US3658604A - Method of making a high-speed tool steel - Google Patents
Method of making a high-speed tool steel Download PDFInfo
- Publication number
- US3658604A US3658604A US888859A US3658604DA US3658604A US 3658604 A US3658604 A US 3658604A US 888859 A US888859 A US 888859A US 3658604D A US3658604D A US 3658604DA US 3658604 A US3658604 A US 3658604A
- Authority
- US
- United States
- Prior art keywords
- matrix
- tool steel
- cobalt
- sintered
- iron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910001315 Tool steel Inorganic materials 0.000 title description 16
- 238000004519 manufacturing process Methods 0.000 title description 5
- 239000000203 mixture Substances 0.000 claims abstract description 24
- 239000011159 matrix material Substances 0.000 claims abstract description 18
- 238000010438 heat treatment Methods 0.000 claims abstract description 16
- 229910000734 martensite Inorganic materials 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims description 11
- 238000005496 tempering Methods 0.000 claims description 6
- 238000001816 cooling Methods 0.000 claims description 4
- 238000004881 precipitation hardening Methods 0.000 claims description 2
- QVYYOKWPCQYKEY-UHFFFAOYSA-N [Fe].[Co] Chemical compound [Fe].[Co] QVYYOKWPCQYKEY-UHFFFAOYSA-N 0.000 claims 1
- 229910000831 Steel Inorganic materials 0.000 abstract description 18
- 239000010959 steel Substances 0.000 abstract description 18
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 17
- 229910045601 alloy Inorganic materials 0.000 abstract description 17
- 239000000956 alloy Substances 0.000 abstract description 17
- 229910052742 iron Inorganic materials 0.000 abstract description 9
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 abstract description 7
- 239000000843 powder Substances 0.000 abstract description 7
- OAXLZNWUNMCZSO-UHFFFAOYSA-N methanidylidynetungsten Chemical compound [W]#[C-] OAXLZNWUNMCZSO-UHFFFAOYSA-N 0.000 abstract description 5
- 239000010941 cobalt Substances 0.000 abstract description 4
- 229910017052 cobalt Inorganic materials 0.000 abstract description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 abstract description 4
- 238000003825 pressing Methods 0.000 abstract description 4
- 238000010310 metallurgical process Methods 0.000 abstract description 2
- 150000001247 metal acetylides Chemical class 0.000 description 8
- 239000012071 phase Substances 0.000 description 6
- 238000005245 sintering Methods 0.000 description 6
- 239000002245 particle Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 4
- 239000007791 liquid phase Substances 0.000 description 4
- 238000007792 addition Methods 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- FQMNUIZEFUVPNU-UHFFFAOYSA-N cobalt iron Chemical compound [Fe].[Co].[Co] FQMNUIZEFUVPNU-UHFFFAOYSA-N 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229910000997 High-speed steel Inorganic materials 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 229910000967 As alloy Inorganic materials 0.000 description 1
- 229910001339 C alloy Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910001080 W alloy Inorganic materials 0.000 description 1
- 238000000498 ball milling Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000007596 consolidation process Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000007665 sagging Methods 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
- C22C33/0257—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
- C22C33/0278—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
- C22C33/0292—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with more than 5% preformed carbides, nitrides or borides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C29/00—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
- C22C29/02—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
- C22C29/06—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
- C22C29/067—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds comprising a particular metallic binder
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C29/00—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
- C22C29/02—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
- C22C29/06—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
- C22C29/08—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
Definitions
- ABSTRACT High-speed tool steels are prepared by a powder metallurgical process comprising pressing to shape a powdered mixture of 15-75 weight percent tungsten monocarbide and a matrix of cobalt and iron, the cobalt-to-iron ratio ranging from 0.65 to 2.0. The pressed mixture is then sintered to full density by partially iiquefying the ferrous phase of the alloy. The sintered compact is then hardened by heat treatment to transform the ferrous matrix to martensite.
- This invention relates to aprocess for the preparation of a shaped, high-speed tool steel alloy of tungsten monocarbide, cobalt and iron.
- high-speed tool steels depends to-a considerable extent upontheir microstructure, a microstructure normally obtained by hot-working.
- high-speed tool steels are processed to the final desired shapeby the relatively costly and laborioussteps of melting, casting, hot-working (e.g. forging, extruding or rolling) and machining. It would be much more economical to directly cast the desired shape but the ascast microstructure is very coarse and contains continuous carbide networks which cause severe embrittlement of the casting.
- The'hot-working procedure refines the caststructure to one which is fine and discontinuous and thus much harder and tougher.
- Tool steel compositions consisting of Fe-Co--W- and C are known.
- a typical composition of this type contains by weight 40 percent Co, 20 percent W, 1.3 percent C, balance Fe.
