. It has been found that the metals of Groups I B, II B, V A, VI A of the Periodic Table and lead cannot be economically recovered by electrolysis from their sulfides in an electrolyte containing substantial sulfate ions or by a process in which sulfate ions are produced in appreciable amounts.
- 2,839,461 teaches the addition of sulfur to chalcocite to 'convert it to covellite which has about 100 times lower resistivity, thus making a product which is amenable to the process.
- the process of the referenced patent cannot be applied to base metal sulfides because of their high resistivities.
- U.S. Pat. No. 2,761,829 discloses the electrolytic recovery of copper from sulfide ores containing iron sulfides in an acid media in which current densities said to be applicable to in situ mining are so low that the process is economically prohibitive when applied to mined and concentrated ore.
- metal sulfide as contained herein is inclusive of the complex as well as the simple sulfide minerals which contain economically recoverable quantities of the specified metals.
- the invention is a pollution-free process for recovery of the metals of Groups I B, II B, V A, VI A of the Periodic Table and lead from their sulfide and mixed sulfide ores in which the sulfide is electrolytically dissociated in an acid aqueous media into elemental sulfur and metal ions which are then recovered from solution in the electrolyte media by conventional pollution-free techniques.
- the electrolysis process is characterized by certain critical process conditions which render it economically feasible, these being the use of I) an alkali metal and/or alkaline earth metal chloride electrolyte, (2) a sulfide feed particle size smaller than 60 mesh U.S.
- the process parameters which have been found to control the current requirements for the process are electrolyte composition, feed particle size, operating pH range, operating temperature, and anode current density. As the examples which follow show, these factors are mutually interacting and dependent as respects their effect on current requirements.
- the sulfide ores of metals of Groups I B, II B, V A, VI A of the Periodic Table and lead are characterized by certain similar properties related to the electrolytic dissociation to elemental sulfur and metal ions therefrom, not possessed by other metal sulfides, which support group classification.
- these sulfides all have relatively low conductivities
- the metal ions are most favorably produced by electrolysis in aqueous alkali metal and/or alkaline earth metal chloride electrolytes at a pH range from about 0.01 to 3.9 using anode current densities above about 12 amperes/ft at a temperature between about 60-l05 C with the sulfide particle feed size being smaller than about 60 mesh US. Standard.
- the examples which follow illustrate that the power requirements for the process applied to recover the stated metals from their sulfides are well within the limits of commercial feasibility.
- the metals which can be recovered from their sulfide and mixed sulfide ores by the process of the invention are those of Groups I B, 11 B, V A, V] A of the Periodic Table and lead. Although antimony, bismuth, cadmium and selenium were recovered in Example 7 which follows as trace metals, the process is operative for recovering them regardless of the amounts existing in the ores or minerals. The minerals to which the process is applicable often contain the metals in the form of complex or mixed sulfides.
- the electrolyte media for the process must be acidic as an alkaline electrolyte has proven unsatisfactory for recovery of the defined metals to which the invention is related.
- Elemental sulfur is not stable in'an alkaline media because oxidation of the sulfur proceeds rapidly in this media through thiosulfate, hydrosulfite, sulfite to sulfate.
- the presence of sulfate ions is undesirable because at high sulfate concentrations oxygen is rapidly evolved at the anode resulting in a decrease in current efficiency. Further, it was found that at high current densities in the presence of sulfate, graphite anodes were appreciably attacked.
- the preferred electrolyte media is an aqueous acidic solution of alkali metal chloride or alkaline earth metal chloride, or mixtures thereof.
- the chlorides of sodium, potassium, barium and calcium, or mixtures thereof have been found suitable. Concentrations within the range of 0.5-4N or saturation may be used. Voltage across the cell is lower at higher salt concentrations so that the latter are preferred except where low grade feeds are used and where salt losses would therefore become significant.
- the particle size of the feed material is critical as it directly affects the conversion to elemental sulfur.
