US3658289A - Control of fluid dynamics in spiraling gas streams - Google Patents

Control of fluid dynamics in spiraling gas streams Download PDF

Info

Publication number
US3658289A
US3658289A US887268A US3658289DA US3658289A US 3658289 A US3658289 A US 3658289A US 887268 A US887268 A US 887268A US 3658289D A US3658289D A US 3658289DA US 3658289 A US3658289 A US 3658289A
Authority
US
United States
Prior art keywords
gate
barrel
casing
gates
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US887268A
Inventor
Richard L Hodges
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cities Service Co
Original Assignee
Cities Service Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cities Service Co filed Critical Cities Service Co
Application granted granted Critical
Publication of US3658289A publication Critical patent/US3658289A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K3/00Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing
    • F16K3/30Details
    • F16K3/34Arrangements for modifying the way in which the rate of flow varies during the actuation of the valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K49/00Means in or on valves for heating or cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/008Flow control devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/87917Flow path with serial valves and/or closures

Definitions

  • a flowing stream of gas can be formed intoa spiraling ferred to an even larger body of gas for imparting a spiraling orswirling motion thereto, e.g. a process as described in U.S.
  • the average spiraling velocity (spin rate) and volume flow rate of spiraling gas streams have been interdependent since it has not been readily possible to alter one without directly affecting the other.
  • spin rate the volume flow rate of a gas spiral
  • the volume flow rate and the spin rate could not be maintained at preestablished conditions.
  • the spin rate could not be increased when the supply pressure was reduced, and the spin rate could not be reduced when the supply pressure was increased.
  • the kinetic energy potential of a spiraling gas stream could not be developed and utilized to the desired extent in many cases.
  • independent means are therefore provided for regulating both the spin rate and the volume flow rate of a spiraling gas stream.
  • the spiraling gas stream can be produced by introducing the gastangentially into a cylindrical chamber or barrel.
  • the barrel can, for instance, have an elongated circumferential wall .with a closure at one end and a discharge outlet at the other'end, and it can be provided with a gas inlet located at a distance far enough upstream of the outlet to permit adequate formation of the spiraling stream as the gas traverses the length ofthe barrel.
  • the gas which is shaped into a spiral can thenbe-fed into the barrel by means of a gas supply conduit which communicates with the aforesaid inlet.
  • a dual gated valve can be placed inthe gas supply conduit and located proximal to the gas inlet of the aforesaid barrel.
  • Both of the valve gates should be movable in crosswise relation to each other and ina direction which is transverse in relation to the normal direction of gasrflow through the valve. More particularly, one gate can be movable at angle which is about 90 in relation to the direction in which theother gate is moved.
  • valve can be arranged in the gas supply conduit so that one gate moves transversally and the other axially in relation to the longitudinal axis of the barrel.
  • the transversally movable gate may be repositioned to alter the spin rate, i.e. the smaller the opening created by closure of the gate the faster the spin, and vice versa. At constant pressure this also has the effect of lowering volume flow rate, but this can be compensated for by further opening of the axially movable gate, thus increasing the total open area of the passageway through the valve.
  • the transversally movable gate of the valve can be positioned so that the gas inlet is partially obstructed, thus forcing the gas-stream to enter predominately to one side of the barrel, i.e. tangentially, and form a spiral therein.
  • the axially mova ble gate is positioned to establish a passageway in the valve of sufficient open area to permit a desired volume flow rate at the existing supply pressure.
  • the axially movable valve gate can be repositioned to alter the the spin rate thereof.
  • control means just described can also be'employed to maintain a desired volume flow rate or spin rate by repositioning of the valve gates upon change in the supply pressure.
  • desired spin rate can be maintained by opening or closing the first gate as the pressure decreases or increases, respectively.
  • desired volume flow rate can be maintained by opening or closing the second gate as the supply pressure decreases or increases, respectively.
  • the present invention can also be utilized for increasing the spin rate of a spiraling stream even when the stream supply pressure is lowered; or, on the other hand, to decrease the spiraling rate when the supply pressure is raised.
  • the transversally movable valve gate is closed further than before, and the axially movable gate can be repositioned to establish a desired volume flow rate.
  • a reverse procedure is employed for reducing the spin rate when the supply pressure increases, i.e. the transversally movable valve gate is opened further than before and the axially movable gate can be repositioned to establish a desired volume flow rate.
  • Each component of the previously described control system should be sized large enough, of course, to permit accomplishment of desired spin velocities and flow rates at the available gas stream supply pressures.
  • FIG. 1 is an illustration, mostly in section, of one form of apparatus, which can be employed in the practice of the invention.
  • FIG. 2 is a sectional view along the lines 22 of FIG. 1.
  • FIG. 3 is a sectional view along the lines 33 of FIG. 1.
  • FIG. 1 depicts a cylindrical mixing barrel assembly having an elongated circumferential wall with a closure plate 2 at one end, a discharge outlet 3 at the other end, and a gas inlet 4 substantially upstream of the discharge outlet.