- These steels have been prepared by a modification of the normal process for preparing tool steels, consisting of atomizing a melt into powder, followed by the usual hot-working consolidation steps. The resulting steels exhibit metal-cutting characteristics superior to conventional tool steels.
- the processingmethod employed is at least as tedious and costly, however, as that used to make conventional high-speed tool steels.
- High-speed tool steels are normally characterized as alloy steelscapable of being hardened and tempered to a condition of high strength, wear resistance, and hot hardness. ln addition, they also exhibit certain metal-cutting performance characteristics which distinguish them from other tool steels and from cemented carbides.
- the process used in this invention differs fr'omthat used to make conventional cemented carbide alloys in several significant respects discussed below. However, the processes contain certain steps in common in that'they both ball-mill fine powders, press to shape, and sinter to full density. The compositions used by this process, however, more closely resemble high-speed tool steels in a number of respects.
- the present-alloys have a structure that, except in theupperportion of the WC range, primarily consists'of a ferrousalloy, with carbideparticlespresent asa secondary constituent, while: the-reverse .is true withcemented carbides in that thecarbide' particles are .the predominant phase and an ironvgroup metal is secondary.
- the present'alloys contain matrices which are hardenable by heat treatment and can be tempered to a condition of hot-hardness, both of which are not characteristic of the matrices of cemented carbides.
- the liquid-phase sintering of cemented carbides consists of raising to a temperature where essentially all of the iron-group metal becomes molten andthe compact is held together by the tightly packed carbide particles. If this same technique were employed with these new tool steel alloys, the compact would melt-and completely lose the desired shape. It is essential with these alloys that only a partial liquefaction of'the binder phase occur.
- the sintering temperature must be controlled within a range where-a sufficient amount of the'ferrous phase liquefies to permit full den sification but the amount of liquid is insufficient for the compact to lose shape by sagging or melting.
- the sintering temperature will vary with the specific composition and with the type of sintering-cycle used, but will-fall between about 1,200 C. and 1,400 C. This temperature may, however, easily be obtained by heating to a temperature within the range l,200-l ,400 C. to select, on-the one hand, the lowest temperature which produces a product of full density and, on the other hand, to select the'temperature above which the pressed mixture begins to sag. Any temperature between these extremes may be used.
- the range between minimum and maximum will be about 30 C.
- the critical sintering range is about l,325-l,355 C. when the composition is first presintered in hydrogen at500 C. and then sintered in vacuum.
- Heat treatment of'the alloys comprises heating to a temperature at which the matrix phase is transformed to an austenitic structure, normally from about l,000 C. to about 1,200 C. for a period of from several minutes to several hours or even more.
- the alloy is then rapidly cooled such as by oil quenchingtoconvertthe austenitic matrix to martensite.
- the alloy may then befurtherhardened by tempering by heating to about 425-650 C.
- the tempering'step forms a very fine precipitate which increases the hot hardness of the alloy. Both the hardening and tempering treatments are similar to these well-known heat treatment steps withhigh-speed steels.
- EXAMPLE I An Fe--CoW-C tool steel alloy of composition 20 "percent Fe, 30 percent Co, 47 percent W, 3 percent C was prepared by-ball-milling fine powders of Fe, Co and WC for 24 hours in a'4-inch diameter ball mill using acetone as a milling fluid. One percent paraffin was then added as a pressing lubricant and compacts were pressed at a pressure of 30,000 p.s.i. The compacts were then presintered at 500 C. in a hydrogen atmosphere to remove the paraffin and sintered l0 minutes'at .l ,340 C. in a vacuum furnace during which only partial liquefaction of the-binder occurred. The sintered compact was fully dense, as evidenced by the complete lack of porosity in the microstructure, and the microstructure consisted of fine, discrete particles of WC embedded in a ferrous matrix.
- the sintered compact was then given a heat treatment consisting of holding 20 minutes at l,200 C., oil quenching, then tempering 2 hours at 550 C., cooling to room temperature, and another 2 hours temper at 550 C. After heat treatment the hardness was R 70 and the transverse rupture strength averaged 475,000 p.s.i.
- T-lS is a premium high-speed tool steel, generally considered to have best metal-turning properties in the tool steel class.
- Singlepoint turning of 1045 steel showed the present alloy to be nearly comparable to T-lS in wear resistance and of essentially similar performance response, i.e., the tool lifeline slope,
- EXAMPLE II was R 74 and the transverse rupture strength was 255,000 psi.
- the hot hardness of this composition was superior to that of commercial T-l5 steel at all temperatures up to l,300 F.
- the tool lifeline of this composition was identical with that of T-l5 tool steel.
