US3669781A - Method of making fabric with a filler of greater area than the fabric - Google Patents

Method of making fabric with a filler of greater area than the fabric Download PDF

Info

Publication number
US3669781A
US3669781A US29324A US3669781DA US3669781A US 3669781 A US3669781 A US 3669781A US 29324 A US29324 A US 29324A US 3669781D A US3669781D A US 3669781DA US 3669781 A US3669781 A US 3669781A
Authority
US
United States
Prior art keywords
filaments
fabric
rack
filler
sewn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US29324A
Inventor
Charles A Lee
Warren E Furbeck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Appleton Wire Works Corp
Original Assignee
Appleton Wire Works Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Appleton Wire Works Corp filed Critical Appleton Wire Works Corp
Application granted granted Critical
Publication of US3669781A publication Critical patent/US3669781A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/08Filter cloth, i.e. woven, knitted or interlaced material
    • B01D39/083Filter cloth, i.e. woven, knitted or interlaced material of organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H5/00Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length
    • D04H5/02Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length strengthened or consolidated by mechanical methods, e.g. needling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/0604Arrangement of the fibres in the filtering material
    • B01D2239/0627Spun-bonded
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24033Structurally defined web or sheet [e.g., overall dimension, etc.] including stitching and discrete fastener[s], coating or bond
    • Y10T428/24041Discontinuous or differential coating, impregnation, or bond
    • Y10T428/2405Coating, impregnation, or bond in stitching zone only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24446Wrinkled, creased, crinkled or creped

