US3671920A - Insulated electric terminal assembly - Google Patents

Insulated electric terminal assembly Download PDF

Info

Publication number
US3671920A
US3671920A US81961A US3671920DA US3671920A US 3671920 A US3671920 A US 3671920A US 81961 A US81961 A US 81961A US 3671920D A US3671920D A US 3671920DA US 3671920 A US3671920 A US 3671920A
Authority
US
United States
Prior art keywords
insulator
assembly
panel
terminal
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US81961A
Inventor
James F Iantorno
John Wagner
Stephen J Schumacher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sealectro Corp
Original Assignee
Sealectro Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sealectro Corp filed Critical Sealectro Corp
Application granted granted Critical
Publication of US3671920A publication Critical patent/US3671920A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R9/00Structural associations of a plurality of mutually-insulated electrical connecting elements, e.g. terminal strips or terminal blocks; Terminals or binding posts mounted upon a base or in a case; Bases therefor
    • H01R9/16Fastening of connecting parts to base or case; Insulating connecting parts from base or case
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/26Lead-in insulators; Lead-through insulators
    • H01B17/30Sealing
    • H01B17/303Sealing of leads to lead-through insulators
    • H01B17/306Sealing of leads to lead-through insulators by embedding in material other than glass or ceramics

Definitions

  • the bottom half of the insulator assembly is forced toward the panel and locks the terminal into place.
  • the bottom half of the insulator is retained in its locked position by barb-like annular flanges.
  • the top half of the insulator rests against a flanged head on the metal terminal.
  • This invention relates to an electrical terminal for installation on a metal chassis to complement the wiring of any electrical circuit including components secured to the chassis base.
  • Many radio communication, and power supply circuits comprise circuit components mounted on both sides of a panel chassis in order to take advantage of the shielding means afforded by the conductive panel. For this reason, any terminal acting as a junction point for several circuits should be provided with extensions on both sides of the panel.
  • Such a terminal can also be used as a support for small circuit elements such as transistors, small capacitors, and even resistors. When one or more terminals support a circuit, they must have a sturdy construction and be secured to the chassis panel in a firm, solid manner.
  • One of the features of the present invention is the supporting means formed by an axial clamping sleeve, forced onto the terminal and engaging the panel surface.
  • Another feature of the invention is the plurality of barb-like annular flanges on the terminal shaft for retaining both insulator parts in their clamped position.
  • FIG. 1 is a partial cross sectional view of the terminal taken along an axial plane and showing the terminal assembly after insertion into a panel hole but before clamping.
  • FIG. 2 is a partial cross sectional view of the terminal shown in FIG. 1 but with the insulator sleeve forced into its clamping position.
  • FIG. 3 is a cross sectional view of an alternate form of the terminal assembly, having a clamp which seats firmly on the chassis surface. This figure shows the assembly before clamp-
  • FIG. 4 is a cross sectional view of the assembly shown in FIG. 3 after the axial clamp has been pushed into its locking position.
  • FIG. 5 is a partial cross sectional view of an alternate form of terminal wherein a single insulation cylinder is used instead of two. This view shows the terminal before clamping. Portions of the clamping tool are also shown.
  • FIG. 6 is a view similar to FIG. 5 but with the insulator in its clamped position.
  • FIG. 7 is a cross sectional view of a metal cylinder used in an alternate form which accepts a contact making conductive rod.
  • FIG. 8 is a side view of a spring member to be placed within the metal cylinder.
  • FIG. 9 is a partial cross sectional view of the assembled parts of the spring terminal before clamping.
  • FIG. 10 is a view similar to FIG. 9 but with all components clamped together on a chassis panel.
  • the terminal assembly includes a shaft portion 10, terminated at its upper end by a disk shoulder 11 and a bifurcated portion 12 designed to assist in retaining one or more wires for soldering.
  • a portion of the upper end of shaft 10 may be knurled, i.e., provided with longitudinal ridges as shown at 13.
  • the longitudinal ridges or protuberances permit ease of assembly of the parts yet prevents rotation after being seated.
  • the less effective diamond or other type knurling may be used as illustrated in FIGS. 3 and 4 at 13'.
  • the lower portions of shaft 10 are formed with a plurality of barb-like annular flanges 14 for engaging two deformable insulating sleeves which may be made of Teflon (Trademark DuPont Company) or polyethylene.
  • the lower end of shaft 10 is formed with a knob 15 to aid in securing connecting wires (not shown) prior to being soldered. Any convenient form of knob 15 may be used as long as it can be forced through the two insulators.