- a process for preparing a shaped, high-speed tool steel alloy comprising pressing to shape a mixture consisting essentially of l5-75 percent by weight of tungsten monocarbide, and a matrix material, said matrix material comprising cobalt and iron, the cobalt-to-iron weight ratio ranging from 0.65 to 2.0,
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Powder Metallurgy (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US88885969A | 1969-12-29 | 1969-12-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3658604A true US3658604A (en) | 1972-04-25 |
Family
ID=25394046
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US888859A Expired - Lifetime US3658604A (en) | 1969-12-29 | 1969-12-29 | Method of making a high-speed tool steel |
Country Status (6)
Country | Link |
---|---|
US (1) | US3658604A (enrdf_load_stackoverflow) |
JP (1) | JPS4923964B1 (enrdf_load_stackoverflow) |
DE (1) | DE2063846C3 (enrdf_load_stackoverflow) |
FR (1) | FR2074262A5 (enrdf_load_stackoverflow) |
GB (1) | GB1288133A (enrdf_load_stackoverflow) |
NL (1) | NL175644C (enrdf_load_stackoverflow) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5054508A (enrdf_load_stackoverflow) * | 1973-09-14 | 1975-05-14 | ||
US3909310A (en) * | 1973-08-24 | 1975-09-30 | Ford Motor Co | Apex seal design |
US4002471A (en) * | 1973-09-24 | 1977-01-11 | Federal-Mogul Corporation | Method of making a through-hardened scale-free forged powdered metal article without heat treatment after forging |
US5881356A (en) * | 1995-06-07 | 1999-03-09 | Bt-Magnettechnologie Gmbh | Method for the case-hardening of higher-molybdenum-alloy sintered steels |
WO1999035295A1 (de) * | 1998-01-10 | 1999-07-15 | Deloro Stellite Gmbh | Formkörper aus einem hartmetallischen verschleissfestem werkstoff und verfahren zu seiner herstellung |
US6013225A (en) * | 1996-10-15 | 2000-01-11 | Zenith Sintered Products, Inc. | Surface densification of machine components made by powder metallurgy |
EP1024207A1 (en) * | 1999-01-29 | 2000-08-02 | Seco Tools Ab | Cemented carbide with a hardenable binder phase |
RU2185263C1 (ru) * | 2001-07-09 | 2002-07-20 | Открытое акционерное общество "Центральный научно-исследовательский технологический институт" | Способ изготовления металлокерамических изделий на основе матричных быстрорежущих сталей |
WO2006119522A1 (de) * | 2005-05-13 | 2006-11-16 | Boehlerit Gmbh & Co. Kg. | Hartmetallkörper mit zähem oberflächenbereich |
US20080025863A1 (en) * | 2006-07-27 | 2008-01-31 | Salvator Nigarura | High carbon surface densified sintered steel products and method of production therefor |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5168172U (enrdf_load_stackoverflow) * | 1974-11-25 | 1976-05-29 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2176802A (en) * | 1937-05-05 | 1939-10-17 | Philips Nv | Method of making hard metal alloys |
US2637671A (en) * | 1948-03-13 | 1953-05-05 | Simonds Saw & Steel Co | Powder metallurgy method of making steel cutting tools |
US2789073A (en) * | 1953-08-24 | 1957-04-16 | Melvin F Kesting | Method of heat treatment of carbide tips for tools to increase their working life |
US3053706A (en) * | 1959-04-27 | 1962-09-11 | 134 Woodworth Corp | Heat treatable tool steel of high carbide content |
US3183127A (en) * | 1959-04-27 | 1965-05-11 | Chromalloy Corp | Heat treatable tool steel of high carbide content |
-
1969
- 1969-12-29 US US888859A patent/US3658604A/en not_active Expired - Lifetime
-
1970
- 1970-12-09 GB GB5847170A patent/GB1288133A/en not_active Expired
- 1970-12-16 NL NLAANVRAGE7018362,A patent/NL175644C/xx not_active IP Right Cessation
- 1970-12-24 FR FR7046610A patent/FR2074262A5/fr not_active Expired
- 1970-12-24 DE DE2063846A patent/DE2063846C3/de not_active Expired
- 1970-12-29 JP JP45121964A patent/JPS4923964B1/ja active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2176802A (en) * | 1937-05-05 | 1939-10-17 | Philips Nv | Method of making hard metal alloys |
US2637671A (en) * | 1948-03-13 | 1953-05-05 | Simonds Saw & Steel Co | Powder metallurgy method of making steel cutting tools |
US2789073A (en) * | 1953-08-24 | 1957-04-16 | Melvin F Kesting | Method of heat treatment of carbide tips for tools to increase their working life |
US3053706A (en) * | 1959-04-27 | 1962-09-11 | 134 Woodworth Corp | Heat treatable tool steel of high carbide content |
US3183127A (en) * | 1959-04-27 | 1965-05-11 | Chromalloy Corp | Heat treatable tool steel of high carbide content |