Definitions

  • This invention relates to puckered falbrics in which a non-woven fibrous filler is secured to strength members by filaments running transversely thereof and wherein the surface area of the filler is substantially greater than the projected area of the fabric as a whole.
  • a sewn fabric is formed by sewing non-woven filler to a plurality of rack filaments using cross filaments transversely of the rack filaments to sew the filler to the rack filaments.
  • the filler in the finished fabric is undulated in at least one direction to give it a substantially greater surface area than the projected area of the fabric itself, thus making the fabric puckered.
  • the puckered falbric may be made by differentially shrinking the rack filaments. or the cross filaments relative to the filler after the fabric has been sewn together in accordance with the teachings of the aforesaid co-pending application.
  • the filler is stabilized and preshrunk before being sewn to the rack filaments.
  • the sewn fabric is thereafter heat treated to shrink the rack filaments or the sewn filaments or both, thus shrinking the sewn fabric substantially without shrinking the filler much, if any, more.
  • the puckered fabric thus produced is then preferably stabilized by chemical treatment with a bonding agent to produce a finished fabric.
  • a puckered fabric as thus produced has particular advantages when used as a filtration medium.
  • the filler provides the Iltering quality of the fabric, and the puckered filler provides a greater area for filtration in a given fabric area, thus providing a greater filtration rate.
  • the chemically stabilized fabric is relatively stiff, and the filler pops up when flexed or pushed up from underneath. This aids in sheet release; that is, it permits easy removal of the material filtered out upon the fabric.
  • a primary object of this invention is to provide a fabric wherein a non-woven filler is secured to rack filaments with cross filaments, the non-woven filler in the finished fabric having a substantially greater surface area than the projected area of the fabric itself.
  • Another object of the invention is to provide a filter medium which passes a large volume of filtrate while stopping a large fraction of settleable solids.
  • a further object of the invention is to pro-vide a filter medium of a construction that aids in sheet release of the material filtered out.
  • Still another object of the invention is to provide methods for making the fabrics of the present invention.
  • FIG. 1 is a plan view of a piece of one form of puckered fabric made according to the present invention
  • FIG. 2 is a cross-sectional view of the fabric shown in IFIG. 1, taken along section 2-2 of FIG. 1;
  • FIG. 3 is a cross-sectional view of the fabric shown in FIG. 1, taken along section 3-3 of FIG. 1;
  • FIG. 4 is a plan view of a piece of another form of puckered fabric made according to the present invention.
  • FIG. 5 is a cross-sectional view of the fabric shown in FIG. 4, taken along section 5--5 of FIG. 4;
  • FIG. 6 is a cross-sectional view of the fabric shown in FIG. 4, taken along section 6-6 of FIG. 4.
  • the fabric 10 is formed of a plurality of relatively straight and parallel rack filaments 12 lying substantially in a sheet upon which is disposed a filler 14 which is sewn to the rack filaments 12 by sewn filaments 16 and 18.
  • the filaments 12 are known as rack filaments after the manner in which they are ordinarily assembled into the fabrics. Generally, their function is to give strength to the fabric in the direction of their length, known as the rack direction or the machine direction.
  • the sewn filaments 16 and 18 provide strength in the transverse or cross direction in addition to sewing the filler 14 to the rack filaments 12.
  • the filler 14 may serve various functions, but in a filter fabric it furnishes the greater part of the filtering quality.
  • FIG. l Only a portion of the fabric is illustrated in FIG. l.
  • the fabric ordinarily takes the form of a sheet, that is, it is thin relative to its width and length.
  • the rack filaments 12 are described as being relatively straight or parallel and lying in a sheet and forming a sheet-like fabric, this includes the formation of an endless belt even though the latter requires that the sheet itself be curved and not entirely planar.
  • the rack filaments 12 and sewn filaments 16 and 18 are referred to as a plurality of respective filaments; however, this includes the arrangement where a single strand is passed back and forth or around and around to form the plurality of filaments.
  • the filler 14 is non-woven and is preferably formed of filler filaments 20 of predetermined diameter and length, depending upon the particular application to which the fabric is to be put.
  • the dimensions of the filler filaments 20 and the thickness of the filler 14 are selected to provide the desired properties; for example, in a filter fabric they are selected to provide predetermined permeability, porosity and void opening.
  • a lock stitch was employed to sew the filler to the rack filaments; other stitches can be employed within the scope of this invention.
  • a lock stitch it is frequently desirable, as shown, to utilize different threads on the respective sides of the rack filaments.
  • the sewn filaments 16 on the filler side of the rack filaments are relatively fine whereas the sewn filaments 18 on the other side of the rack filaments are relatively coarse.
  • the sewn filaments 18 are, as shown, relatively straight, providing certain advantages in some applications.