  • An upper insulator 16 is formed with an axial hole for receiving shaft 10. It also includes a shoulder 17 for limiting engagement against the panel 18 surface. Both insulators may be formed of semi-deformable material, such as, Teflon, polyethylene, or rubber having a high shear valve. A restricted cylindrical portion 20 of the upper insulator 16 passes through the'hole in panel 18 and engages one of the flanges 14. A bottom insulator 21, also acting as a clamp is first pushed onto the lower end of the shaft 10 to the position shown in FIG. 1. Then the assembly is entered into the hole in panel 10 and the lower insulator 21 is forced into the position shown in FIG. 2. It is held in this position by flanges 14.
  • insulator 21 When the insulator 21 is forced into its clamping position, its upper edge rides over the tapered portion of the upper insulator and widens so that it limits against the panel surface.
  • the upper edge 14a of the lower insulator 14 flares outwardly to some extent as indicated in FIG. 2. This is due to the internal chamfered edge 14b shown in FIG. 1.
  • insulator 21 In the clamped position insulator 21 not only forms a firm shoulder for retaining the shaft in its axial position; it also compresses the lower portion of the upper insulator and forces the lesser diameter cylinder 20 into a pressurized contact with the sides of the hole in the panel, thus increasing its stability.
  • the terminal is now ready for use.
  • the bottom portion of the upper insulator 16A is formed a tapered step 22 and a longer cylindrical portion 23.
  • the lower insulator is made with a squared-off annular surface 24 and an annular cavity 25 adjoining the lower end of the upper cylinder.
  • the terminal assembly shown in FIGS. 5 and 6 forms another alternate design.
  • the shaft 10 is substantially the same, including a knurled portion 13, barb-like annular flanges l4, and a lower end portion 15.
  • the upper end portion is provided with a shoulder 11 and a bifurcated terminal 12.
  • the insulator is made in one piece, having, as before an upper portion 27 with a shoulder 28 which limits against the top of the panel 18.
  • the lower portion of the insulator is the same diameter as the hole in the panel and extends for a considerable distance below the surface of the panel.
  • the insulator is formed with an axial hole which receives the shaft 10 and its retaining flanges l4.
  • an upper tool cylinder 30 contains a hollowed portion which is placed over the top end of the terminal.
  • a plug 31 is secured inside the cylinder 30 and engages the bifurcated end 12 and the shoulder 11.
  • a similar cylindrical tool 32 fits over the lower end of the insulator 27A and a spring coupled plunger 33 surrounds a portion of the insulator.
  • Spring 34 is a compression helix and engages a step 35 inside cylinder 32 at its upper end and a flange 36 at its lower end. When the two ends of the tool are brought together by an arbor press, the spring 34 first moves cylinder 32 to limit at the underside of the panel.
  • the upper plunger first pushes the terminal shaft 10 all the way into the insulator 27 until the flange 11 is firmly seated on the top surface of the insulator. Then the lower plunger 33 forces the intermediate section of the insulator into an expanded bulbous part 273 which is retained in the position shown in FIG. 6 by means of the barb-like flanges 14. The tool portions may now be removed, leaving the terminal firmly secured to the panel 18.
  • the terminal assemblies shown in FIGS. 1 through 6 include ends for soldering to conductive wires. It is also convenient to use a spring clip device which will make temporary contact with a conductive tip 37 which may be manually pushed into contact. Such a terminal is illustrated in FIGS. 7 through 10.
  • the upper casing 38 is shown in FIG. 7 and includes a hollow cylinder having a hollow bore 40 with a smaller opening 41 at its upper end.
  • the spring clip 42 is shown in FIG. 8 and includes a plurality of inwardly positioned spring fingers 43 for gripping the tip 37 (see FIG. 10).
  • the fingers 43 are formed integral with a short shaft 10A having one or more barb-like flanges 14.
  • the casing 38 is secured to the spring clip assembly by a force fit; pressing the casing over a shoulder 44 which may have knurled ridges to insure a permanent junction.
  • Another shoulder 45 may be formed as shown to limit casing 38 and to insure a firm fit in its final insulator mounting.
  • the casing 38 and shaft 10A are next forced into a hole insulator 46 and the assembly is then put into a hole in a panel 18. At this stage the components occupy the relative positions as indicated in FIG. 9.
  • the assembly is now ready for the crimping action.
  • a tool similar to the tool indicated in FIGS. and 6, is placed over the upper and lower parts and the lower end of the deformable insulator 46 is forced upwardly to create a bulge 46A (see FIG. This bulge retains the terminal assembly in its clamped position.
  • Teflon polytetrafluoroethylene
  • Other substances, such as polyethylene and rubber may require larger or smaller barb like flanges than those shown in the figures.
  • An insulated tem'rinal assembly for mounting within a hole a panel comprising: a first insulator bushing formed of resilient deformable material and provided with an axial hole therethrough and an external shoulder for limiting against the panel surface; a conductive shaft positioned in the hole and having a disk shoulder making contact with the top surface of the insulator, said shaft including a plurality of barb-like flanges on the shaft; a second insulator bushing also made of a resilient deformable material positioned around the lower portion of the first insulator for forced engagement with some of said barb-like flanges and for clamping action with the bottom surface of the panel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Connector Housings Or Holding Contact Members (AREA)