  • the end closure plate 4 is affixed to the barrel by means of a flange 5 and fasteners 6.
  • a gas supply conduit 7 intercommunicates with the inlet 4 through a valve, generally represented at 8.
  • a conduit 9 passes through a guide 10 affixed to plate 2 and extends axially into the barrel.
  • the conduit 9 can be provided with an atomizing nozzle or gas distributor 11 at the thereafter.
  • the circumferential wall 1 of the barrel can be constructed of a refractory material when it is desirable to initiate and carry on combustion therein.
  • the valve is provided with a first gate 13 which is movable transversally with respect to the longitudinal axis 14 of the barrel, and a second gate 15 which is movable axially with respect to the axis.
  • Other components of the valve are end plates 16a and 16b, whereby the valve assembly is attached to the gas supply conduit 7 and the gas inlet 4, respectively; sealing gaskets 17a, 17b, and 17c; and spacers 18a and 18b, whereby the valve is made gastight while providing means for guided movement of the gates.
  • the valve assembly is held together by means of fasteners 19.
  • the aforementioned end plates, gaskets and spacers of the valve form a casing when all are securely fastened together, the purpose of the casing being to retain the gas within the system while holding the gates in place. Accordingly, the gaskets and spacers bound channels, or seats, for guiding movement of the gates within the casing while also forming a relatively tight seal with the edges of the gates.
  • the gates are rectangular plates, but it will be understood that even other shapes can be adapted to the purpose, e.g. circular discs.
  • the transversally movable gate 13 can be positioned and retained in location by means of a threaded screw 20 in a threaded member 21, the latter of which is affixed to the plate 13.
  • the outer end of the screw 19 is provided with a crank 22.
  • the screw 19 is stablized with a mounted bearing affixed to a support plate 24.
  • the axially movable gate 15 is equipped with equivalent positioning means, generally represented at 25.
  • valve gates 13 and 15 are arranged to move transversally with respect to normal flow of a fluid through the valve while also being arranged to move crosswise in relation to each other.
  • a fluid passageway 26 in the valve is established by opening and/or closing the gates, and the open area and configuration of the passageway is thus dependent upon positioning of the gates in relation to one another.
  • gate 13 With respect to the longitudinal axis 14 of the barrel, gate 13 thus controls the width of the inlet 4, while gate 15 controls the length thereof.
  • the spiraling gas stream that is produced in the mixing barrel has been generally depicted at 27 in the drawings.
  • the gas stream Upon discharge from the end of the barrel, or the burner block 12, the gas stream will have a predominate momenta] direction which is to one side of the axis of the barrel, and can thus be employed as described in US. Pat. No. 3,301,639 for imparting a spiral to the gaseous contents of a furnace.
  • the conduit 9 can be positioned axially within the barrel so as to effect mixing of the second fluid component with spiraling gas stream, either within the barrel, beyond it, or at the discharge outlet thereof.
  • the movable gate 13 In operation at fixed gas supply pressure, the movable gate 13 is positioned to lend a width to the passageway 26 which will impart a desired spiraling velocity to the gas stream which enters the barrel through the inlet 4. Narrowing the width of the passageway forces the gas stream to flow in a more proximal relationship with the circumferential wall 1, thus increasing the average rotational velocity of the stream. As the width of the passageway is increased by opening gate 13, the average rotational velocity of the gas stream is reduced since it is permitted to occupy a larger part of the cross-sectional area of the barrel. The spiraling stream can thus be visualized as an annulus, the eye of which is increased and decreased in size by transversal movement of the first gate.
  • volume flow to the spiraling stream is regulated by axial movement of gate 15 which controls the length of passageway 26.
  • the axially movable gate is positioned to effect the desired volume flow rate. Should the gas pressure change in conduit 7, the gates can be repositioned to maintain the desired spin and volume flow rates.
  • the present invention can also be employed to either increase the spin rate of the spiraling stream upon reduction in the gas supply pressure, or to reduce the spin rate when the pressure is increased, by positioning of gate 13 to control the spin rate.
  • Air at a relatively constant pressure, can be supplied to the barrel assembly by means of a blower or compressor.
  • Either a gaseous or a liquid fuel can be supplied through conduit 9.
  • the atomizing nozzle or gas distributor can be positioned within the barrel to effect mixing therein followed by initiation of combustion in the burner block 12.
  • the mixing pattern can become considerably altered unless the spin velocity is maintained or even increased.
  • the mixing pattern can thus be finely regulated by maintaining or increasing spin rate at reduced volume flow rate or supply pressure.
  • the momentum of the spiraling stream can be more closely controlled.
  • spin rate and momentum of the spiraling stream can be reduced when desired by means of the gate 13, since the spiral formation will gradual diminish as this gate is progressively opened; and can, in fact, be entirely eliminated if opened substantially beyond the longitudinal axis of the barrel.
  • a first gate seated within said casing and guidedly positionable therein transversally with respect to normal flow of gas through the valve and also transversally with respect to a plane through the longitudinal axis of said barrel to the gate, the gate abutting said portion of the casing when the gate is closed,

