US3647562A - Method of the preparation of a solid insulated conductor - Google Patents

Method of the preparation of a solid insulated conductor Download PDF

Info

Publication number
US3647562A
US3647562A US31460A US3647562DA US3647562A US 3647562 A US3647562 A US 3647562A US 31460 A US31460 A US 31460A US 3647562D A US3647562D A US 3647562DA US 3647562 A US3647562 A US 3647562A
Authority
US
United States
Prior art keywords
wire
weight percent
bar
aluminum
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US31460A
Inventor
Roger J Schoerner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwire Co LLC
Original Assignee
Southwire Co LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwire Co LLC filed Critical Southwire Co LLC
Application granted granted Critical
Publication of US3647562A publication Critical patent/US3647562A/en
Assigned to SOUTHWIRE TECHNOLOGY, INC., A GEORGIA CORP. reassignment SOUTHWIRE TECHNOLOGY, INC., A GEORGIA CORP. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: SOUTHWIRE COMPANY, (A GA. CORP.)
Assigned to SOUTHWIRE COMPANY reassignment SOUTHWIRE COMPANY ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: SOUTHWIRE TECHNOLOGY, INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/023Alloys based on aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/04Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of bars or wire
    • B21C37/045Manufacture of wire or bars with particular section or properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0602Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a casting wheel and belt, e.g. Properzi-process
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon

Definitions

  • the aluminum alloy wire contains substantially evenly distributed iron aluminate inclusions in a concentration produced by the addition of more than about 0.30 weight percent iron and no more than 0.15 weight percent silicon to an alloy mass containing less than about 99.70 weight percent aluminum and trace quantities of conventional impurities normally found within a commercial aluminum alloy.
  • the substantially evenly distributed iron aluminate inclusions are obtained by continuously casting an alloy consisting essentially of less than about 99.70 weight percent aluminum, more than 0.30 weight percent iron, no more than 0.15 weight percent silicon and trace quantities of typical impurities to form a continuous aluminum alloy bar, hot-working the bar substantially immediately after casting in substantially that condition in which the bar is cast to form continuous rod which is subsequently drawn into wire without intermediate anneals, annealed after the final draw and insulated. After annealing, the wire has the aforementioned novel and unexpected properties of increased ultimate elongation, electrical conductivity of at least sixty-one percent of the International Annealed Copper Standard and increased bendability and fatigue resistance.
  • This invention relates to a solid insulated aluminum alloy electrical conductor and more particularly concerns a solid insulated conductor which is prepared from an aluminum alloy wire having an acceptable electrical conice ductivity and improved elongation and bendability at a standard tensile strength.
  • the present solid insulated aluminum alloy electrical conductor is manufactured from a solid wire which is prepared from an alloy composed of less than about 99.70 weight percent aluminum, more than about 0.30 weight percent iron, and no more than 0.15 weight percent silicon.
  • the aluminum content of the present alloy comprises from about 98.95 to less than about 99.45 weight percent with particularly superior results being achieved when from about 99.15 to about 99.40 weight percent aluminum is employed.
  • the iron content of the present alloy comprises about 0.45 weight percent to about 0.95 weight percent with. particularly superior results being achieved when from about 0.50 weight percent to about 080 Weight percent iron is employed.
  • no more than 0.07 weight percent silicon is employed in the present alloy.
  • the ratio between the percentage iron and percentage silicon must be 1.99:1 or greater.
  • the ratio between percentage iron and percentage silicon is 8:1 or greater.
  • the solid wire of the present aluminum alloy conductor is prepared by initially melting and alloying aluminum with the necessary amounts of iron or other constituents to provide the requisite alloy for processing. Normally, the content of silicon is maintained as low as possible without adding additional amounts to the melt. Typical impurities or trace elements are also present within the melt, but only in trace quantities such as less than 0.05 weight percent each with a total content of trace impurities generally not exceeding 0.15 weight percent. Of course, when adjusting the amounts of trace elements due consideration must be given to the conductivity of the final alloy since some trace elements affect conductivity more severely than others.