  • Two-sidedness may also be provided by stitches other than the lock stitch.
  • a two filament chain stitch can be used with different sewn filament materials on the respective sides of the fabric.
  • a single filament chain stitch can be used as well as any of the two filament stitches.
  • the qualities of the fabric as thus far described are those of the fabric shown and described in the aforesaid Lee application, Ser. No. 431,030.
  • the fabric as shown in FIGS. 1, 2 and 3 of the present application differs from the prior fabric in that the filler 14 is undulated to provide a surface area substantially greater than the projected area of the fabric itself. This is par ⁇ ticularly evident in FIG. 3.
  • the fabric is puckered in but one direction; namely, in the cross direction.
  • a plurality of rack filaments is stretched upon a rack in substantially parallel relationship in a sheet, the tension being sufficient to keep the rack filaments substantially straight.
  • the filler is then deposited upon the sheet of stretched rack filaments.
  • the filler is deposited in non-woven sheet form, the sheet being formed of non-woven fibers and stabilized in some manner, as by chemical bonding, so that the fibers stick together to maintain the integrity of the sheet during subsequent processing. Further, the sheet is pre-shrunk before being deposited.
  • the sewn filaments 16 and 18 are then stitched transversely across the rack filaments in substantially parallel rows, with the stitches being placed discretely between rack filaments 12.
  • the sewn fabric is then heated to shrink the rack filaments 12 or the sewn filaments 16 and 18 or both relative to the filler, which was stabilized and preshrunk.
  • Bonding agent is then added to bond the rack filaments 12 to the sewn filaments 16 and 18 and stabilize the fabric.
  • the filler 14 may be sewn to the rack filaments 16 and 18 in the manner described in the aforesaid co-pending Lee application Ser. No. 431,030 or in the manner described in either of the co-pending applications of Charles A. Lee and Warren R. Furbeck, Ser. No. 546,390, filed Apr. 29, 1966, for Method and Apparatus for Making Endless Sewn Fabric, now Pat. No. 3,459,612, and Ser. No. 546,379, filed Apr. 29, 1966, for Method and Apparatus for the Continuous Manufacture of Sewn Mesh Fabric, now U.S. Pat. No. 3,486,- 956.
  • the puckering of the stabilized filler may then be effected by differential shrinking.
  • the sewn filaments 16 and 18 are shrunk more than the stabilized filler 14, thus puckering the filler in the cross direction as shown in FIGS. l, 2 and 3.
  • the filler 14 was stabilized and pre-shrunk before being sewn to the rack filaments 12.
  • Shrinking may be effected by heat treatment in the manner disclosed in the co-pending applications of Lee and Furbeck Method and Apparatus for Making Endless Sewn Fabric and Method and Apparatus for the Continuous Manufacture of Sewn Mesh Fabric.
  • the rack filaments are kept in tension so that the rack filaments do not shrink.
  • the rack filaments may be held to the desired dimensions on the sewing rack throughout the sewing and heat shrinking processes.
  • the fabric may then be further sta-bilized by adding a bonding agent.
  • a bonding agent may be selected to add any desired stiffness to the fabric.
  • FIGS. 4, 5 and 6 An alternative form of the fabric is illustrated in FIGS. 4, 5 and 6.
  • the fabric is puckered in both the rack and cross directions, as illustrated.
  • the filler 14 may be sewn to the rack filaments 12 by sewn filaments 16 and 18 in the manner as described above'.
  • the fabric may then be heat treated as described above, except that the rack filaments 12 are not held against shrinking but rather are permitted to shrink along with the sewn filaments 16 and 18.
  • EXAMPLE I The particular materials used, the size of the laments and the construction of the fabric ymay be varied in accordance with the desired properties of the fabric. However, as a specific example of the fabric shown in FIGS. 1, 2 and 3, a particular endless fabric designed and used as a filter medium will be described. In forming this filter fabric, the sewing process used was that described in the aforesaid Lee and Furbeck application Method and Apparatus for Making Endless Sewn Fabric.
  • the rack filaments 12 were made of synthetic polyester fibers sold under the trademark Dacron.
  • the rack filaments 12 were 220 denier disposed at 16 per inch to form an endless sheet.
  • the filler 14 was also made of synthetic polyester fibers sold under the trademark Dacron.
  • the filler filaments 20 were about 1.5 mills in diameter and their average length was about 1.25 inches.
  • the filler 14 was in sheet form sold under the trademark Reemay Spunbonded. The sheet was about 12 mils thick, being known as Style 240, weighing 2.2 ounces per square foot.
  • the filler 14 was Y stabilized and pre-shrunk.
  • the filler 14 was sewn to the rack filaments 12 of sewn filaments 16 and 18 stitched in parallel rows one-third inch apart at 8 stitches per inch, placed discretely between rack filaments 12. A lock stitch was used.
  • the sewn filaments 16 and 18 were each of the same material and size as the rack filaments 12. A tension of about 1.5 pounds per filament was maintained in the rack filaments during the sewing, and the sewing was effected with such tension in the sewn filaments 16 and 18, that upon completio'n of sewing, the sewn filaments remained slightly taut but not so taut as to produce any substantial wrinkling or puckering of the filler 14 in the cross direction,