Non-Patent Citations (1)
Title |
---|
Young, R.; Cobalt Reinhold Publishing Corp., 1948, p. 73 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3909310A (en) * | 1973-08-24 | 1975-09-30 | Ford Motor Co | Apex seal design |
JPS5054508A (enrdf_load_stackoverflow) * | 1973-09-14 | 1975-05-14 | ||
US4002471A (en) * | 1973-09-24 | 1977-01-11 | Federal-Mogul Corporation | Method of making a through-hardened scale-free forged powdered metal article without heat treatment after forging |
US5881356A (en) * | 1995-06-07 | 1999-03-09 | Bt-Magnettechnologie Gmbh | Method for the case-hardening of higher-molybdenum-alloy sintered steels |
US6013225A (en) * | 1996-10-15 | 2000-01-11 | Zenith Sintered Products, Inc. | Surface densification of machine components made by powder metallurgy |
WO1999035295A1 (de) * | 1998-01-10 | 1999-07-15 | Deloro Stellite Gmbh | Formkörper aus einem hartmetallischen verschleissfestem werkstoff und verfahren zu seiner herstellung |
EP1024207A1 (en) * | 1999-01-29 | 2000-08-02 | Seco Tools Ab | Cemented carbide with a hardenable binder phase |
US6258147B1 (en) | 1999-01-29 | 2001-07-10 | Seco Tools Ab | Cemented carbide with a hardenable binder phase |
RU2185263C1 (ru) * | 2001-07-09 | 2002-07-20 | Открытое акционерное общество "Центральный научно-исследовательский технологический институт" | Способ изготовления металлокерамических изделий на основе матричных быстрорежущих сталей |
WO2006119522A1 (de) * | 2005-05-13 | 2006-11-16 | Boehlerit Gmbh & Co. Kg. | Hartmetallkörper mit zähem oberflächenbereich |
US20080025863A1 (en) * | 2006-07-27 | 2008-01-31 | Salvator Nigarura | High carbon surface densified sintered steel products and method of production therefor |
US7722803B2 (en) | 2006-07-27 | 2010-05-25 | Pmg Indiana Corp. | High carbon surface densified sintered steel products and method of production therefor |
Also Published As
Publication number | Publication date |
---|---|
DE2063846C3 (de) | 1980-09-18 |
NL7018362A (enrdf_load_stackoverflow) | 1971-07-01 |
GB1288133A (enrdf_load_stackoverflow) | 1972-09-06 |
DE2063846B2 (de) | 1980-01-24 |
DE2063846A1 (de) | 1971-07-01 |
NL175644C (nl) | 1984-12-03 |
JPS4923964B1 (enrdf_load_stackoverflow) | 1974-06-19 |
FR2074262A5 (enrdf_load_stackoverflow) | 1971-10-01 |
NL175644B (nl) | 1984-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4249945A (en) | Powder-metallurgy steel article with high vanadium-carbide content | |
EP0331679B1 (en) | High density sintered ferrous alloys | |
US3369892A (en) | Heat-treatable nickel-containing refractory carbide tool steel | |
US4121927A (en) | Method of producing high carbon hard alloys | |
US4194910A (en) | Sintered P/M products containing pre-alloyed titanium carbide additives | |
US3150444A (en) | Method of producing alloy steel | |
US5552109A (en) | Hi-density sintered alloy and spheroidization method for pre-alloyed powders | |
US3556780A (en) | Process for producing carbide-containing alloy | |
US3053706A (en) | Heat treatable tool steel of high carbide content | |
US3658604A (en) | Method of making a high-speed tool steel | |
US3183127A (en) | Heat treatable tool steel of high carbide content | |
US4174967A (en) | Titanium carbide tool steel composition for hot-work application | |
US3720551A (en) | Method for making a dispersion strengthened alloy article | |
US3720990A (en) | Liquid phase sintered molybdenum base alloys | |
US3655365A (en) | High speed tool alloys and process | |
US5834640A (en) | Powder metal alloy process | |
US5356453A (en) | Mixed powder for powder metallurgy and sintered product thereof | |
GB1573052A (en) | Method of producing high carbon hard alloys | |
US4018632A (en) | Machinable powder metal parts | |
EP0835329B1 (en) | Hi-density sintered alloy and spheroidization method for pre-alloyed powders | |
US3715792A (en) | Powder metallurgy sintered corrosion and wear resistant high chromium refractory carbide alloy | |
US3450511A (en) | Sintered carbide hard alloy | |
Graham Wilson et al. | The Preparation of Carbide-Enriched Tool Steels by Powder Metallurgy | |
US2438221A (en) | Method of making a hard facing alloy | |
JPH0143017B2 (enrdf_load_stackoverflow) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CARBOLOY INC., A DE. CORP. Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:GENERAL ELECTRIC COMPANY;REEL/FRAME:004811/0365 Effective date: 19870925 |