Abstract

A conductive metal terminal with contact making portions extending above and below a metal panel. A two-piece insulating assembly permits the terminal to be inserted into a hole in the metal panel. Then, upon application of a tool, the bottom half of the insulator assembly is forced toward the panel and locks the terminal into place. The bottom half of the insulator is retained in its locked position by barb-like annular flanges. The top half of the insulator rests against a flanged head on the metal terminal.

Description

United States Patent Iantorno et a1.
[4 1 June 20, 1972 [54] INSULATED ELECTRIC TERNIINAL ASSEMBLY [72] Inventors: James F. Iantorno, Mamaroneck; John Wagner, Pleasantville; Stephen J. Schumacher, Larchmont, all of NY.
[73] Assignee: Sealectro Corporation, Mamaroneck, NY.
[22] Filed: Oct. 19, 1970 21 Appl. No.2 81,961
[52] 11.5. C1 ..339/59 R, 174/153 R, 339/126 RS,
[51] Int. Cl ..I'I0lr 13/40 [58] Field of Search ..339/59-6l, 126, 339/220, 221; 174/153, 152
[56] References Cited UNITED STATES PATENTS 2,911,460 11/1959 Oxley ..174/153 3,244,801 5/1966 Dozier ..339/126T 2,918,521 12/1959 Abrams ..174/152 FOREIGN PATENTS OR APPLICATIONS 918,369 2/1963 Great Britain ..339/l26 RS Primary Examiner-Joseph H. McGlynn Attorney-James M. Heilman and Heilman & Heilman [57] ABSTRACT A conductive metal terminal with contact making portions extending above and below a metal panel. A two-piece insulating assembly permits the terminal to be inserted into a hole in the metal panel. Then, upon application of a tool, the bottom half of the insulator assembly is forced toward the panel and locks the terminal into place. The bottom half of the insulator is retained in its locked position by barb-like annular flanges. The top half of the insulator rests against a flanged head on the metal terminal.
6 Claims, 10 Drawing Figures PATENTEnJuuzo I972 SHEET 1 0F 2 w m m m H/T 2 m 1 5 G w W H M 0 W M. a o
I Wm},
G EV/rl /V /AQ 5 F I FIG.
INVENTORS JAMESEIANTORNO JOHN WAGNER STEPHEN J. SCHUMACHER ATTORNEY INSULATED ELECTRIC TERMINAL ASSEMBLY BACKGROUND OF THE INVENTION This invention relates to an electrical terminal for installation on a metal chassis to complement the wiring of any electrical circuit including components secured to the chassis base. Many radio communication, and power supply circuits comprise circuit components mounted on both sides of a panel chassis in order to take advantage of the shielding means afforded by the conductive panel. For this reason, any terminal acting as a junction point for several circuits should be provided with extensions on both sides of the panel. Such a terminal can also be used as a support for small circuit elements such as transistors, small capacitors, and even resistors. When one or more terminals support a circuit, they must have a sturdy construction and be secured to the chassis panel in a firm, solid manner.
One of the features of the present invention is the supporting means formed by an axial clamping sleeve, forced onto the terminal and engaging the panel surface. Another feature of the invention is the plurality of barb-like annular flanges on the terminal shaft for retaining both insulator parts in their clamped position.
For a better understanding of the present invention, together with other details and features, reference is made to the following description taken in connection with the accompanying drawings.
BRIEF DESCRIPTION OF THE FIGURES FIG. 1 is a partial cross sectional view of the terminal taken along an axial plane and showing the terminal assembly after insertion into a panel hole but before clamping.
FIG. 2 is a partial cross sectional view of the terminal shown in FIG. 1 but with the insulator sleeve forced into its clamping position.
FIG. 3 is a cross sectional view of an alternate form of the terminal assembly, having a clamp which seats firmly on the chassis surface. This figure shows the assembly before clamp- FIG. 4 is a cross sectional view of the assembly shown in FIG. 3 after the axial clamp has been pushed into its locking position.
FIG. 5 is a partial cross sectional view of an alternate form of terminal wherein a single insulation cylinder is used instead of two. This view shows the terminal before clamping. Portions of the clamping tool are also shown.
FIG. 6 is a view similar to FIG. 5 but with the insulator in its clamped position.
FIG. 7 is a cross sectional view of a metal cylinder used in an alternate form which accepts a contact making conductive rod.