  • the endless fabric as thus sewn was then heat shrunk :and chemically stabilized in the manner described in the aforesaid Lee and Furbeck application Method and Apparatus for Making Endless Sewn Fabric. It was heat shrunk by passing it endlessly at a rate of about 10 inches per minute vertically through an oven about 4 feet long as the oven was gradually brought up to a maximum temperature of about 380 F.
  • the rack filaments 12 were held in tension during ⁇ the heat treatment to prevent shrinkage in the rack direction.
  • This heat treatment produced shrinkage of the sewn filaments 16 and 18 relative to the filler 14.
  • the filler 14 remained at ⁇ its original dimensions because it had been previously shrunk.
  • the sewn fabric was passed several times through the oven to assure complete and uniform shrinkage. By this treatment, the fabric was shrunk about 15 to 20% in the cross direction, from about 28.5 inches to about 23.5 inches.
  • the heat shrunk fabric was then chemically treated with a bonding agent, specically an epoxy resin sold under the trademark Resiweld, Formula No. 7004, diluted l0 to 1 by acetone. The acetone. The solvent was evaporated and the resin was cured by passing the fabric endlessly at a rate of 10 inches per minute vertically through an oven approximately four feet long heated to a maximum temperature of 380 F., the fabric being held at its sewn length in the rack direction.
  • a bonding agent specically an epoxy resin sold under the trademark Resiweld, Formula No. 7004, diluted l0 to 1 by acetone.
  • the solvent was evaporated and the resin was cured by passing the fabric endlessly at a rate of 10 inches per minute vertically through an oven approximately four feet long heated to a maximum temperature of 380 F., the fabric being held at its sewn length in the rack direction.
  • This fabric is designed specifically as a filter medium for filtering the effluent from a papermill making newsprint from groundwood stock.
  • Standard mesh filters previously used for this purpose typically filtered about 1.75 gallons per minute per square foot at a pressure of about inches of mercury, leaving a solids content in the filtrate of 5 to 6 and sometimes 8 pounds per 1000 gallons of filtrate .
  • the fabric of this Example I has proved to filter about 2.25 gallons per minute per square foot at a pressure of about inches of mercury, leaving a solids content in the filtrate of only 0.6 pound per 1000 gallons of filtrate.
  • the finished fabric was relatively stiff. This proved helpful in cleaning the sheet of filtered solids from the fabric, for fiexing of the stiff puckered fabric caused the sheet to be released from the fabric.
  • EXAMPLE II A particular example of the fabric shown in FIGS. 4, 5 and 6 will now be described.
  • the fabric was sewn in the same way as in the above Example I.
  • the rack filaments 12, the filler 14 and the sewn filaments 16 and 18 were all of the same material and size as in Example I and sewn to the same dimensions.
  • 'I'he fabric was heat shrunk in the same manner as in the above Example I, except that the rack filaments 12 were kept only in sufiicient tension to keep the fabric unwrinkled, resulting in shrinkage of about 10 to 15% in the rack direction.
  • the fabric of Example II proved to have about 10 to 15 better retention of solids. This is believed to be largely because the shrinkage in both rack and cross directions better closes the needle holes'made in the filler 14 in the sewing process.
  • the sewn filaments 16 and 18 may be sewn in tension to produce cross direction puckering when the tension is released in the cross direction.
  • puckering in either the rack direction or the cross direction may be effected by applying controlled tension during the sewing operation and then releasing the tension.
  • the types and sizes of filaments may be varied, depending upon the intended use for the fabric.
  • Various types of stitches may be used.
  • the fabric may be made endless or flat.
  • the permeability, porosity and void openings of the filter medium may be selected for the particular application.
  • the materials of which the filaments are made is another variable. So also may other bonding agents be used. The invention is therefore limited only by the claims.
  • a method of forming a puckered fabric comprising stretching a plurality of rack filaments in substantially parallel relationship in a sheet with tension maintaining said rack filaments substantially straight, depositing a stabilized non-woven sheet of filler on said sheet of stretched rack filaments, sewing a plurality of cross filaments over said filler and said rack filaments transversely of said rack filaments to sew said filler to said rack filaments, and shrinking said filaments relative to said filler in at least one direction.
  • a method of forming a puckered fabric according to claim 2 wherein said rack filaments are maintained in tension while said fabric is heated to keep the rack filaments at the same length as the filler so that only the cross filaments are shrunk relative to the filler.
  • a method of forming a puckered fabric comprising stretching a plurality of rack filaments in substantially parallel relationship in a sheet with tension maintaining said rack laments substantially straight, depositing a preshrunk stabilized non-woven sheet of filler on said sheet of stretched rack filaments, stitching a plurality of sewn filaments in substantially parallel rows transversely of said rack filaments to sew said filler to said rack filaments, heating the fabric thus sewn to shrink said filaments relative to said filler in at least one direction, and bonding said sewn filaments to said rack filaments.

