US3669180A - Production of fine grained ingots for the advanced superalloys - Google Patents
Production of fine grained ingots for the advanced superalloys Download PDFInfo
- Publication number
- US3669180A US3669180A US107908A US3669180DA US3669180A US 3669180 A US3669180 A US 3669180A US 107908 A US107908 A US 107908A US 3669180D A US3669180D A US 3669180DA US 3669180 A US3669180 A US 3669180A
- Authority
- US
- United States
- Prior art keywords
- percent
- mold
- superalloys
- ingots
- production
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D27/00—Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
- B22D27/02—Use of electric or magnetic effects
Definitions
- ABSTRACT The highly alloyed superalloys are cast as a well stirred twophase liquid/solid mixture into a heated mold and solidified with the maintenance of a well stirred two-phase layer preceding the axially advancing solidification front to provide a homogeneous ultra-fine-grain ingot.
- the present invention relates to the alloy field and, more particularly, to the production of fine-grained cast ingots formed from the highly alloyed superalloys.
- test engine operation revealed excessive airfoil growth in one case and cracked root serrations in another case. Creep tests in the range of l,300 l,500 F. revealed a lack of adequate third stage creep, this lack of duetility being responsible for premature and unpredictable stress rupture failure at the blade root. In addition to the strength and ductility problems an excessively broad scatter of mechanical properties was evident due to uncontrolled grain structure. This scatter was incompatible with predictable engine operating requirements.
- the method utilized involved manipulation of the melt from which blade castings were to be made to obtain random nucleation in the melting crucible and grain growth therefrom in the blade mold during solidification.
- the heat input to the crucible was lowered at a rate designed to minimize the thermal gradients in the melt while maintaining maximum stirring effect.
- the crucible heat was increased sharply to increase the temperature of the melt to the pour point. Even with this temperature increase, the nuclei formed during the cool-down portion of the cycle persist for a reasonable time.
- the melt was poured into the blade mold with grain growth proceeding from the dispersed nuclei with solidification producing an equiaxed microstructure.
- the present invention comprises an improved method of providing castings characterized by an equiaxed grain structure and further characterized by a fine grain size. It is applicable to the superalloys exhibiting sufficient strengths to limit creep to a maximun of 0.1 percent in 150 hours at 1,300 F. under a load of 80,000 p.s.i.
- the present invention contemplates the pouring of a well stirred melt in a two-phase solid/liquid condition into a heated mold and solidifying the same in the presence of a reservoir of a well stirred reservoir of the melt. Accordingly, it comprises an improved slush casting technique which is particularly applicable to the production of the larger size ingots from the advanced, highly alloyed superalloys including the nickel-base superalloys.
- the drawing depicts ingot mold apparatus for the production of the ultra-fine-grain cast ingots described herein.
- Alloys of the type to which the present process is particularly applicable are those advanced superalloys characterized by high creep strengths including such alloys as those shown in U.S. Pat. No. 3,061,426, having a representative chemistry as follows: (by weight) 10 percent Cr, 15 percent Co, 4.5 percent Ti, 5.5 percent A], 3 percent Mo, 0.17 percent C, 1 percent V, 0.015 percent B, 0.06 percent Zr.
- alloys of the same general type include: Alloy A 9 percent Cr, 10 percent Co, 2 percent Ti, 5 percent A], 7.8 percent Mo, 12.5 percent W, 0.15 percent C, 1 percent Cb, 0.015 percent B, 0.05 percent Zr; and Alloy B 15 percent Cr, 15 percent Co, 3.4 percent Ti, 4.3 percent Al, 4.4 percent Mo, 0.07 percent C, 0.02 percent B.
- the fundamental objective of the present invention is the provision of sound, homogeneous ultra-fine castings from the superalloys. This requires in the casting process not only the establishment of many sites for grain growth (nuclei) uniformly distributed through the melt in the casting mold but also accommodation of such factors as thermal shrinkage which is unaccommodated can lead to the generation of voids or pipe.
- a lower mold 2 with integral hot top 4 is positioned on a copper stool 6.
- the lower mold is 16 inches in diameter and 24 inches high, these dimensions corresponding to the desired ingot size with the hot top being 8 inches in diameter and 12 inches high.
- the copper stool on which the mold assembly rests is 24 inches in diameter and 18 inches high with a 6-inch base. Provision for temperature control of the copper stool is made, although not shown.
- the lower mold 2 comprises a nonmagnetic stainless steel shell 8 containing a suitable ceramic mold 10 of the desired configuration, in the present case essentially cylindrical.
- a stirring coil 12 Surrounding the lower mold, external of the stainless steel shell is a stirring coil 12 which is utilized for maintaining a homogeneous distribution of the nuclei from which grain growth occurs.
- the upper mold 4 is somewhat similarly constructed comprising a stainless steel shell 14 with suitable ceramic insulation 16 internal thereof.