FIG. 8 is a side view of a spring member to be placed within the metal cylinder.
FIG. 9 is a partial cross sectional view of the assembled parts of the spring terminal before clamping.
FIG. 10 is a view similar to FIG. 9 but with all components clamped together on a chassis panel.
DESCRIPTION OF THE PREFERRED EMBODIMENT Referring now to FIGS. 1 and 2, the terminal assembly includes a shaft portion 10, terminated at its upper end by a disk shoulder 11 and a bifurcated portion 12 designed to assist in retaining one or more wires for soldering. A portion of the upper end of shaft 10 may be knurled, i.e., provided with longitudinal ridges as shown at 13. The longitudinal ridges or protuberances permit ease of assembly of the parts yet prevents rotation after being seated. Obviously, the less effective diamond or other type knurling may be used as illustrated in FIGS. 3 and 4 at 13'. The lower portions of shaft 10 are formed with a plurality of barb-like annular flanges 14 for engaging two deformable insulating sleeves which may be made of Teflon (Trademark DuPont Company) or polyethylene. The lower end of shaft 10 is formed with a knob 15 to aid in securing connecting wires (not shown) prior to being soldered. Any convenient form of knob 15 may be used as long as it can be forced through the two insulators.
An upper insulator 16 is formed with an axial hole for receiving shaft 10. It also includes a shoulder 17 for limiting engagement against the panel 18 surface. Both insulators may be formed of semi-deformable material, such as, Teflon, polyethylene, or rubber having a high shear valve. A restricted cylindrical portion 20 of the upper insulator 16 passes through the'hole in panel 18 and engages one of the flanges 14. A bottom insulator 21, also acting as a clamp is first pushed onto the lower end of the shaft 10 to the position shown in FIG. 1. Then the assembly is entered into the hole in panel 10 and the lower insulator 21 is forced into the position shown in FIG. 2. It is held in this position by flanges 14. When the insulator 21 is forced into its clamping position, its upper edge rides over the tapered portion of the upper insulator and widens so that it limits against the panel surface. The upper edge 14a of the lower insulator 14 flares outwardly to some extent as indicated in FIG. 2. This is due to the internal chamfered edge 14b shown in FIG. 1. In the clamped position insulator 21 not only forms a firm shoulder for retaining the shaft in its axial position; it also compresses the lower portion of the upper insulator and forces the lesser diameter cylinder 20 into a pressurized contact with the sides of the hole in the panel, thus increasing its stability. The terminal is now ready for use.
Referring now to the alternate design shown in FIGS. 3 and 4, all the components are the same except for insulators 16A and 21A. The bottom portion of the upper insulator 16A is formed a tapered step 22 and a longer cylindrical portion 23. The lower insulator is made with a squared-off annular surface 24 and an annular cavity 25 adjoining the lower end of the upper cylinder.
When the above described assembly is to be secured to a panel 10, it is first positioned in the hole as shown in FIG. 3. Then the lower insulator 21A is forced into the position shown in FIG. 4, eliminating space 25, and seating edge 24 of the lower insulator firmly against the bottom surface of panel 18. Again, the pressure exerted on cylinder 20 by the upper portion of the lower insulator causes the cylinder to expand slightly and fill the hole in panel 18 by pressure contact.
The terminal assembly shown in FIGS. 5 and 6 forms another alternate design. In these figures parts of the clamping tool are also shown. The shaft 10 is substantially the same, including a knurled portion 13, barb-like annular flanges l4, and a lower end portion 15. The upper end portion is provided with a shoulder 11 and a bifurcated terminal 12. The insulator is made in one piece, having, as before an upper portion 27 with a shoulder 28 which limits against the top of the panel 18. The lower portion of the insulator is the same diameter as the hole in the panel and extends for a considerable distance below the surface of the panel. The insulator is formed with an axial hole which receives the shaft 10 and its retaining flanges l4.