Abstract

A puckered fabric is formed by stretching a plurality of rack filaments lying in parallel relationship with one another, depositing a stabilized non-woven web of filler material, sewing or stitching cross filaments over said filler and to the rack filaments and then shrinking the rack or cross filaments in at least one direction.

Description

June 13, 1972 C, A, LEE ETAL METHQD 0F MAKING FABRIC WITH A FILLER OF' GREATER AREA THAN THE FABRIC Original Filed April 29, 1966 FIG! FIGS
FIGB
ATTYS.
m4@ J, N6 Mw fm, WWW/WM United States Patent O 3,669,781 METHOD OF MAKING FABRIC WITH A FILLER OF GREATER AREA THAN THE FABRIC Charles A. Lee and Warren E. Furbeck, Knoxville, Tenn.,
assignors to Appleton Wire Works Corporation, Appleton, Wis.
Original application Apr. 29, 1966, Ser. No. 546,460, now Patent N0. 3,559,810. Divided and this application Mar. 30, 1970, Ser. No. 29,324
Int. Cl. B32b 31/26 U.S. Cl. 156-84 7 Claims ABSTRACT OF THE DISCLOSURE A puckered fabric is formed by stretching a plurality of rack filaments lying in parallel relationship with one another, depositing a stabilized non-woven web of filler material, sewing or stitching cross filaments over said filler and to the rack filaments and then shrinking the rack or cross filaments in at least one direction.
This is a division of copending application Ser. No. 546,460, filed Apr. 29, 19'66, now Pat. No. 3,559,810, granted Feb. 2, 1971.
This invention relates to puckered falbrics in which a non-woven fibrous filler is secured to strength members by filaments running transversely thereof and wherein the surface area of the filler is substantially greater than the projected area of the fabric as a whole.
This invention is an improvement on that described in the co-pending application of Charles A. Lee, Ser. No. 431,030, filed Feb. 8, 1965, for Sewn Fabric and Method of Manufacture, now abandoned. As therein disclosed, a sewn fabric is formed by sewing non-woven filler to a plurality of rack filaments using cross filaments transversely of the rack filaments to sew the filler to the rack filaments. In the improved fabric of the present invention, the filler in the finished fabric is undulated in at least one direction to give it a substantially greater surface area than the projected area of the fabric itself, thus making the fabric puckered.
In accordance with the present invention, the puckered falbric may be made by differentially shrinking the rack filaments. or the cross filaments relative to the filler after the fabric has been sewn together in accordance with the teachings of the aforesaid co-pending application. In the preferred method of making the fabric according to the present invention, the filler is stabilized and preshrunk before being sewn to the rack filaments. The sewn fabric is thereafter heat treated to shrink the rack filaments or the sewn filaments or both, thus shrinking the sewn fabric substantially without shrinking the filler much, if any, more. The puckered fabric thus produced is then preferably stabilized by chemical treatment with a bonding agent to produce a finished fabric.
A puckered fabric as thus produced has particular advantages when used as a filtration medium. The filler provides the Iltering quality of the fabric, and the puckered filler provides a greater area for filtration in a given fabric area, thus providing a greater filtration rate. Further, the chemically stabilized fabric is relatively stiff, and the filler pops up when flexed or pushed up from underneath. This aids in sheet release; that is, it permits easy removal of the material filtered out upon the fabric.
Therefore, a primary object of this invention is to provide a fabric wherein a non-woven filler is secured to rack filaments with cross filaments, the non-woven filler in the finished fabric having a substantially greater surface area than the projected area of the fabric itself.
3,669,781 Patented June 13, 1972 ICC Another object of the invention is to provide a filter medium which passes a large volume of filtrate while stopping a large fraction of settleable solids.
A further object of the invention is to pro-vide a filter medium of a construction that aids in sheet release of the material filtered out.
Still another object of the invention is to provide methods for making the fabrics of the present invention.
It is still another object of the invention to make the fabric of the present invention by sewing non-woven filler to rack filaments with sewn filaments and then shrinking the sewn filaments or the rack filaments or both relative to the filler.
Further objects and advantages of the present invention will become apparent from consideration of the foll wing description taken in conjunction with the accompanying drawings wherein:
FIG. 1 is a plan view of a piece of one form of puckered fabric made according to the present invention;
FIG. 2 is a cross-sectional view of the fabric shown in IFIG. 1, taken along section 2-2 of FIG. 1;
FIG. 3 is a cross-sectional view of the fabric shown in FIG. 1, taken along section 3-3 of FIG. 1;
FIG. 4 is a plan view of a piece of another form of puckered fabric made according to the present invention;
FIG. 5 is a cross-sectional view of the fabric shown in FIG. 4, taken along section 5--5 of FIG. 4; and
FIG. 6 is a cross-sectional view of the fabric shown in FIG. 4, taken along section 6-6 of FIG. 4.
In the preferred form of the invention illustrated in FIGS. 1, 2 and 3, the fabric 10 is formed of a plurality of relatively straight and parallel rack filaments 12 lying substantially in a sheet upon which is disposed a filler 14 which is sewn to the rack filaments 12 by sewn filaments 16 and 18. The filaments 12 are known as rack filaments after the manner in which they are ordinarily assembled into the fabrics. Generally, their function is to give strength to the fabric in the direction of their length, known as the rack direction or the machine direction. The sewn filaments 16 and 18 provide strength in the transverse or cross direction in addition to sewing the filler 14 to the rack filaments 12. The filler 14 may serve various functions, but in a filter fabric it furnishes the greater part of the filtering quality.
Only a portion of the fabric is illustrated in FIG. l. The fabric ordinarily takes the form of a sheet, that is, it is thin relative to its width and length. However, although the rack filaments 12 are described as being relatively straight or parallel and lying in a sheet and forming a sheet-like fabric, this includes the formation of an endless belt even though the latter requires that the sheet itself be curved and not entirely planar. The rack filaments 12 and sewn filaments 16 and 18 are referred to as a plurality of respective filaments; however, this includes the arrangement where a single strand is passed back and forth or around and around to form the plurality of filaments.
As shown, the filler 14 is non-woven and is preferably formed of filler filaments 20 of predetermined diameter and length, depending upon the particular application to which the fabric is to be put. The dimensions of the filler filaments 20 and the thickness of the filler 14 are selected to provide the desired properties; for example, in a filter fabric they are selected to provide predetermined permeability, porosity and void opening. In general, it is preferable that the filler filaments be long relative to the space between rows of sewn filaments 16, 18 in order that filler filaments bridge the gap between sewn filaments and add their strength to the fabric.