- the elemental sulfur produced is extremely fine.
- the anode current attacks the metal sulfide preferentially to sulfur, provided the sulfide has sufficient activity near the anode.
- the activity of the sulfide is a function of its concentration and its exposed surface area. Therefore, the presence of a high concentration of fine sulfide near the anode prevents the continuing oxidation of sulfur and results in higher efficiency and consequently lower current consumption, as explained above.
- An average grain size range for the feed sulfide smaller than about 60 mesh US. Standard is the operable range and is compatible with other critical parameters.
- a pH range for the electrolyte media between about 0.01 and 3.9 is preferred. Current efficiency is reduced at pHs above 3.9, and at very high acidities (low pH values) in the absence of substantial concentrations of alkali or alkaline earth, metal chlorides.
- the preferred pH range for lead, silver and zinc sulfides is about 2.0 3.0, the most preferred pH being about 2.5.
- the preferred range for copper sulfides is 0.5 1.5 with about l.0 being most preferred.
- reaction temperature of the electrolyte is critical and high process efiiciency is not obtained at low temperature.
- a temperature range of about 60-l05 C is the operable range when used in conjunction with the other critical factors. A temperature of C is most preferred.
- the current density is also critical as used with the other critical parameters with a preferred range being above about 12 ampereslft
- a preferred current density range is about 200-480 amperes/ft with the most preferred value being about 300 amperes/ft.
- iron sulfide predominates current densities between 50-120 amperes/ft are preferred.
- diaphragm cell consists of two anodes made of graphite or other suitable corrosion resisting material each on one side of a cathode made of stainless steel.
- the anodes are separated from the cathode by a space and by a cloth (filter cloth of suitable plastic) which then forms a cathode compartment and an anode compartment.
- a pump circulates the catholyte past the cathode.
- this type of cell is well known in the art and may be provided with a multiplicity of anodes and cathodes.
- Examples 2, 3, 5-9, 13 and 14 were run using diaphragm type cells, with non-diaphragm type cells being used in the remaining examples.
- Grain size is given in US. Standard mesh size, current density is given in amperes/ft", current requirement is reported in terms of ampere hours/pound of metal dissociated, and recovered sulfur is based on grams of elemental sulfur dissociated/gram of non-ferrous metal dissociated.
- the feed material was a commercial chalcopyrite copper concentrate assaying 26.6 percent copper, .l.63 percent zinc, 0.24 percent lead, 0.048 percent antimony, 0.11 percent selenium and by mineral examination consisting of about percent chalcopyrite and 6 percent pyrite and about 4 percent other metals.
- EXAMPLE 1 A series of tests were run to demonstrate the effect of the composition of the electrolyte upon the efficiency of dissolving copper from chalcopyrite. In each case a slurry of grams of feed in 1,800 milliliters of electrolyte was made and subjected to 60 ampere hours of current.
- alkali chlorides and alkaline earth metal chlorides are very effective as electrolytes.
- Sodium chloridesodium sulfate electrolyte as taught in US Pat. No. 2,893,461 proved unsatisfactory and a substantial evolution of oxygen at the anode was noted.
- the efficiency of this electrolyte was about a factor of four poorer than those tests where sulfate concentration was low.
- EXAMPLE 3 A series of tests were run to demonstrate the effect of temperature upon the efficiency of dissolving copper from a chalcopyrite concentrate. in each case a slurry of 200 grams of feed in 1,800 milliliters of electrolyte was used and subjected to 30 ampere hours of current.
- Example 6 illustrates the operability of the process at a chloride salt electrolyte concentration as low as 1N Feed was 200 grams of the chalcopyrite concentrate previously used and dispersed in two liters of electrolyte and subjected to 30 ampere hours of current.
- EXAMPLE 7 A test was run to demonstrate that trace metal values can be recovered in the process along'with copper.
- the feed was two kilograms of the chalcopyrite concentrate. it was dispersed in 27 liters of electrolyte and subjected to 400 ampere hours of current.