In order to clamp this form of terminal in position, an upper tool cylinder 30 contains a hollowed portion which is placed over the top end of the terminal. A plug 31 is secured inside the cylinder 30 and engages the bifurcated end 12 and the shoulder 11. At the lower end of the terminal a similar cylindrical tool 32 fits over the lower end of the insulator 27A and a spring coupled plunger 33 surrounds a portion of the insulator. Spring 34 is a compression helix and engages a step 35 inside cylinder 32 at its upper end and a flange 36 at its lower end. When the two ends of the tool are brought together by an arbor press, the spring 34 first moves cylinder 32 to limit at the underside of the panel. The upper plunger first pushes the terminal shaft 10 all the way into the insulator 27 until the flange 11 is firmly seated on the top surface of the insulator. Then the lower plunger 33 forces the intermediate section of the insulator into an expanded bulbous part 273 which is retained in the position shown in FIG. 6 by means of the barb-like flanges 14. The tool portions may now be removed, leaving the terminal firmly secured to the panel 18.
The terminal assemblies shown in FIGS. 1 through 6 include ends for soldering to conductive wires. It is also convenient to use a spring clip device which will make temporary contact with a conductive tip 37 which may be manually pushed into contact. Such a terminal is illustrated in FIGS. 7 through 10. The upper casing 38 is shown in FIG. 7 and includes a hollow cylinder having a hollow bore 40 with a smaller opening 41 at its upper end. The spring clip 42 is shown in FIG. 8 and includes a plurality of inwardly positioned spring fingers 43 for gripping the tip 37 (see FIG. 10). The fingers 43 are formed integral with a short shaft 10A having one or more barb-like flanges 14. The casing 38 is secured to the spring clip assembly by a force fit; pressing the casing over a shoulder 44 which may have knurled ridges to insure a permanent junction. Another shoulder 45 may be formed as shown to limit casing 38 and to insure a firm fit in its final insulator mounting.
The casing 38 and shaft 10A are next forced into a hole insulator 46 and the assembly is then put into a hole in a panel 18. At this stage the components occupy the relative positions as indicated in FIG. 9. The assembly is now ready for the crimping action. A tool, similar to the tool indicated in FIGS. and 6, is placed over the upper and lower parts and the lower end of the deformable insulator 46 is forced upwardly to create a bulge 46A (see FIG. This bulge retains the terminal assembly in its clamped position.
Experience has shown that the success or failure of any of the disclosed terminal assemblies depends upon the degree of deformation applied to the insulator. Teflon (polytetrafluoroethylene) has been used and has given excellent results. Other substances, such as polyethylene and rubber may require larger or smaller barb like flanges than those shown in the figures.
The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. An insulated tem'rinal assembly for mounting within a hole a panel comprising: a first insulator bushing formed of resilient deformable material and provided with an axial hole therethrough and an external shoulder for limiting against the panel surface; a conductive shaft positioned in the hole and having a disk shoulder making contact with the top surface of the insulator, said shaft including a plurality of barb-like flanges on the shaft; a second insulator bushing also made of a resilient deformable material positioned around the lower portion of the first insulator for forced engagement with some of said barb-like flanges and for clamping action with the bottom surface of the panel.
2. The assembly of claim 1 wherein said shaft has a knurled portion for contact with the hole surface of said insulator with a shoulder.
3. The assembly of claim 1 wherein one of the ends of said shaft is formed with a bifurcated portion to aid in securing a conductive wire.
4. The assembly of claim 1 wherein said first insulator is formed with a tapered outside surface below the panel hole, said second insulator being adapted to ride over the tapered portion when the second insulator is forced into a clamped position.
5. The assembly of claim 1 wherein the upper edge of the second insulator is formed with a reentrant chamfer.
6. The assembly of claim 1 wherein the upper edge of the second insulator is formed with a flat end, the surface of which is substantially at right angles to the outside surface of the second insulator.
l II I.