Abstract

Spin rate and volume flow rate of spiraling gas streams are regulated to control the fluid dynamics thereof. At constant supply pressure, either the spin rate or the volume flow rate of the spiraling stream can be changed without altering the other rate. Should the supply pressure change, both rates can be maintained constant. In addition, the spin rate can be increased even if the static pressure is lowered and can on the other hand be decreased if the static pressure is raised. These effects are accomplished by regulating the spin rate and the volume flow rate of a spiraling gas stream independently of one another.

Description

United States Patent Hodges [451 Apr. 25, 1972 [54] CONTROL OF FLUID DYNAMICS IN SPIRALING GAS STREAMS [72] lnventor: Richard L. Hodges, Seagraves, Tex.
[73] Assignee: Cities Service Company, New York, NY.
[22] Filed: Dec. 22, 1969 Q [21] Appl. No.1v 887,268
[52] U.S.Cl ..251/118,55/418,431/182,
23/2096, 23/2595, 239/407, 251/212, 137/613 [51] Int. Cl ..Fl6k 47/00, Fl 6k 3/00 [58] FieldofSearch ..210/512; 25l/118,2l2, 205;
[56] References Cited UNITED STATES PATENTS 1,844,369 2/1932 Ross ..55/418 X 3,301,639 l/l967 Deland ..23/277 X Primary Examiner-Henry T. Klinksiek Attorney.1. Richard Geaman [5 7] ABSTRACT Spin rate and volume flow rate of spiraling gas streams are regulated to control the fluid dynamics thereof. At constant supply pressure, either the spin rate or the volume flow rate of the spiraling stream can be changed without altering the other rate. Should the supply pressure change, both rates can be maintained constant. In addition, the spin rate can be increased even if the static pressure is lowered and can on the other hand be decreased if the static pressure is raised. These effects are accomplished by regulating the spin rate and the volume flow rate of a spiraling gas stream independently of one another.
3 Claims, 2 Drawing Figures PATENTEBAPR 25 I972 SHEET 1 BF 2 INVENTOR RICH? L. HOMES BY #4 j ATTORNEY DYNAMICS IN SPIRALIN G GAS STREAMS I BACKGROUND OF THE INVENTION CONTROL OF FLUID A flowing stream of gas can be formed intoa spiraling ferred to an even larger body of gas for imparting a spiraling orswirling motion thereto, e.g. a process as described in U.S.
Pat. No. 3,301,639.
l-leretofore, the average spiraling velocity (spin rate) and volume flow rate of spiraling gas streams have been interdependent since it has not been readily possible to alter one without directly affecting the other. Thus, at constant supply pressure, the volume flow rate of a gas spiral could not be lowered without lowering the spin rate. On the otherhand, if supply pressure changed, the volume flow rate and the spin rate could not be maintained at preestablished conditions. Furthermore, the spin rate could not be increased when the supply pressure was reduced, and the spin rate could not be reduced when the supply pressure was increased. As a consequence, the kinetic energy potential of a spiraling gas stream could not be developed and utilized to the desired extent in many cases.
SUMMARY OF THE PRESENT INVENTION It is therefore an object of the present invention to control the spin rate and the volume flow rate of a spiraling gas stream independently of one another.
It is another object of the present invention to provide control over the fluid dynamic conditions of a spiraling gas stream.
In accordance with the present invention independent means are therefore provided for regulating both the spin rate and the volume flow rate of a spiraling gas stream. The spiraling gas stream can be produced by introducing the gastangentially into a cylindrical chamber or barrel. The barrel can, for instance, have an elongated circumferential wall .with a closure at one end and a discharge outlet at the other'end, and it can be provided with a gas inlet located at a distance far enough upstream of the outlet to permit adequate formation of the spiraling stream as the gas traverses the length ofthe barrel. The gas which is shaped into a spiral can thenbe-fed into the barrel by means of a gas supply conduit which communicates with the aforesaid inlet.