- EXAMPLE 9 A test using a different cupreous pyrite concentrate containing 2.0 percent copper was run. A feed of 200 grams was slurried with 2,400 milliliters of electrolyte and subjected to ampere hours of current.
- EXAMPLE 12 A test was run on a mixed zinc-lead-silver concentrate. The feed analyzed 35.4% Zn, 22.0% Pb, 0.021% Ag. A feed of 100 grams was slurried in 1,700 milliliters of electrolyte and sub jected to 60 amperes hours of current.
- This example demonstrates the effectiveness of the process on mixed lead, zinc and silver ores.
- the example further illustrates the equivalency of these metals and their sulfides in the process.
- EXAMPLE 13 A low grade zinc-copper concentrate containing substantial pyrite impurity was tested. The concentrate assayed 5.9 percent copper, 25.4 percent zinc, and 20.2 percent iron. The copper was chiefly in the form of chalcopyrite. A feed of 200 grams was slurried in 3,800 milliliters of electrolyte and subjected to 30 amperes hours of current.
- Examples 12 and 13 demonstrate the effectiveness of the process for mixtures of sulfides of the metals on which the process is effective. Along with other examples they show the effectiveness of the process for these metals.
- EXAMPLE 14 A feed of 200 grams of a low grade gold ore which assayed 0.5 oz. of gold per ton and 2.7 percent arsenic was slurried with L600 milliliters of electrolyte and subjected to 15 ampere hours of current.
- the power requirements set forth in the examples are well within commercial feasibility ranges for large scale production of the metals from their sulfide and mixed sulfide ores.
- the cost of the recovery of the metals from the electrolyte after electrolysis by conventional techniques is comparatively small.
- the process permits the recovery in significant yields of metals present in trace quantities.
- the high percentage recovery of sulfur from the sulfides as elemental sulfur substantially reduces the pollution problems associated with prior art processes. Accordingly, the invention provides a process for recovery of the metals from their sulfide and mixed sulfide ores which has the advantages of being commercially feasible and pollution free.
- a process for the recovery of metals of Groups I B, I] B, V A, VI A of the Periodic Table and lead from their sulfides and mixed sulfides, and mixtures thereof, by electrolysis with the formation of elemental sulfur-and, metal ions which process comprises:
- an electrolyte in an electrolytic cell including at least an anode and a cathode, the electrolyte comprising an acidic aqueous solution of at least one chloride salt selected from the group consisting of alkali metal chlorides and alkaline earth metalchlorides, the solution having a concentration from about IN to saturation;
- metals are selected from the group consisting of antimony, arsenic, bismuth, cadmium, copper, gold, lead, selenium, silver and zinc.
- an electrolyte media comprising an acidic aqueous solution of at least one chloride salt selected from the group consisting of alkali metal chlorides and alkaline earth metal chlorides, the solution having a concentration from about IN to saturation;
- a process for the dissociation of metals from their sulfides, mixed sulfides, and mixtures thereof, by electrolysis with the formation of elemental sulfur which process comprises:
- an electrolyte in an electrolytic cell including at least an anode and a cathode, the electrolyte comprising an acidic aqueous solution of at least one chloride salt selected from the group consisting of alkali metal chlorides and alkaline earth metal chlorides, the solution having a concentration from about IN to saturation;