  • the typical trace elements include vanadium, copper, manganese, magnesium, zinc, boron and titanium.
  • titanium is relatively high (but still quite low when compared to the aluminum, iron and silicon content), small amounts of boron may be added to tie-up the excess titanium and keep it from reducing the conductivity of the wire.
  • Iron is the major constituent added to the melt to produce the alloy of the present invention. Normally, about 0.50 weight percent iron is added tothe typical aluminum component used to prepare the present alloy. Of course, the scope of the present invention includes the addition of more or less iron together with the adjustment of the content of all alloying constituents.
  • the. melted aluminum composition is continuously cast into a continuous bar.
  • the bar is then hot-worked in substantially that condition in which it is received from the casting machine.
  • a typical hot-working operation comprises rolling the bar in a rolling mill sub stantially immediately after being cast into a bar.
  • a continuous casting machine serves as a means for solidifying the molten aluminum alloy metal to provide a cast bar that is conveyed in substantially the condition in which it solidified from the continuous casting machine to the rolling mill which serves as a means for hot-forming the cast bar into rod or another hot-formed product in a manner which imparts substantial movement to the cast bar along a plurality of angularly disposed axes.
  • the continuous casting machine is of conventional casting wheel type having a casting wheel with a casting groove partially closed by an endless belt supported by the casting wheel and an idler pulley.
  • the casting wheel and the. endless belt cooperate to provide a mold into one end of which molten metal is poured to solidify and from the other end of which the bar is emitted in substantially that condition in which it solidified.
  • the rolling mill is of conventional type having a plurality of roll stands arranged to hot-form the cast bar by aseries of deformations.
  • the continuous casting machine and the rolling mill are positioned relative to each other so that the cast bar enters the rolling mill substantially immediately after solidification and in substantially that condition in which it solidified.
  • the cast bar is at a hot-forming temperature within the range of temperatures for hot-forming the cast bar at the initiation of hot-forming without heating between the casting machine and the rolling mill.
  • means for adjusting the temperature of the cast bar may be placed between the continuous casting machine and the rolling mill without departing from the inventive concept disclosed herein.
  • the roll stand-s each include a plurality of rolls which engage the cast bar.
  • the rolls of each roll stand may be two or more in number and arranged diametrically opposite from one another or arranged at equally spaced positions about the axis of movement of the cast bar through the rolling mill.
  • the rolls of each roll stand of the rolling mill are rotated at a predetermined speed by a power means such as one or more electric motors and the casting wheel is rotated at a speed generally determined by its operating characteristics.
  • the rolling mill serves to hot-form the cast bar into a rod of a crosssectional area substantially less than that of the cast bar as it enters the rolling mill.
  • the peripheral surfaces of the rolls of adjacent roll stands in the rolling mill change in configuration; that is, the cast bar is engaged by the rolls of successive roll stands with surfaces of varying configuration and from different directions.
  • This varying surface engagement of the cast bar in the roll stands functions to knead or shape the metal in the cast bar in such a manner that it is Worked at each roll stand and also to simultaneously reduce and change the cross-sectional area of the cast bar into that of the rod.
  • the cast bar be received with suflicient volume per unit of time at the roll stand for the cast bar to generally fill the space defined by the rolls of the roll stand so that the rolls will be effective to work the metal in the cast bar.
  • the space defined by the rolls of each roll stand not be over-filled so that the cast bar will not be forced into the gaps between the rolls.
  • the rod be fed toward each roll stand at a volume per unit of time which is sufficient to fill, but not over-fill, the space defined by the rolls of the roll stand.
  • the cast bar As the cast bar is received from the continuous casting machine, it usually has one large fiat surface corresponding to the surface of the endless band and inwardly tapered side surfaces corresponding to the shape of the groove in the casting wheel. As the cast bar is compressed by the rolls of the roll stands, the cast bar is deformed so that it generally takes the cross-sectional shape defined by the adjacent peripheries of the rolls of each roll stand.