- the stainless steel shell is externally surrounded by a graphite susceptor l8 and external of the susceptor by a stirring and heating coil 20.
- the alloy to be cast is melted in a crucible, with sufficient time at temperature to assure complete melting.
- the temperature of the crucible is slowly lowered to provide a two-phase mixture of liquid and solid accompanied by sufficient stirring action to minimize thermal gradients in the melt and a homogeneous distribution of the fine solid particles or nuclei of the melt.
- the two-phase mixture or slush is then poured from the crucible into the desired mold, for example of the type depicted in the drawing, the mold being preheated to a temperature below the solidus temperature of the alloy but preferably close thereto.
- preheat temperatures of 1,900 F. are satisfactory.
- Heating and stirring is provided in the mold hot top and, in effect, provides not only a makeup reservoir for the lower mold but permits control of the viscosity of the material both in and below it. Regulation of heat in the hot top is further provided to assure that solidification through the ingot proceeds from the well stirred slush as solidification occurs upwardly.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10790871A | 1971-01-20 | 1971-01-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3669180A true US3669180A (en) | 1972-06-13 |
Family
ID=22319106
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US107908A Expired - Lifetime US3669180A (en) | 1971-01-20 | 1971-01-20 | Production of fine grained ingots for the advanced superalloys |
Country Status (9)
Country | Link |
---|---|
US (1) | US3669180A (sv) |
CA (1) | CA950637A (sv) |
CH (1) | CH548453A (sv) |
DE (1) | DE2159815C2 (sv) |
FR (1) | FR2122400B1 (sv) |
GB (1) | GB1309340A (sv) |
IL (1) | IL38350A (sv) |
IT (1) | IT946521B (sv) |
SE (1) | SE384332B (sv) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3902544A (en) * | 1974-07-10 | 1975-09-02 | Massachusetts Inst Technology | Continuous process for forming an alloy containing non-dendritic primary solids |
US3954132A (en) * | 1973-06-22 | 1976-05-04 | Selly Oak Diecastings Limited | Manufacture of cast ferrous metal dies |
US4267154A (en) * | 1978-09-29 | 1981-05-12 | Georg Mueller | Apparatus for manufacturing high quality crystals |
US4540038A (en) * | 1984-06-05 | 1985-09-10 | Westinghouse Electric Corp. | Method for production of combustion turbine blade having a hybrid structure |
EP0218536A2 (en) * | 1985-10-03 | 1987-04-15 | Howmet Corporation | A method of forming a fine-grained equiaxed casting |
EP0233828A2 (en) * | 1986-02-10 | 1987-08-26 | Howmet Corporation | A method of forming dense ingots having a fine equiaxed grain structure |
US4964453A (en) * | 1989-09-07 | 1990-10-23 | The United States As Represented By The Administrator Of The National Aeronautics And Space Administration | Directional solidification of superalloys |
US10046386B2 (en) | 2007-04-06 | 2018-08-14 | Ashley Stone | Device for casting |
CN114273645A (zh) * | 2021-12-27 | 2022-04-05 | 山东康普锡威新材料科技有限公司 | 一种利用高频振动制备超细晶材料的方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4637448A (en) * | 1984-08-27 | 1987-01-20 | Westinghouse Electric Corp. | Method for production of combustion turbine blade having a single crystal portion |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3508914A (en) * | 1965-10-07 | 1970-04-28 | Us Navy | Methods of forming and purifying nickel-titanium containing alloys |
CA842690A (en) * | 1970-05-26 | Petrovich Vladimir | Grain refining process | |
US3552479A (en) * | 1967-11-22 | 1971-01-05 | Martin Metals Co | Casting process involving cooling of a shell mold prior to casting metal therein |
-
1971
- 1971-01-20 US US107908A patent/US3669180A/en not_active Expired - Lifetime
- 1971-10-29 CA CA126,519,A patent/CA950637A/en not_active Expired
- 1971-11-23 FR FR7142763A patent/FR2122400B1/fr not_active Expired
- 1971-11-25 GB GB5497971A patent/GB1309340A/en not_active Expired
- 1971-12-02 DE DE2159815A patent/DE2159815C2/de not_active Expired
- 1971-12-13 CH CH1819571A patent/CH548453A/xx not_active IP Right Cessation
- 1971-12-14 IL IL38350A patent/IL38350A/xx unknown
- 1971-12-27 SE SE7116626A patent/SE384332B/sv unknown
-
1972
- 1972-01-13 IT IT19303/72A patent/IT946521B/it active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA842690A (en) * | 1970-05-26 | Petrovich Vladimir | Grain refining process | |