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electrolytic Production Of Metals (AREA)
- Manufacture And Refinement Of Metals (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11375171A | 1971-02-08 | 1971-02-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3673061A true US3673061A (en) | 1972-06-27 |
Family
ID=22351278
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US113751A Expired - Lifetime US3673061A (en) | 1971-02-08 | 1971-02-08 | Process for the recovery of metals from sulfide ores through electrolytic dissociation of the sulfides |
Country Status (17)
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3755106A (en) * | 1972-05-15 | 1973-08-28 | Us Interior | ELECTROLYTIC OXIDATION OF Sb{11 S{11 |
US3766026A (en) * | 1972-05-10 | 1973-10-16 | Cyprus Metallurg Process | Electrolytic process for the recovery of nickel, cobalt and iron from their sulfides |
US3849265A (en) * | 1971-10-01 | 1974-11-19 | Us Interior | Electro-oxidative method for the recovery of molybdenum from sulfide ores |
US3915818A (en) * | 1972-10-13 | 1975-10-28 | Corporacion De Fomento De La P | Electrowinning process for the improved recovery of metal |
US3956087A (en) * | 1974-05-17 | 1976-05-11 | Mineral Research & Development Corporation | Electrochemical mining of copper |
US3957603A (en) * | 1974-06-14 | 1976-05-18 | Electromet, Inc. | Electrolytic gold recovery and separation process |
US3959096A (en) * | 1975-01-17 | 1976-05-25 | Langer Stanley H | Electrochemical recovery of copper from alloy scrap |
DE2605887A1 (de) * | 1975-02-14 | 1976-08-26 | Dextec Metallurg | Verfahren zur herstellung von metallen aus erzen und konzentraten |
US3979265A (en) * | 1974-12-19 | 1976-09-07 | Continental Oil Company | Recovery of metals from sulfur bearing ores |
US4107009A (en) * | 1976-02-02 | 1978-08-15 | Dextec Metallurgical Proprietary Limited | Recovery of copper from ores and concentrates |
US4115222A (en) * | 1976-10-25 | 1978-09-19 | National Research Institute For Metals | Method for electrolytic winning of lead |
US4139432A (en) * | 1976-08-16 | 1979-02-13 | Ghiringhelli Hugh A | Process for electrochemically recovering precious metals from ores |
US4148698A (en) * | 1976-04-01 | 1979-04-10 | Dextec Metallurgical Proprietary Limited | Refining of ferrous and base metal sulphide ores and concentrates |
US4159232A (en) * | 1977-09-23 | 1979-06-26 | Bacon William G | Electro-hydrometallurgical process for the extraction of base metals and iron |
FR2411250A1 (fr) * | 1977-12-06 | 1979-07-06 | Broken Hill Pty Co Ltd | Electrodissolution et extraction electrolytique simultanees de metaux a partir de minerais du type sulfure |
WO1980002164A1 (en) * | 1979-04-09 | 1980-10-16 | Dextec Metallurg | Production of lead from ores and concentrates |
US4384890A (en) * | 1982-02-10 | 1983-05-24 | Phelps Dodge Corporation | Cupric chloride leaching of copper sulfides |
US4500498A (en) * | 1984-01-19 | 1985-02-19 | Cato Research, Inc. | Ammonium chloride-ammonium hydroxide strip for the recovery of anhydrous zinc chloride |
WO1986002107A1 (en) * | 1984-10-05 | 1986-04-10 | Dextec Metallurgical Pty. Ltd. | Production of zinc from ores and concentrates |
US4594132A (en) * | 1984-06-27 | 1986-06-10 | Phelps Dodge Corporation | Chloride hydrometallurgical process for production of copper |
US4631176A (en) * | 1982-07-22 | 1986-12-23 | Cato Research Corporation | Recovery of anhydrous zinc chloride |
WO1987002074A1 (en) * | 1985-09-30 | 1987-04-09 | Boliden Aktiebolag | A method and apparatus for recovering copper from ores containing copper and iron sulphide |