For controlling the spin rate and the volume flow-rate of spiraling gas stream, a dual gated valve can be placed inthe gas supply conduit and located proximal to the gas inlet of the aforesaid barrel. Both of the valve gates should be movable in crosswise relation to each other and ina direction which is transverse in relation to the normal direction of gasrflow through the valve. More particularly, one gate can be movable at angle which is about 90 in relation to the direction in which theother gate is moved. When constructed in such a fashion,
the valve can be arranged in the gas supply conduit so that one gate moves transversally and the other axially in relation to the longitudinal axis of the barrel.
volume flow rate of gas in the spiraling stream without materially affecting the spin rate. On the otherhand, the transversally movable gate may be repositioned to alter the spin rate, i.e. the smaller the opening created by closure of the gate the faster the spin, and vice versa. At constant pressure this also has the effect of lowering volume flow rate, but this can be compensated for by further opening of the axially movable gate, thus increasing the total open area of the passageway through the valve. It will nonetheless be appreciated that this repositioning of the axially movable gate primarily alters the volume flow rate of the spiral and does not materially effect When using the above-identified arrangement, the transversally movable gate of the valvecan be positioned so that the gas inlet is partially obstructed, thus forcing the gas-stream to enter predominately to one side of the barrel, i.e. tangentially, and form a spiral therein. At the same time the axially mova ble gate is positioned to establish a passageway in the valve of sufficient open area to permit a desired volume flow rate at the existing supply pressure. At any given supply pressure, the axially movable valve gate can be repositioned to alter the the spin rate thereof.
It will be understood that the control means just described can also be'employed to maintain a desired volume flow rate or spin rate by repositioning of the valve gates upon change in the supply pressure. Thus, at a given setting of the two gates the desired spin rate can be maintained by opening or closing the first gate as the pressure decreases or increases, respectively. In the same fashion, the desired volume flow rate can be maintained by opening or closing the second gate as the supply pressure decreases or increases, respectively.
As previously indicated, the present invention can also be utilized for increasing the spin rate of a spiraling stream even when the stream supply pressure is lowered; or, on the other hand, to decrease the spiraling rate when the supply pressure is raised. To increase spin rate after reduction in the supply pressure, the transversally movable valve gate is closed further than before, and the axially movable gate can be repositioned to establish a desired volume flow rate. A reverse procedure is employed for reducing the spin rate when the supply pressure increases, i.e. the transversally movable valve gate is opened further than before and the axially movable gate can be repositioned to establish a desired volume flow rate.
Each component of the previously described control system should be sized large enough, of course, to permit accomplishment of desired spin velocities and flow rates at the available gas stream supply pressures.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an illustration, mostly in section, of one form of apparatus, which can be employed in the practice of the invention.
FIG. 2 is a sectional view along the lines 22 of FIG. 1.
FIG. 3 is a sectional view along the lines 33 of FIG. 1.
DESCRIPTION OF PREFERRED EMBODIMENT The present invention will be described with particular reference to a spiral mixer-burner which can be employed in the formation and ignition of combustion mixtures, but it will be understood that the invention can be employed for controlling the dynamic characteristics of any spiraling gas stream.
FIG. 1 depicts a cylindrical mixing barrel assembly having an elongated circumferential wall with a closure plate 2 at one end, a discharge outlet 3 at the other end, and a gas inlet 4 substantially upstream of the discharge outlet. The end closure plate 4 is affixed to the barrel by means of a flange 5 and fasteners 6.