In the fabric illustrated in FIG. l, a lock stitch was employed to sew the filler to the rack filaments; other stitches can be employed within the scope of this invention. In using a lock stitch, it is frequently desirable, as shown, to utilize different threads on the respective sides of the rack filaments. As illustrated in FIG. l, the sewn filaments 16 on the filler side of the rack filaments are relatively fine whereas the sewn filaments 18 on the other side of the rack filaments are relatively coarse. Further, the sewn filaments 18 are, as shown, relatively straight, providing certain advantages in some applications. Two-sidedness may also be provided by stitches other than the lock stitch. For example, a two filament chain stitch can be used with different sewn filament materials on the respective sides of the fabric. Of course, in many instances it is quite satisfactory to use the same material and filament size on both sides, in which case a single filament chain stitch can be used as well as any of the two filament stitches.
The qualities of the fabric as thus far described are those of the fabric shown and described in the aforesaid Lee application, Ser. No. 431,030. However, the fabric as shown in FIGS. 1, 2 and 3 of the present application, differs from the prior fabric in that the filler 14 is undulated to provide a surface area substantially greater than the projected area of the fabric itself. This is par` ticularly evident in FIG. 3. In the form of the fabric as shown in FIGS. l, 2 and 3, the fabric is puckered in but one direction; namely, in the cross direction.
The following is a preferred manner of making the fabric of the present invention as illustrated in rFIGS. l, 2 and 3: A plurality of rack filaments is stretched upon a rack in substantially parallel relationship in a sheet, the tension being sufficient to keep the rack filaments substantially straight. The filler is then deposited upon the sheet of stretched rack filaments. The filler is deposited in non-woven sheet form, the sheet being formed of non-woven fibers and stabilized in some manner, as by chemical bonding, so that the fibers stick together to maintain the integrity of the sheet during subsequent processing. Further, the sheet is pre-shrunk before being deposited. The sewn filaments 16 and 18 are then stitched transversely across the rack filaments in substantially parallel rows, with the stitches being placed discretely between rack filaments 12. This sews the filler 14 to the rack filaments 12. The sewn fabric is then heated to shrink the rack filaments 12 or the sewn filaments 16 and 18 or both relative to the filler, which was stabilized and preshrunk. Bonding agent is then added to bond the rack filaments 12 to the sewn filaments 16 and 18 and stabilize the fabric.
More particularly, the filler 14 may be sewn to the rack filaments 16 and 18 in the manner described in the aforesaid co-pending Lee application Ser. No. 431,030 or in the manner described in either of the co-pending applications of Charles A. Lee and Warren R. Furbeck, Ser. No. 546,390, filed Apr. 29, 1966, for Method and Apparatus for Making Endless Sewn Fabric, now Pat. No. 3,459,612, and Ser. No. 546,379, filed Apr. 29, 1966, for Method and Apparatus for the Continuous Manufacture of Sewn Mesh Fabric, now U.S. Pat. No. 3,486,- 956. In accordance with the present invention, the puckering of the stabilized filler may then be effected by differential shrinking.
The sewn filaments 16 and 18 are shrunk more than the stabilized filler 14, thus puckering the filler in the cross direction as shown in FIGS. l, 2 and 3. To achieve this, the filler 14 was stabilized and pre-shrunk before being sewn to the rack filaments 12. Shrinking may be effected by heat treatment in the manner disclosed in the co-pending applications of Lee and Furbeck Method and Apparatus for Making Endless Sewn Fabric and Method and Apparatus for the Continuous Manufacture of Sewn Mesh Fabric. At the same time the rack filaments are kept in tension so that the rack filaments do not shrink. In making endless fabrics, the rack filaments may be held to the desired dimensions on the sewing rack throughout the sewing and heat shrinking processes.
The fabric may then be further sta-bilized by adding a bonding agent. This may be effected as disclosed in the aforesaid Lee and Furbeck applications mentioned in the preceding paragraph. The bonding agent may be selected to add any desired stiffness to the fabric.
An alternative form of the fabric is illustrated in FIGS. 4, 5 and 6. In this form the fabric is puckered in both the rack and cross directions, as illustrated. To make this fabric, the filler 14 may be sewn to the rack filaments 12 by sewn filaments 16 and 18 in the manner as described above'. The fabric may then be heat treated as described above, except that the rack filaments 12 are not held against shrinking but rather are permitted to shrink along with the sewn filaments 16 and 18.
EXAMPLE I The particular materials used, the size of the laments and the construction of the fabric ymay be varied in accordance with the desired properties of the fabric. However, as a specific example of the fabric shown in FIGS. 1, 2 and 3, a particular endless fabric designed and used as a filter medium will be described. In forming this filter fabric, the sewing process used was that described in the aforesaid Lee and Furbeck application Method and Apparatus for Making Endless Sewn Fabric.
The rack filaments 12 were made of synthetic polyester fibers sold under the trademark Dacron. The rack filaments 12 were 220 denier disposed at 16 per inch to form an endless sheet.
The filler 14 was also made of synthetic polyester fibers sold under the trademark Dacron. The filler filaments 20 were about 1.5 mills in diameter and their average length was about 1.25 inches. The filler 14 was in sheet form sold under the trademark Reemay Spunbonded. The sheet was about 12 mils thick, being known as Style 240, weighing 2.2 ounces per square foot. The filler 14 was Y stabilized and pre-shrunk.
The filler 14 was sewn to the rack filaments 12 of sewn filaments 16 and 18 stitched in parallel rows one-third inch apart at 8 stitches per inch, placed discretely between rack filaments 12. A lock stitch was used. The sewn filaments 16 and 18 were each of the same material and size as the rack filaments 12. A tension of about 1.5 pounds per filament was maintained in the rack filaments during the sewing, and the sewing was effected with such tension in the sewn filaments 16 and 18, that upon completio'n of sewing, the sewn filaments remained slightly taut but not so taut as to produce any substantial wrinkling or puckering of the filler 14 in the cross direction,