US3508914A (en) * | 1965-10-07 | 1970-04-28 | Us Navy | Methods of forming and purifying nickel-titanium containing alloys |
US3552479A (en) * | 1967-11-22 | 1971-01-05 | Martin Metals Co | Casting process involving cooling of a shell mold prior to casting metal therein |
Non-Patent Citations (1)
Title |
---|
Athey and Moore, Development of In100 Turbine Blades, Feb. 28, 1968 pp. 1 20. * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3954132A (en) * | 1973-06-22 | 1976-05-04 | Selly Oak Diecastings Limited | Manufacture of cast ferrous metal dies |
US3902544A (en) * | 1974-07-10 | 1975-09-02 | Massachusetts Inst Technology | Continuous process for forming an alloy containing non-dendritic primary solids |
US4267154A (en) * | 1978-09-29 | 1981-05-12 | Georg Mueller | Apparatus for manufacturing high quality crystals |
US4540038A (en) * | 1984-06-05 | 1985-09-10 | Westinghouse Electric Corp. | Method for production of combustion turbine blade having a hybrid structure |
EP0218536A2 (en) * | 1985-10-03 | 1987-04-15 | Howmet Corporation | A method of forming a fine-grained equiaxed casting |
EP0218536A3 (en) * | 1985-10-03 | 1987-09-02 | Howmet Turbine Components Corporation | A method of forming a fine-grained equiaxed casting |
EP0233828A2 (en) * | 1986-02-10 | 1987-08-26 | Howmet Corporation | A method of forming dense ingots having a fine equiaxed grain structure |
EP0233828A3 (en) * | 1986-02-10 | 1988-01-07 | Howmet Turbine Components Corporation | A method of forming dense ingots having a fine equiaxed grain structure |
US4964453A (en) * | 1989-09-07 | 1990-10-23 | The United States As Represented By The Administrator Of The National Aeronautics And Space Administration | Directional solidification of superalloys |
US10046386B2 (en) | 2007-04-06 | 2018-08-14 | Ashley Stone | Device for casting |
CN114273645A (zh) * | 2021-12-27 | 2022-04-05 | 山东康普锡威新材料科技有限公司 | 一种利用高频振动制备超细晶材料的方法 |
CN114273645B (zh) * | 2021-12-27 | 2024-03-29 | 山东康普锡威新材料科技有限公司 | 一种利用高频振动制备超细晶材料的方法 |
Also Published As
Publication number | Publication date |
---|---|
IL38350A0 (en) | 1972-03-28 |
DE2159815A1 (de) | 1972-08-03 |
IT946521B (it) | 1973-05-21 |
IL38350A (en) | 1975-12-31 |
CA950637A (en) | 1974-07-09 |
SE384332B (sv) | 1976-05-03 |
DE2159815C2 (de) | 1981-11-26 |
FR2122400B1 (sv) | 1975-08-29 |
GB1309340A (en) | 1973-03-07 |
CH548453A (de) | 1974-04-30 |
FR2122400A1 (sv) | 1972-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2606994B1 (en) | Induction stirred, ultrasonically modified investment castings and apparatus for producing | |
EP0218536B1 (en) | A method of forming a fine-grained equiaxed casting | |
GB1369270A (en) | Casting of directionally solidified articles | |
US3669180A (en) | Production of fine grained ingots for the advanced superalloys | |
US4637448A (en) | Method for production of combustion turbine blade having a single crystal portion | |
US3678988A (en) | Incorporation of dispersoids in directionally solidified castings | |
CN113523218A (zh) | 一种高温合金组织均匀化的熔铸装置和方法 | |
US3248764A (en) | Method for improving grain structure and soundness in castings | |
US4202400A (en) | Directional solidification furnace | |
KR100718405B1 (ko) | 주물의 횡방향 입자 크기 제어 방법, 주조 주상 제품과 및 액체 금속 냉각식 방향성 응고 방법 | |
US3754592A (en) | Method for producing directionally solidified cast alloy articles | |
US4609029A (en) | Method of reducing casting time | |
JP3496833B1 (ja) | 固液共存状態金属材料の製造方法 | |
JP2793430B2 (ja) | 高機械的性能の部品を半流動体金属合金の射出によって製造するダイカスト方法 | |
JP3209099B2 (ja) | 鋳造装置、鋳造方法およびタービン翼 | |
US4213497A (en) | Method for casting directionally solidified articles | |
US3939895A (en) | Method for casting directionally solidified articles | |
US3942581A (en) | Method and apparatus for casting directionally solidified articles | |
US4184900A (en) | Control of microstructure in cast eutectic articles | |
JP2022129329A (ja) | 一方向凝固装置及び一方向凝固方法 | |
Jie et al. | Enhanced Grain Refinement and Porosity Control of the Polycrystalline Superalloy by a Modified Thermally Controlled Solidification | |
US3783032A (en) | Method for producing directionally solidified nickel base alloy | |
CA1068454A (en) | Control of microstructure in cast eutectic articles | |
US4709461A (en) | Method of forming dense ingots having a fine equiaxed grain structure | |
EP0059550B1 (en) | Method of casting |