For feedinga gaseous component of a fuel mixture into the barrel, a gas supply conduit 7 intercommunicates with the inlet 4 through a valve, generally represented at 8. For supplying a second gaseous or liquid component of the combustion mixture, a conduit 9 passes through a guide 10 affixed to plate 2 and extends axially into the barrel. The conduit 9 can be provided with an atomizing nozzle or gas distributor 11 at the thereafter. Alternately, the circumferential wall 1 of the barrel can be constructed of a refractory material when it is desirable to initiate and carry on combustion therein.
The valve, generally represented at 8, is provided with a first gate 13 which is movable transversally with respect to the longitudinal axis 14 of the barrel, and a second gate 15 which is movable axially with respect to the axis. Other components of the valve are end plates 16a and 16b, whereby the valve assembly is attached to the gas supply conduit 7 and the gas inlet 4, respectively; sealing gaskets 17a, 17b, and 17c; and spacers 18a and 18b, whereby the valve is made gastight while providing means for guided movement of the gates. The valve assembly is held together by means of fasteners 19. Thus, the aforementioned end plates, gaskets and spacers of the valve form a casing when all are securely fastened together, the purpose of the casing being to retain the gas within the system while holding the gates in place. Accordingly, the gaskets and spacers bound channels, or seats, for guiding movement of the gates within the casing while also forming a relatively tight seal with the edges of the gates. In the illustrated case the gates are rectangular plates, but it will be understood that even other shapes can be adapted to the purpose, e.g. circular discs.
The transversally movable gate 13 can be positioned and retained in location by means of a threaded screw 20 in a threaded member 21, the latter of which is affixed to the plate 13. The outer end of the screw 19 is provided with a crank 22. The screw 19 is stablized with a mounted bearing affixed to a support plate 24. The axially movable gate 15 is equipped with equivalent positioning means, generally represented at 25.
As can be seen from the drawings, and especially FIG. 3, the valve gates 13 and 15 are arranged to move transversally with respect to normal flow of a fluid through the valve while also being arranged to move crosswise in relation to each other. Arranged thus, a fluid passageway 26 in the valve is established by opening and/or closing the gates, and the open area and configuration of the passageway is thus dependent upon positioning of the gates in relation to one another. With respect to the longitudinal axis 14 of the barrel, gate 13 thus controls the width of the inlet 4, while gate 15 controls the length thereof.
It will be appreciated that closing of the gate 13 so that it extends inwardly beyond the longitudinal axis of the barrel creates a passageway 26 which provides tangential injection of gas into the barrel. The further gate 13 is closed, the faster will be the spiraling velocity, at any given volume flow rate, of the gaseous spiral within the barrel. As previously pointed out, closure of gate 13 also has the effect of reducing volume flow, but this can be reestablished by opening ate 15. Thus, both the volume flow rate and the velocity of the gas which passes through the valve can be finely controlled by means of the dual gates. Advantageously, the gates can be arranged, as illustrated, to cross at about a right angle, but it will be appreciated that equivalent effects can be obtained with other angles.
The spiraling gas stream that is produced in the mixing barrel has been generally depicted at 27 in the drawings. Upon discharge from the end of the barrel, or the burner block 12, the gas stream will have a predominate momenta] direction which is to one side of the axis of the barrel, and can thus be employed as described in US. Pat. No. 3,301,639 for imparting a spiral to the gaseous contents of a furnace. It will also be appreciated that the conduit 9 can be positioned axially within the barrel so as to effect mixing of the second fluid component with spiraling gas stream, either within the barrel, beyond it, or at the discharge outlet thereof.