The endless fabric as thus sewn Was then heat shrunk :and chemically stabilized in the manner described in the aforesaid Lee and Furbeck application Method and Apparatus for Making Endless Sewn Fabric. It was heat shrunk by passing it endlessly at a rate of about 10 inches per minute vertically through an oven about 4 feet long as the oven was gradually brought up to a maximum temperature of about 380 F. The rack filaments 12 were held in tension during `the heat treatment to prevent shrinkage in the rack direction. This heat treatment produced shrinkage of the sewn filaments 16 and 18 relative to the filler 14. The filler 14 remained at` its original dimensions because it had been previously shrunk. The sewn fabric was passed several times through the oven to assure complete and uniform shrinkage. By this treatment, the fabric was shrunk about 15 to 20% in the cross direction, from about 28.5 inches to about 23.5 inches.
The heat shrunk fabric was then chemically treated with a bonding agent, specically an epoxy resin sold under the trademark Resiweld, Formula No. 7004, diluted l0 to 1 by acetone. The acetone. The solvent was evaporated and the resin was cured by passing the fabric endlessly at a rate of 10 inches per minute vertically through an oven approximately four feet long heated to a maximum temperature of 380 F., the fabric being held at its sewn length in the rack direction.
This fabric is designed specifically as a filter medium for filtering the effluent from a papermill making newsprint from groundwood stock. Standard mesh filters previously used for this purpose typically filtered about 1.75 gallons per minute per square foot at a pressure of about inches of mercury, leaving a solids content in the filtrate of 5 to 6 and sometimes 8 pounds per 1000 gallons of filtrate .The fabric of this Example I has proved to filter about 2.25 gallons per minute per square foot at a pressure of about inches of mercury, leaving a solids content in the filtrate of only 0.6 pound per 1000 gallons of filtrate.
The finished fabric was relatively stiff. This proved helpful in cleaning the sheet of filtered solids from the fabric, for fiexing of the stiff puckered fabric caused the sheet to be released from the fabric.
EXAMPLE II A particular example of the fabric shown in FIGS. 4, 5 and 6 will now be described. The fabric was sewn in the same way as in the above Example I. The rack filaments 12, the filler 14 and the sewn filaments 16 and 18 were all of the same material and size as in Example I and sewn to the same dimensions. 'I'he fabric was heat shrunk in the same manner as in the above Example I, except that the rack filaments 12 were kept only in sufiicient tension to keep the fabric unwrinkled, resulting in shrinkage of about 10 to 15% in the rack direction.
This was occasioned both by the shrinkage of the rack filament 12 by the heat applied and by the natural contraction of the rack filaments upon release of tension after sewing.
As a filter fabric, the fabric of Example II proved to have about 10 to 15 better retention of solids. This is believed to be largely because the shrinkage in both rack and cross directions better closes the needle holes'made in the filler 14 in the sewing process.
flt was noted above that part of the shrinkage in the raok direction in Example II was occasioned by the contraction of the rack filaments 12 upon release of the tension applied during the sewing operation. By selection of the tension during sewing, the amount of rack direction puckering can be controlled.
It should be kept in mind that although various preferred embodiments of the invention have been described above, numerous modifications can be made within the scope of the present invention as defined by the claims. For example, the sewn filaments 16 and 18 may be sewn in tension to produce cross direction puckering when the tension is released in the cross direction. Thus, puckering in either the rack direction or the cross direction may be effected by applying controlled tension during the sewing operation and then releasing the tension. The types and sizes of filaments may be varied, depending upon the intended use for the fabric. Various types of stitches may be used. The fabric may be made endless or flat. The permeability, porosity and void openings of the filter medium may be selected for the particular application. The materials of which the filaments are made is another variable. So also may other bonding agents be used. The invention is therefore limited only by the claims.
What is claimed is:
1. A method of forming a puckered fabric comprising stretching a plurality of rack filaments in substantially parallel relationship in a sheet with tension maintaining said rack filaments substantially straight, depositing a stabilized non-woven sheet of filler on said sheet of stretched rack filaments, sewing a plurality of cross filaments over said filler and said rack filaments transversely of said rack filaments to sew said filler to said rack filaments, and shrinking said filaments relative to said filler in at least one direction.
2.. A method of forming a puckered fabric according to claim 1 wherein said sheet of filler is preshrunk before being deposited upon said sheet of rack filaments and said shrinking of said filaments is effected by heating the fabric.
3. A method of forming a puckered fabric according to claim 2 wherein said rack filaments are maintained in tension while said fabric is heated to keep the rack filaments at the same length as the filler so that only the cross filaments are shrunk relative to the filler.
4. A method of forming a puckered fabric according to claim 2 wherein said cross filaments are bonded to said rack filaments.
5. A method of forming a puckered fabric according to claim 1 wherein said shrinking is effected by sewing with the filaments in tension in at least one direction and then releasing the tension.
6. A method of forming a puckered fabric according to claim 11 wherein said cross filaments are stitched discretely between rack filaments in substantially parallel rows.
7. A method of forming a puckered fabric comprising stretching a plurality of rack filaments in substantially parallel relationship in a sheet with tension maintaining said rack laments substantially straight, depositing a preshrunk stabilized non-woven sheet of filler on said sheet of stretched rack filaments, stitching a plurality of sewn filaments in substantially parallel rows transversely of said rack filaments to sew said filler to said rack filaments, heating the fabric thus sewn to shrink said filaments relative to said filler in at least one direction, and bonding said sewn filaments to said rack filaments.
References Cited UNITED STATES PATENTS 2,977,664 4/ 1961 Grajeck 28-74 2,404,837 7/ 1946 Goldthwait 8--117 3,535,191 10/1970 Lee 156-936 2,245,289 6/I1941 Muller 156-85 BENJAMIN A. BORCI-IiELT, Primary yExaminer D. BENT, Assistant Examiner UNITED STATES PATENT OFFICE CERTIFICATE OF CRRECTIN Patent No. 3 669 781 Dated June 13 1972 Inventor(s) Charles A. Lee et al It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Column 2, line 72, change other" to however, other; Column 3, line 53, change "546,390" to -546,380; Column 3, line 54, change "now Pat." to --now U.S. Pat..
Signedv and sealed this 26th deyo December 1972.
(SEEE) Ames-E:
EDWARD M.ELETGH'EE,JE. ROBE-ET GOTTSGHALK Attestng Officer l Commissioner of Patents FORM IDO-1050 (1D-69) uscoMM-oc Goan-P69 f' U,S. GOVERNMENT PRINTING OFFICE: |969 0 356-334
US29324A 1966-04-29 1970-03-30 Method of making fabric with a filler of greater area than the fabric Expired - Lifetime US3669781A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US54646066A 1966-04-29 1966-04-29
US2932470A 1970-03-30 1970-03-30