  • cast aluminum alloy rod of an infinite number of different lengths is prepared by simultaneous casting of the molten aluminum alloy and hot-forming or rolling the cast aluminum bar.
  • the continuous rod produced by the casting and rolling operation is then processed in a reduction operation designed to produce continuous wire of various gauges between 0000 gauge AWG (corresponding to a cross-sectional diameter or greatest perpendicular distance between parallel faces of about 0.460 inch) to 40 gauge AWG (corresponding to a cross-sectional diameter or greatest perpendicular distance between parallel faces of about 0.0031 inch).
  • the unannealed rod i.e., as rolled to f temper
  • the alloy wire will have an excessively high tensile strength and an unacceptably low ultimate elongation, plus a conductivity below that which is industry accepted as the minimum for an electrical conductor, i.e. 61% of IACS.
  • the wire is then annealed or partially annealed to obtain a desired tensile strength and cooled.
  • the annealed alloy wire has the properties of acceptable conductivity and improved tensile strength together with unexpectedly improved ultimate elongation and surprisingly increased bendability and fatigue resistance as specified in this application.
  • the annealing operation may be continuous as in resistance annealing, induction annealing, convection annealing by continuous furnaces, or radiation annealing by continuous furnaces; or, preferably, may be batch annealed in a batch furnace.
  • the present aluminum alloy wire may be partially annealed by resistance or induction annealing and then additionally annealed by batch annealing.
  • temperatures of about 450 F. to about 1200 F. may be employed with annealing times of about five minutes to about of a minute.
  • continuous annealing temperatures and times may be adjusted to meet the requirements of the particular overall processing operation so long as the desired tensile strength is achieved.
  • a temperature of approximately 400 F. to about 750 F. is employed with resistance times of about twenty-four (24) hours to about thirty (30) minutes.
  • the times and temperatures may be varied to suit the overall process so long as the desired tensile strength is obtained.
  • the bar contains a dispersion of FeAl in a supersaturated solid solution matrix.
  • the supersaturated matrix may contain as much as 0.17 weight percent iron.
  • the properties of the present aluminum alloy wire are significantly affected by the size of the FeAl particles in the matrix.
  • Coarse precipitates reduce the percent clongation and bendability of the wire by enhancing nucleation and, thus, formation of large cells which, in turn, lowers the recrystallization temperature of the wire.
  • Fine precipitates improve the percent elongation and bendability by reducing nucleation and increasing the recrystallization temperature.
  • Grossly coarse precipitates of FeAl cause the wire to become brittle and generally unusable.
  • Coarse precipitates have a particle size of above 2,000 angstrom units and fine precipitates have a particle size of below 2,000 angstrom units.
  • the aluminum alloy electrical conductor is continuously insulated in a standard continuous insulating operation.
  • a typical insulating operation comprises passing the solid conductor through an extrusion head. As the conductor passes through an extrusion head, a continuous thermoplastic coat of insulation is generated around the conductor. The coated conductor is then cooled in the air or by contact with a cooling bath.
  • the insulating material should be one which is capable of insulating the solid conductor and the material should be of a thickness sufficient to insulate the solid conductor and withstand the physical hazards associated with solid insulated conductors. Typical thicknesses of insulation are between about & of an inch and 6 of an inch.
  • a preferred thermoplastic insulating material is poly (vinyl chloride), but other coatings such as neoprene, polypropylene and polyethylene may also be employed.
  • a typical No. 12 AWG solid wire which is subsequently insulated to produce the conductor of the present invention, has physical properties of 16,000 p.s.i. tensile strength, ultimate elongation of 20%, conductivity of 61% IACS, and bendability of thirty ,(30) bonds to break. Ranges of physical properties generally provided by a suitable No. 12 AWG solid wire prepared from the present alloy include tensile strengths of about 13,000 to about 22,000 p.s.i., ultimate elongations of about 35% to about 5%, conductivities of about 61% to about 63%, and number of bends to break of about 45 to 10.