Claims (6)

1. An insulated terminal assembly for mounting within a hole a panel comprising: a first insulator bushing formed of resilient deformable material and provided with an axiAl hole therethrough and an external shoulder for limiting against the panel surface; a conductive shaft positioned in the hole and having a disk shoulder making contact with the top surface of the insulator, said shaft including a plurality of barb-like flanges on the shaft; a second insulator bushing also made of a resilient deformable material positioned around the lower portion of the first insulator for forced engagement with some of said barb-like flanges and for clamping action with the bottom surface of the panel.
2. The assembly of claim 1 wherein said shaft has a knurled portion for contact with the hole surface of said insulator with a shoulder.
3. The assembly of claim 1 wherein one of the ends of said shaft is formed with a bifurcated portion to aid in securing a conductive wire.
4. The assembly of claim 1 wherein said first insulator is formed with a tapered outside surface below the panel hole, said second insulator being adapted to ride over the tapered portion when the second insulator is forced into a clamped position.
5. The assembly of claim 1 wherein the upper edge of the second insulator is formed with a reentrant chamfer.
6. The assembly of claim 1 wherein the upper edge of the second insulator is formed with a flat end, the surface of which is substantially at right angles to the outside surface of the second insulator.
US81961A 1970-10-19 1970-10-19 Insulated electric terminal assembly Expired - Lifetime US3671920A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US8196170A 1970-10-19 1970-10-19

Publications (1)

Publication Number Publication Date
US3671920A true US3671920A (en) 1972-06-20

Family

ID=22167494

Family Applications (1)

Application Number Title Priority Date Filing Date
US81961A Expired - Lifetime US3671920A (en) 1970-10-19 1970-10-19 Insulated electric terminal assembly

Country Status (1)