EP0219473A1 (en) * | 1985-09-05 | 1987-04-22 | Boliden Mineral AB | A method for selectively recovering lead from complex sulfidic non-ferrous metal concentrates |
US4775452A (en) * | 1985-04-25 | 1988-10-04 | Chlorine Engineers Corp. Ltd. | Process for dissolution and recovery of noble metals |
CN1034957C (zh) * | 1993-04-24 | 1997-05-21 | 王绍和 | 硫化铜矿直接电解制取电解铜的方法及其电解槽 |
RU2111270C1 (ru) * | 1992-06-26 | 1998-05-20 | Интек Пти Лтд. | Способы получения и выщелачивания металлов из минерального сырья, устройство для их осуществления |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US720235A (en) * | 1900-11-02 | 1903-02-10 | Hans A Frasch | Process of recovering and separating metals from their ores. |
US1066855A (en) * | 1912-03-13 | 1913-07-08 | Ransom B Shelden | Process of extracting metals from their ores. |
US1115351A (en) * | 1914-01-27 | 1914-10-27 | Herman A Wagner | Process of separating metals from ores. |
US3616331A (en) * | 1968-08-03 | 1971-10-26 | Int Nickel Co | Recovery of nickel and copper from sulfides |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE199554C (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) * |
-
1971
- 1971-02-08 US US113751A patent/US3673061A/en not_active Expired - Lifetime
-
1972
- 1972-01-27 GB GB379172A patent/GB1345102A/en not_active Expired
- 1972-01-31 IE IE128/72A patent/IE36195B1/xx unknown
- 1972-02-01 ZA ZA720641A patent/ZA72641B/xx unknown
- 1972-02-01 CA CA133,677A patent/CA975712A/en not_active Expired
- 1972-02-01 DE DE19722204724 patent/DE2204724A1/de active Pending
- 1972-02-01 FR FR7203920A patent/FR2124519B1/fr not_active Expired
- 1972-02-02 SE SE7201180A patent/SE374566C/xx unknown
- 1972-02-03 JP JP47012535A patent/JPS5133483B1/ja active Pending
- 1972-02-04 PH PH13251*A patent/PH10022A/en unknown
- 1972-02-04 ES ES399486A patent/ES399486A1/es not_active Expired
- 1972-02-04 NL NL7201463A patent/NL7201463A/xx unknown
- 1972-02-07 NO NO321/72*[A patent/NO133903C/no unknown
- 1972-02-07 ZM ZM21/72A patent/ZM2172A1/xx unknown
- 1972-02-07 IT IT9338/72A patent/IT949343B/it active
- 1972-02-07 BE BE779036A patent/BE779036A/xx unknown
- 1972-02-08 LU LU64751D patent/LU64751A1/xx unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US720235A (en) * | 1900-11-02 | 1903-02-10 | Hans A Frasch | Process of recovering and separating metals from their ores. |
US1066855A (en) * | 1912-03-13 | 1913-07-08 | Ransom B Shelden | Process of extracting metals from their ores. |
US1115351A (en) * | 1914-01-27 | 1914-10-27 | Herman A Wagner | Process of separating metals from ores. |
US3616331A (en) * | 1968-08-03 | 1971-10-26 | Int Nickel Co | Recovery of nickel and copper from sulfides |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3849265A (en) * | 1971-10-01 | 1974-11-19 | Us Interior | Electro-oxidative method for the recovery of molybdenum from sulfide ores |
US3766026A (en) * | 1972-05-10 | 1973-10-16 | Cyprus Metallurg Process | Electrolytic process for the recovery of nickel, cobalt and iron from their sulfides |
US3755106A (en) * | 1972-05-15 | 1973-08-28 | Us Interior | ELECTROLYTIC OXIDATION OF Sb{11 S{11 |
US3915818A (en) * | 1972-10-13 | 1975-10-28 | Corporacion De Fomento De La P | Electrowinning process for the improved recovery of metal |
US3956087A (en) * | 1974-05-17 | 1976-05-11 | Mineral Research & Development Corporation | Electrochemical mining of copper |
US3957603A (en) * | 1974-06-14 | 1976-05-18 | Electromet, Inc. | Electrolytic gold recovery and separation process |