In operation at fixed gas supply pressure, the movable gate 13 is positioned to lend a width to the passageway 26 which will impart a desired spiraling velocity to the gas stream which enters the barrel through the inlet 4. Narrowing the width of the passageway forces the gas stream to flow in a more proximal relationship with the circumferential wall 1, thus increasing the average rotational velocity of the stream. As the width of the passageway is increased by opening gate 13, the average rotational velocity of the gas stream is reduced since it is permitted to occupy a larger part of the cross-sectional area of the barrel. The spiraling stream can thus be visualized as an annulus, the eye of which is increased and decreased in size by transversal movement of the first gate.
Volume flow to the spiraling stream is regulated by axial movement of gate 15 which controls the length of passageway 26. Once the desired rotational velocity of the stream has been established by positioning the transversally movable gate, the axially movable gate is positioned to effect the desired volume flow rate. Should the gas pressure change in conduit 7, the gates can be repositioned to maintain the desired spin and volume flow rates.
The present invention can also be employed to either increase the spin rate of the spiraling stream upon reduction in the gas supply pressure, or to reduce the spin rate when the pressure is increased, by positioning of gate 13 to control the spin rate.
Advantageous use of the present invention mixing process will be further described. Air, at a relatively constant pressure, can be supplied to the barrel assembly by means of a blower or compressor. Either a gaseous or a liquid fuel can be supplied through conduit 9. The atomizing nozzle or gas distributor can be positioned within the barrel to effect mixing therein followed by initiation of combustion in the burner block 12. When it becomes desirable to reduce the input of air, i.e. to turn down the burner, the mixing pattern can become considerably altered unless the spin velocity is maintained or even increased. By means of the present invention, the mixing pattern can thus be finely regulated by maintaining or increasing spin rate at reduced volume flow rate or supply pressure. Furthermore, the momentum of the spiraling stream, as is valuable for instance in imparting a spiraling or motion to an even larger body of gas, can be more closely controlled. Conversally, spin rate and momentum of the spiraling stream can be reduced when desired by means of the gate 13, since the spiral formation will gradual diminish as this gate is progressively opened; and can, in fact, be entirely eliminated if opened substantially beyond the longitudinal axis of the barrel.
While the invention has been described with reference to particular materials, apparatus and process conditions, it will be understood that still others may be employed without departing from the spirit or scope of the invention as expressed in the appended claims.
Therefore, what is claimed is:
1. Apparatus for regulating the fluid dynamic characteristics of a spiraling gas stream comprising:
a. a barrel wherein a gas stream flows as a spiraling stream b. a flow control valve through which said gas stream is supplied to said barrel, said valve having:
1. a casing, at least a portion of the casing being in a plane substantially tangent to the barrel,
2. a first gate seated within said casing and guidedly positionable therein transversally with respect to normal flow of gas through the valve and also transversally with respect to a plane through the longitudinal axis of said barrel to the gate, the gate abutting said portion of the casing when the gate is closed,
3. a second gate seated within said casing and guidedly positionable therein transversally with respect to normal flow of gas through the valve and parallel with respect to the longitudinal axis of the barrel so that each of the gates is movable transversally to the movement of the other,
4. a gas passageway which is established in said valve when both of said gates are partially open and from which said gas stream is directed tangentially into said barrel at controlled cross-sectional width and length dependent upon the relative position of said gates to one another,
5. means connected to the gates for positioning each gate within said casing and for retaining the gates in location after the positioning thereof.
further comprising means for supplying a fluid fuel to the air which flows through said barrel, and means at the discharge end of said barrel for burning the resulting mixture of air and fuel.