  • Preferred wire for use in the present invention have a tensile strength of between 14,000 and 18,000 p.s.i., and ultimate elongation of between 30% and 15%, a conductivity of between 61% and 63% and number of bends to break of between 40 and 15.
  • a comparison between EC aluminum alloy wire and the aluminum alloy wire of the present insulated conductor is provided by preparing an EC alloy with aluminum content of 99.73 weight percent, iron content of 0.18 weight percent, silicon content of 0.059 weight percent, and trace amounts of typical impurities.
  • the present alloy is prepared with aluminum content of 99.45 weight percent, iron content of 0.34 weight percent, silicon content of 0.056 weight percent, and trace amounts of typical impurities. Both alloys are continuously cast into continuous bars and hot-rolled into continuous rod in similar fashion. The alloys are then cold-drawn through successively constricted dies to yield #12 AWG continuous wire.
  • Sections of the wire are collected on separate bobbins and batch furnace-annealed at various temperatures and for various lengths of time to yield sections of the prior EC alloy and the present alloy of varying tensile strengths.
  • Several samples of each section of wire are tested in a device designed to measure the number of bends required to break each sample at a particular flexure point. Through uniform force and tension, the device fatigues each sample through an arc of approximately
  • the uninsulated Wire is bent across a pair of spaced opposed mandrels having a diameter equal to that of the wire. The mandrels are spaced apart a distance of about 1 /2 times the diameter of the wire.
  • the six alloys are then cast into six continuous bars and hot-rolled into six continuous rods.
  • the rods are colddrawn through successively constricted dies to yield #12 gauge wire.
  • the wire produced from the alloys of Examples Numbers 2 and 4 are resistance annealed and the remainder of the examples are batch furnace annealed to yield the tensile strengths reported in Table IV.
  • Each of the uninsulated wires is tested for percent conductivity, tensile strength, percent ultimate elongation and average number of bends to break by standard testing procedures for each, except that the procedure specified in Example No. l is used for determining average number of bends to break. The results are reported in the following table:
  • Example No. 2 falls outside the scope of the present invention in percentage of'components.
  • the percentage of ultimate elongation is somewhat lower than desirable and the average number of bends to break the sample is lower than the remaining examples.
  • An aluminum alloy is prepared with an aluminum content of 99.42 weight percent, iron content of 0.50 weight percent, silicon content of 0.055 weight percent and trace amounts of typical impurities.
  • the alloy is cast into a continuous bar which is hot-rolled to yield a continuous rod.
  • the rod is then cold-drawn through successively constricted dies to yield #12 AWG wire.
  • the wire is collected on a 30 inch bobbin until the collected wire weighs approximately 250 pounds.
  • the bobbin is then placed in a cold General Electric Bell Furnace and the temperature therein is raised to 480 F.
  • the temperature of the furnace is held at 480 F. for 3 hours after which the heat is terminated and the furnace cools to 400 F.
  • the furnace is then quick cooled and the bobbin is removed.
  • the annealed wire is then passed through an extrusion head and insulated with poly (vinyl chloride). Under testing it is found that the insulated alloy wire has a conductivity of 61.6% 'IACS and improved physical properties.
  • Example No. 8 is repeated except the Bell Furnace temperature is raised to 600 F. and held 3 hours prior to cooling.
  • the annealed and insulated alloy wire has a conductivity of 61.2% IACS and improved physical properties.
  • Example No. 8 is repeated except the Bell Furnace temperature is raised to 600 F. and held 1 /2 hours prior to cooling.
  • the annealed and insulated conductor has a conductivity of 61.5% IACS and improved physical properties.
  • the alloy of Example No. 8 is cast into a continuous bar which is hot-rolled to yield a continuous f temper rod of inch diameter.
  • the rod is then cold-drawn through successively constricted dies to yield #14 AWG wire.
  • the wire is then redrawn on a Synchro Model BG-l6 wire drawing machine which includes a Synchro Resistoneal continuous in line annealer.