Country Link
US (1) US3671920A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3880486A (en) * 1973-03-05 1975-04-29 Epis Corp Apparatus and system for interconnecting circuits and electronic components
US3897131A (en) * 1973-02-16 1975-07-29 Amp Inc Sealed electrical connecting means
US4036544A (en) * 1974-10-16 1977-07-19 Bunker Ramo Corporation Contact for multiple conductor connector
US4566750A (en) * 1982-07-12 1986-01-28 Hideo Umezu Plastic insert-mold element containing a metal-piece insert
US4941847A (en) * 1989-07-24 1990-07-17 Itt Corporation Electrical connector contact retention system
US5263880A (en) * 1992-07-17 1993-11-23 Delco Electronics Corporation Wirebond pin-plastic header combination and methods of making and using the same
US5460549A (en) * 1994-09-02 1995-10-24 Itt Industries, Inc. Connector with sealed contacts
US5823813A (en) * 1997-01-21 1998-10-20 Itt Manufacturing Enterprises, Inc. Connector position assurance device
US5885113A (en) * 1995-05-11 1999-03-23 Itt Manufacturing Enterprises, Inc. Connector with retained contacts
US6616479B1 (en) * 2002-03-08 2003-09-09 Hon Hai Precision Ind. Co., Ltd. Retention device for separable connection
US20040173370A1 (en) * 2002-05-16 2004-09-09 Zhijian Deng Hermetically sealed current conducting terminal assembly
US20060037772A1 (en) * 2004-06-10 2006-02-23 Edward Douglas Conductor feedthrough and method of manufacture therefor
US20080060835A1 (en) * 2006-09-07 2008-03-13 Abb Technology Ag Insulated electrical bushing and method of producing the same
WO2009015926A1 (en) * 2007-07-27 2009-02-05 Robert Bosch Gmbh Elongate component having an inner conductor
US20100021320A1 (en) * 2007-02-20 2010-01-28 Calsonic Kansei Corporation Electric compressor
US20150082627A1 (en) * 2012-12-13 2015-03-26 International Business Machines Corporation Electronic component retainers
US20170005419A1 (en) * 2009-02-20 2017-01-05 Clean Wave Technologies, Inc. Method for making a power connection
EP3410448A1 (en) * 2017-06-01 2018-12-05 Preis & Co Ges.m.b.H. Assembly kit for a feedthrough
US11517054B2 (en) * 2018-05-08 2022-12-06 Kt&G Corporation Aerosol generating device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2911460A (en) * 1956-08-03 1959-11-03 Robert F Oxley Fittings for attachment to perforated members
US2918521A (en) * 1957-02-11 1959-12-22 Cambridge Thermionic Corp Electrically insulating devices
GB918369A (en) * 1961-09-21 1963-02-13 Laurence Russell Sage Electrical terminal
US3244801A (en) * 1965-05-05 1966-04-05 Us Terminals Inc Test jack terminal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2911460A (en) * 1956-08-03 1959-11-03 Robert F Oxley Fittings for attachment to perforated members
US2918521A (en) * 1957-02-11 1959-12-22 Cambridge Thermionic Corp Electrically insulating devices
GB918369A (en) * 1961-09-21 1963-02-13 Laurence Russell Sage Electrical terminal
US3244801A (en) * 1965-05-05 1966-04-05 Us Terminals Inc Test jack terminal