US3979265A (en) * | 1974-12-19 | 1976-09-07 | Continental Oil Company | Recovery of metals from sulfur bearing ores |
US3959096A (en) * | 1975-01-17 | 1976-05-25 | Langer Stanley H | Electrochemical recovery of copper from alloy scrap |
DE2605887A1 (de) * | 1975-02-14 | 1976-08-26 | Dextec Metallurg | Verfahren zur herstellung von metallen aus erzen und konzentraten |
US4107009A (en) * | 1976-02-02 | 1978-08-15 | Dextec Metallurgical Proprietary Limited | Recovery of copper from ores and concentrates |
US4148698A (en) * | 1976-04-01 | 1979-04-10 | Dextec Metallurgical Proprietary Limited | Refining of ferrous and base metal sulphide ores and concentrates |
US4139432A (en) * | 1976-08-16 | 1979-02-13 | Ghiringhelli Hugh A | Process for electrochemically recovering precious metals from ores |
US4115222A (en) * | 1976-10-25 | 1978-09-19 | National Research Institute For Metals | Method for electrolytic winning of lead |
US4159232A (en) * | 1977-09-23 | 1979-06-26 | Bacon William G | Electro-hydrometallurgical process for the extraction of base metals and iron |
FR2411250A1 (fr) * | 1977-12-06 | 1979-07-06 | Broken Hill Pty Co Ltd | Electrodissolution et extraction electrolytique simultanees de metaux a partir de minerais du type sulfure |
US4204922A (en) * | 1977-12-06 | 1980-05-27 | The Broken Hill Propietary Company Limited | Simultaneous electrodissolution and electrowinning of metals from simple sulphides |
WO1980002164A1 (en) * | 1979-04-09 | 1980-10-16 | Dextec Metallurg | Production of lead from ores and concentrates |
JPS56500378A (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) * | 1979-04-09 | 1981-03-26 | ||
US4381225A (en) * | 1979-04-09 | 1983-04-26 | Dextec Metallurgical Pty. Ltd. | Production of lead from ores and concentrates |
DE3041437C2 (de) * | 1979-04-09 | 1985-08-01 | Dextec Metallurgical Pty. Ltd., North Sydney, Neusüdwales | Verfahren zum Gewinnen von Blei |
US4384890A (en) * | 1982-02-10 | 1983-05-24 | Phelps Dodge Corporation | Cupric chloride leaching of copper sulfides |
US4631176A (en) * | 1982-07-22 | 1986-12-23 | Cato Research Corporation | Recovery of anhydrous zinc chloride |
US4500498A (en) * | 1984-01-19 | 1985-02-19 | Cato Research, Inc. | Ammonium chloride-ammonium hydroxide strip for the recovery of anhydrous zinc chloride |
US4594132A (en) * | 1984-06-27 | 1986-06-10 | Phelps Dodge Corporation | Chloride hydrometallurgical process for production of copper |
WO1986002107A1 (en) * | 1984-10-05 | 1986-04-10 | Dextec Metallurgical Pty. Ltd. | Production of zinc from ores and concentrates |
US4775452A (en) * | 1985-04-25 | 1988-10-04 | Chlorine Engineers Corp. Ltd. | Process for dissolution and recovery of noble metals |
US4734172A (en) * | 1985-05-09 | 1988-03-29 | Boliden Aktiebolag | Method for selectively recovering lead from complex sulphidic non-ferrous metal concentrates |
EP0219473A1 (en) * | 1985-09-05 | 1987-04-22 | Boliden Mineral AB | A method for selectively recovering lead from complex sulfidic non-ferrous metal concentrates |
AU584450B2 (en) * | 1985-09-05 | 1989-05-25 | Boliden Aktiebolag | A method for selectively recovering lead from complex sulphidic non-ferrous metal concentrates |
WO1987002074A1 (en) * | 1985-09-30 | 1987-04-09 | Boliden Aktiebolag | A method and apparatus for recovering copper from ores containing copper and iron sulphide |
RU2111270C1 (ru) * | 1992-06-26 | 1998-05-20 | Интек Пти Лтд. | Способы получения и выщелачивания металлов из минерального сырья, устройство для их осуществления |
CN1034957C (zh) * | 1993-04-24 | 1997-05-21 | 王绍和 | 硫化铜矿直接电解制取电解铜的方法及其电解槽 |
Also Published As
Publication number | Publication date |