  • the wire is drawn #28 AWG at a finishing speed of 3,300 feet per minute and the in line annealer is operated at 52 volts with a transformer tap setting at No. 8.
  • the annealed wire is then insulated by extruding poly (vinyl chloride) around the wire.
  • the annealed and insulated alloy wire has a conductivity of 62% IACS and improved physical properties.
  • the alloy of Example No. 8 is cast into a continuous bar which is hot-rolled to yield a continuous f temper rod of inch diameter.
  • the rod is then cold-drawn on a Synchro Style No. F X 13 wire drawing machine includes a continuous in line annealer.
  • the rod is drawn to #12 AWG wire at a finishing speed of 2,000 feet per minute and the in line annealer voltage at preheater #1 is 35 volts, at preheater #2 is 35 volts, and at the annealer is 22 volts.
  • the three transformer taps are set at #5.
  • the annealed wire is continuously insulated by passing through an extrusion head where poly (vinyl chloride) is applied.
  • the annealed and insulated alloy wire has a conductivity of 62% IACS and improved physical properties.
  • the present invention concerns solid aluminum alloy insulated conductors. Also included within the scope of the present invention are insulated cables made up of individual solid insulated aluminum alloy conductors. Particular examples of specific solid insulated conductors or cables formed therefrom as encompassed by the present invention include building wire, NM sheath cable, underground building wire, feeder cable, type TW single wire, harness wire, neon sign cable, radio hook-up wire, fire alarm and burglar alarm wire, fixture wire, control wire, machine tool wire, enunciator wire, DD service entrance wire, and railroad signal cable.
  • Process for preparing an aluminum alloy solid insulated conductor having an electrical conductivity of at least sixty-one percent IACS and iron aluminate inclusions with a particle size of less than 2000 angstrom units comprising the steps of:
  • step (a) comprises alloying from about 98.95 to about 99.44 weight percent aluminum, about 0.55 to about 0.95 weight percent iron, from about 0.01 to about 0.15 weight percent silicon, and less than 0.05 weight percent each of trace elements selected from the group consisting of vanadium, copper, manganese, magnesium, zinc, boron and titanium.
  • step (e) comprises batch annealing or batch partially annealing the wire.
  • Process for preparing an aluminum alloy solid insulated conductor having an electrical conductivity of at least sixty-one percent IACS comprising the steps of:
  • step (a) comprises alloying from about 98.95 to about 99.44 weight percent aluminum, about 0.55 to about 0.95 weight percent iron, from about 0.01 to about 0.15 weight percent silicon, and from 0.0001 to 0.05 weight percent each of trace elements selected from the group consisting of vanadium, copper, manganese, magnesium, zinc, boron and titanium, the total trace element content being from 0.004 to 0.15 weight percent.