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3897131A (en) * 1973-02-16 1975-07-29 Amp Inc Sealed electrical connecting means
US3880486A (en) * 1973-03-05 1975-04-29 Epis Corp Apparatus and system for interconnecting circuits and electronic components
US4036544A (en) * 1974-10-16 1977-07-19 Bunker Ramo Corporation Contact for multiple conductor connector
US4566750A (en) * 1982-07-12 1986-01-28 Hideo Umezu Plastic insert-mold element containing a metal-piece insert
US4941847A (en) * 1989-07-24 1990-07-17 Itt Corporation Electrical connector contact retention system
US5263880A (en) * 1992-07-17 1993-11-23 Delco Electronics Corporation Wirebond pin-plastic header combination and methods of making and using the same
US5460549A (en) * 1994-09-02 1995-10-24 Itt Industries, Inc. Connector with sealed contacts
US5639255A (en) * 1994-09-02 1997-06-17 Itt Corporation Connector latch mechanism
US5885113A (en) * 1995-05-11 1999-03-23 Itt Manufacturing Enterprises, Inc. Connector with retained contacts
US5823813A (en) * 1997-01-21 1998-10-20 Itt Manufacturing Enterprises, Inc. Connector position assurance device
US6616479B1 (en) * 2002-03-08 2003-09-09 Hon Hai Precision Ind. Co., Ltd. Retention device for separable connection
US20030171030A1 (en) * 2002-03-08 2003-09-11 Jones Dennis B. Retention device for separable connection
US20040173370A1 (en) * 2002-05-16 2004-09-09 Zhijian Deng Hermetically sealed current conducting terminal assembly
US6844502B2 (en) 2002-05-16 2005-01-18 Emerson Electric Co. Hermetically sealed current conducting terminal assembly
US20060037772A1 (en) * 2004-06-10 2006-02-23 Edward Douglas Conductor feedthrough and method of manufacture therefor
WO2008030459A2 (en) * 2006-09-07 2008-03-13 Abb Technology Ag Insulated electrical bushing and method of producing the same
WO2008030459A3 (en) * 2006-09-07 2008-05-15 Abb Technology Ag Insulated electrical bushing and method of producing the same
US20080060835A1 (en) * 2006-09-07 2008-03-13 Abb Technology Ag Insulated electrical bushing and method of producing the same
US7652212B2 (en) 2006-09-07 2010-01-26 Abb Technology Ag Insulated electrical bushing and method of producing the same
US8360752B2 (en) * 2007-02-20 2013-01-29 Calsonic Kansei Corporation Electric compressor
US20100021320A1 (en) * 2007-02-20 2010-01-28 Calsonic Kansei Corporation Electric compressor
WO2009015926A1 (en) * 2007-07-27 2009-02-05 Robert Bosch Gmbh Elongate component having an inner conductor
US20170005419A1 (en) * 2009-02-20 2017-01-05 Clean Wave Technologies, Inc. Method for making a power connection
US10211545B2 (en) * 2009-02-20 2019-02-19 Clean Wave Technologies, Inc. Method for making a power connection
US20150082627A1 (en) * 2012-12-13 2015-03-26 International Business Machines Corporation Electronic component retainers
US9907185B2 (en) * 2012-12-13 2018-02-27 International Business Machines Corporation Method of affixing a group of elastic filaments to an electronic component body
EP3410448A1 (en) * 2017-06-01 2018-12-05 Preis & Co Ges.m.b.H. Assembly kit for a feedthrough
WO2018219637A1 (en) * 2017-06-01 2018-12-06 Preis & Co Ges.m.b.H. Kit for a lead-through arrangement
US11517054B2 (en) * 2018-05-08 2022-12-06 Kt&G Corporation Aerosol generating device

Similar Documents

Publication Publication Date Title
US3671920A (en) Insulated electric terminal assembly
US4720157A (en) Electrical connector having resilient contact means
US4352240A (en) Method of connecting a coaxial cable to an electrical connector
US2258737A (en) Plug and socket connection
US3264602A (en) Electrical connectors for coaxial cables
JP3217786B2 (en) Improvements on electrical conductor termination equipment
US4362350A (en) Contact retention assembly
US3854789A (en) Connector for coaxial cable
US3047828A (en) Connector
US3275737A (en) Coaxial cable terminating means
US9660353B2 (en) Small-sized elastic inner conductor right-angled elbow conductor connector
US2526277A (en) Compressible insulated connector
US3163485A (en) Connector pins
US4013332A (en) Electrical connector
US3095470A (en) Insulated electrical terminal construction
US3530423A (en) Conductor assembly
US3244801A (en) Test jack terminal
US2846659A (en) Soldering terminal assembly
US3267205A (en) Electrical terminals incorporating break-away pins
US3153561A (en) Resilient electrical connector
US2785219A (en) Stand-off terminals
GB1247809A (en) Improvements in or relating to spring contacts for electric socket connectors
US3077513A (en) Coaxial cable connector
US3783432A (en) Connector
US3748632A (en) Insulated electrical connector