Claims (7)

1. Apparatus for regulating the fluid dynamic characteristics of a spiraling gas stream comprising: a. a barrel wherein a gas stream flows as a spiraling stream, b. a flow control valve through which said gas stream is supplied to said barrel, said valve having: 1. a casing, at least a portion of the casing being in a plane substantially tangent to the barrel, 2. a first gate seated within said casing and guidedly positionable therein transversally with respect to normal flow of gas through the valve and also transversally with respect to a plane through the longitudinal axis of said barrel to the gate, the gate abutting said portion of the casing when the gate is closed, 3. a second gate seated within said casing and guidedly positionable therein transversally with respect to normal flow of gas through the valve and parallel with respect to the longitudinal axis of the barrel so that each of the gates is movable transversally to the movement of the other, 4. a gas passageway which is established in said valve when both of said gates are partially open and from which said gas stream is directed tangentially into said barrel at controlled cross-sectional width and length dependent upon the relative position of said gates to one another, 5. means connected to the gates for positioning each gate within said casing and for retaining the gates in location after the positioning thereof.
2. a first gate seated within said casing and guidedly positionable therein transversally with respect to normal flow of gas through the valve and also transversally with respect to a plane through the longitudinal axis of said barrel to the gate, the gate abutting said portion of the casing when the gate is closed,
2. The apparatus of claim 1 wherein the width of said passageway is dependent upon the position of said first gate in said casing and the length of said passageway is dependent upon the position of said second gate in said casing.
3. The apparatus of claim 1 wherein said barrel is the mixing barrel of a burner into which air is fed through said valve, and further comprising means for supplying a fluid fuel to the air which flows through said barrel, and means at the discharge end of said barrel for burning the resulting mixture of air and fuel.
3. a second gate seated within said casing and guidedly positionable therein transversally with respect to normal flow of gas through the valve and parallel with respect to the longitudinal axis of the barrel so that each of the gates is movable transversally to the movement of the other,
4. a gas passageway which is established in said valve when both of said gates are partially open and from which said gas stream is directed tangentially into said barrel at controlled cross-sectional width and length dependent upon the relative position of said gates to one another,
5. means connected to the gates for positioning each gate within said casing and for retaining the gates in location after the positioning thereof.
US887268A 1969-12-22 1969-12-22 Control of fluid dynamics in spiraling gas streams Expired - Lifetime US3658289A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US88726869A 1969-12-22 1969-12-22

Publications (1)

Publication Number Publication Date
US3658289A true US3658289A (en) 1972-04-25

Family

ID=25390795

Family Applications (1)

Application Number Title Priority Date Filing Date
US887268A Expired - Lifetime US3658289A (en) 1969-12-22 1969-12-22 Control of fluid dynamics in spiraling gas streams

Country Status (2)