Publications (1)

Publication Number Publication Date
US3669781A true US3669781A (en) 1972-06-13

Family

ID=26704826

Family Applications (2)

Application Number Title Priority Date Filing Date
US546460A Expired - Lifetime US3559810A (en) 1966-04-29 1966-04-29 Fabric including a filler of greater area than the fabric
US29324A Expired - Lifetime US3669781A (en) 1966-04-29 1970-03-30 Method of making fabric with a filler of greater area than the fabric

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US546460A Expired - Lifetime US3559810A (en) 1966-04-29 1966-04-29 Fabric including a filler of greater area than the fabric

Country Status (1)

Country Link
US (2) US3559810A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6063473A (en) * 1993-02-26 2000-05-16 Xymid L.L.C. Abrasion-resistant composite sheet

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3871850A (en) * 1973-03-20 1975-03-18 Ethyl Corp Filter element
US6241879B1 (en) * 1996-05-31 2001-06-05 Toray Industries, Inc. Filtering machine and filter cloth therefor
US9290283B2 (en) 2012-03-16 2016-03-22 Pemco Inc. Method and apparatus for wrapping a folio ream of paper

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6063473A (en) * 1993-02-26 2000-05-16 Xymid L.L.C. Abrasion-resistant composite sheet

Also Published As

Publication number Publication date
US3559810A (en) 1971-02-02

Similar Documents

Publication Publication Date Title
US3819465A (en) Non-woven textile products
US4159360A (en) Stabilized fabrics
US3485695A (en) Method of making a bonded poriferous non-woven textile fabric
US3570085A (en) Method of forming a reinforced fabric by a compressive shrinking operation
JPH0731677A (en) Blood filter material
US3286007A (en) Process of manufacturing a polyolefin fiber-containing non-woven fabric
US3090101A (en) Method of constructing a corrugator belt
US3669781A (en) Method of making fabric with a filler of greater area than the fabric
US3104998A (en) Non-woven fabrics
US3399642A (en) Process for preventing seam pucker
US3366529A (en) Needled non-woven fabrics and method of making the same
US3400188A (en) Method for producing reticulated film
GB1206010A (en) Felt for paper-making and the like
HU908406D0 (en) Web fabric and process for manufacturing it
GB982105A (en) Artificial leather
GB1228431A (en) Woven primary backing material for tufteds carpets and method of making same
US3506133A (en) Sewn fabric filter medium and method of manufacture
GB1236780A (en) Improvements in papermaking apparatus
US2196655A (en) Apparatus for treating fabrics
US3600910A (en) Fluffy textile web
JPS5882750A (en) Uneven pattern cloth and its manufacture
US3474748A (en) Sewn fabric and method of manufacture
US3535191A (en) Sewn fabric and method of manufacture
DE2621592B2 (en) Process for the manufacture of a fine filter for the manufacture of sugar
US3912432A (en) Base material for synthetic leather, and apparatus for the production thereof