---|---|
NO133903C (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) | 1976-07-14 |
JPS5133483B1 (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) | 1976-09-20 |
ZA72641B (en) | 1972-10-25 |
ES399486A1 (es) | 1974-11-01 |
IT949343B (it) | 1973-06-11 |
IE36195L (en) | 1972-08-08 |
SE374566B (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) | 1975-03-10 |
NL7201463A (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) | 1972-08-10 |
FR2124519A1 (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) | 1972-09-22 |
NO133903B (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) | 1976-04-05 |
GB1345102A (en) | 1974-01-30 |
DE2204724A1 (de) | 1972-08-24 |
IE36195B1 (en) | 1976-09-15 |
FR2124519B1 (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) | 1976-07-09 |
SE374566C (sv) | 1977-06-27 |
CA975712A (en) | 1975-10-07 |
PH10022A (en) | 1976-07-13 |
ZM2172A1 (en) | 1973-10-22 |
BE779036A (fr) | 1972-05-30 |
LU64751A1 (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) | 1972-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3673061A (en) | Process for the recovery of metals from sulfide ores through electrolytic dissociation of the sulfides | |
US3930969A (en) | Process for oxidizing metal sulfides to elemental sulfur using activated carbon | |
CA2138777C (en) | Production of metals from minerals | |
US3736238A (en) | Process for the recovery of metals from sulfide ores through electrolytic dissociation of the sulfides | |
US4204922A (en) | Simultaneous electrodissolution and electrowinning of metals from simple sulphides | |
US4061552A (en) | Electrolytic production of copper from ores and concentrates | |
US3755104A (en) | Process for the recovery of molybdenum and rhenium from sulfides by electrolytic dissolution | |
PL111879B1 (en) | Method of recovery of copper from diluted acid solutions | |
US3849265A (en) | Electro-oxidative method for the recovery of molybdenum from sulfide ores | |
EP0021809A1 (en) | Chloride leaching | |
US4684450A (en) | Production of zinc from ores and concentrates | |
US4500398A (en) | Production of lead from sulfides | |
US4381225A (en) | Production of lead from ores and concentrates | |
US3766026A (en) | Electrolytic process for the recovery of nickel, cobalt and iron from their sulfides | |
US4028202A (en) | Direct electrochemical recovery of copper from dilute ammoniacal solutions | |
US3755106A (en) | ELECTROLYTIC OXIDATION OF Sb{11 S{11 | |
RU2023758C1 (ru) | Способ электрохимического выщелачивания меди из сульфидного медного концентрата | |
GB2025461A (en) | Recovery of copper from sulphide ores | |
EP0219473B1 (en) | A method for selectively recovering lead from complex sulfidic non-ferrous metal concentrates | |
US1138921A (en) | Process of recovering metals by electrolysis. | |
Venkateswaran et al. | Electroleaching of sulphides: a review | |
Bautista | Electrodissolution | |
Henrie et al. | Hydrometallurgical Treatment of Sulfide Ores for Elimination of SO2 Emissions by Smelters | |
PL111091B1 (en) | Process for recovering the high purity copper from diluted ammonia solution | |
SMELTERS | SULFIDE ORES FOR ELIMINATION OF SO2 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CYPRUS MINES CORPORATION; A CORP OF DE, COLORAD Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CYPRUS METALLURGICAL PROCESSES CORPORATION;REEL/FRAME:004020/0240 Effective date: 19820615 Owner name: CYPRUS MINES CORPORATION; 7000 SOUTH YOSEMITE ST., Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:CYPRUS METALLURGICAL PROCESSES CORPORATION;REEL/FRAME:004020/0240 Effective date: 19820615 |