Country Link
US (1) US3658289A (en)
JP (1) JPS4941368B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4198469A (en) * 1977-03-23 1980-04-15 Continental Carbon Company Method for the manufacture of carbon black
US4225325A (en) * 1979-06-14 1980-09-30 W-K-M Wellhead Systems, Inc. Steam separator with variably sized rectangular inlet opening
US5449286A (en) * 1993-06-22 1995-09-12 Praxair Technology, Inc. Controlled flame fuel jet combustion
US6244855B1 (en) * 1999-08-11 2001-06-12 R. W. Beckett Corporation Burner with air flow adjustment
US20120276490A1 (en) * 2009-12-30 2012-11-01 Hysytech S. R. L. Burner and combustion device comprising said burner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58107129U (en) * 1982-01-14 1983-07-21 チン・チヤン・ツアイ Exhaust purification device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1844369A (en) * 1929-02-12 1932-02-09 Lewis P Ross Dust separator
US1859010A (en) * 1932-05-17 Chables walcott stbatfobd
US3301639A (en) * 1963-03-20 1967-01-31 Columbian Carbon Method and apparatus for the manufacture of carbon black
US3304982A (en) * 1964-07-09 1967-02-21 H B Smith Company Inc Windbox for furnace
US3370610A (en) * 1964-09-10 1968-02-27 New York Air Brake Co Valve
US3516551A (en) * 1967-06-13 1970-06-23 Grubbens & Co Ab Cyclone separator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1859010A (en) * 1932-05-17 Chables walcott stbatfobd
US1844369A (en) * 1929-02-12 1932-02-09 Lewis P Ross Dust separator
US3301639A (en) * 1963-03-20 1967-01-31 Columbian Carbon Method and apparatus for the manufacture of carbon black
US3304982A (en) * 1964-07-09 1967-02-21 H B Smith Company Inc Windbox for furnace
US3370610A (en) * 1964-09-10 1968-02-27 New York Air Brake Co Valve
US3516551A (en) * 1967-06-13 1970-06-23 Grubbens & Co Ab Cyclone separator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4198469A (en) * 1977-03-23 1980-04-15 Continental Carbon Company Method for the manufacture of carbon black
US4225325A (en) * 1979-06-14 1980-09-30 W-K-M Wellhead Systems, Inc. Steam separator with variably sized rectangular inlet opening
US5449286A (en) * 1993-06-22 1995-09-12 Praxair Technology, Inc. Controlled flame fuel jet combustion
US6244855B1 (en) * 1999-08-11 2001-06-12 R. W. Beckett Corporation Burner with air flow adjustment
US6382959B2 (en) 1999-08-11 2002-05-07 R. W. Beckett Corporation Burner with air flow adjustment
US20120276490A1 (en) * 2009-12-30 2012-11-01 Hysytech S. R. L. Burner and combustion device comprising said burner

Also Published As

Publication number Publication date
JPS4941368B1 (en) 1974-11-08

Similar Documents

Publication Publication Date Title
CN100533323C (en) Thermostatic cartridge for the regulation of hot and cold fluids to be mixed, and mixer tap comprising one such cartridge
US5329955A (en) Apparatus and method for mixing gases
US5095950A (en) Fluid mixing apparatus with progressive valve means
US4611543A (en) Restrictor application for in line gas entrained solids redistribution
US3748087A (en) Burner apparatus and method for flame propagation control
US3257180A (en) Vapor injection system
US3658289A (en) Control of fluid dynamics in spiraling gas streams
GB1508051A (en) Combustion apparatus
US3762682A (en) Valve
SU728721A3 (en) Liquid metal blasting device
US3762430A (en) Differential pressure regulator
US1986796A (en) Burner
EP0242579A3 (en) Device for controlling the flow rate and/or the mixing rate of a gaseous fuel-air mixture
US4524034A (en) Carburetor
US3902840A (en) Dilution burner
US2486017A (en) Gas mixer
CN1126293A (en) Automatic distributing regulating valve
US3806038A (en) Burner for low pressure lpg torch
US2750170A (en) Apparatus for mixing a liquid and a gas
US3431930A (en) Dual fluid vortex valve
US2998023A (en) campbell etal
US3378206A (en) Adjustable flow controller
CA1153278A (en) Device for distributing two fluids in a constant ratio and regulating the flow of the fluids
US3039521A (en) Gas torches
JPS55119264A (en) Gas stopcock