  • weight percent iron about 0.01 to about 0.15 weight percent silicon, and less than 0.05 weight percent each of trace elements selected from the group consisting of vanadium, copper, manganese, magnesium, zinc, boron and titanium; the total weight percent of trace elements being no more than 0.15 weight percent and the ratio of iron to silicon being of at least 8:1;
  • Process for preparing an aluminum alloy solid insulated conductor having an electrical conductivity of at least sixty-one percent IACS comprising the steps of:
  • weight percent aluminum with about 0.55 to about 0.95 weight percent iron, about 0.01 to about 0.15 weight percent silicon, and from 0.0001 to 0.05 weight percent each of trace elements selected from the group consisting of vanadium, copper, manganese, magnesium, zinc, boron and titanium, the total trace element content being from 0.004 to 0.15 weight percent;
  • Gaston G. Gauthier The Conductivity of Super-Purity Aluminum: The Influence of Small Metallic Additions, Journal of the Institute of Metals, 1936, 59, 129-150.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

A SOLID INSULATED CONDUCTOR PREPARED FROM AN ALUMINUM ALLOY WIRE HAVING AN ELECTRICAL CONDUCTIVITY OF AT LEAST SIXTY-ONE PERCENT BASED ON THE INTERNATIONAL ANNEALED COPPER STANDARD AND UNEXPECTED PROPERTIES OF INCREASED ULTIMATE ELONGATION, BENDABILITY AND FATIGUE RESISTANCE WHEN COMPARED TO CONVENTIONAL EC WIRE OF THE SAME TENSIL STRENGTH. THE ALUMINUM ALLOY WIRE CONTAINS SUBSTANTIALLY EVENLY DISTRIBUTED IRON ALUMINATE INCLUSION IN A CONCENTRATION PRODUCED BY THE ADDITION OF MORE THAN ABOUT 0.30 WEIGHT PERCENT IRON AND NO MORE THAN 0.15 WEIGHT PERCENT SILICON TO AN ALLOY MAS CONTAINING LESS THAN ABOUT 99.70 WEIGHT PERCENT ALUMINUM AND TRACE QUANTITES OF CONVENTIONAL IMPURITIES NORMALLY FOUND WITHIN A COMMERICAL ALUMINUM ALLOY. THE SUBSTANTIALLY EVENLY DISTRIBUTED IRON ALUMINATE INCLUSIONS ARE OBTAINED BY CONTINUOUSLY CASTING AN ALLOY CONSISTING ESSENTIALLY OF LESS THAN ABOUT 99.70 WEIGHT PERCENT ALUMINUM, MORE THAN 0.30 WEIGHT PERCENT IRON, NO MORE THAN 0.15 WEIGHT PERCENT SILICON AND TRACE QUANTITIES OF TYPICAL IMPURITIES TO FORM A CONTINUOUS ALUMINUM ALLOY BAR, HOT-WORKING THE BAR SUBSTANTIALLY IMMEDIATELY AFTER CASTING IN SUBSTANTIALLY THAT CONDITION IN WHICH THE BAR IS CAST TO FORM CONTINUOUS ROD WHICH IS SUBSEQUENTLY DRAWN INTO WIRE WITHOUT INTERMEDIATE ANNEALS, ANNEALED AFTER THE FINAL DRAW AND INSULATED. AFTER ANNEALING, THE WIRE HAS THE AFOREMENTIONED NOVEL AND UNEXPECTED PROPERTIES OF INCREASED ULTIMATED ELONGATION, ELECTRICAL CONDUCTIVITY OF AT LEAST SIXT-ONE PERCENT OF THE INTERNATIONAL ANNEALED COPPER STANDARD AND INCREASED BENDABILITY AND FATIGUE RESISTANCE.

Description

United States Patent Int. Cl. C22f N04 US. Cl. 1482 9 Claims ABSTRACT OF THE DISCLOSURE A solid insulated conductor prepared from an aluminum alloy wire having an electrical conductivity of at least sixty-one percent based on the International Annealed Copper Standard and unexpected properties of increased ultimate elongation, bendability and fatigue resistance when compared to conventional EC wire of the same tensile strength. The aluminum alloy wire contains substantially evenly distributed iron aluminate inclusions in a concentration produced by the addition of more than about 0.30 weight percent iron and no more than 0.15 weight percent silicon to an alloy mass containing less than about 99.70 weight percent aluminum and trace quantities of conventional impurities normally found within a commercial aluminum alloy. The substantially evenly distributed iron aluminate inclusions are obtained by continuously casting an alloy consisting essentially of less than about 99.70 weight percent aluminum, more than 0.30 weight percent iron, no more than 0.15 weight percent silicon and trace quantities of typical impurities to form a continuous aluminum alloy bar, hot-working the bar substantially immediately after casting in substantially that condition in which the bar is cast to form continuous rod which is subsequently drawn into wire without intermediate anneals, annealed after the final draw and insulated. After annealing, the wire has the aforementioned novel and unexpected properties of increased ultimate elongation, electrical conductivity of at least sixty-one percent of the International Annealed Copper Standard and increased bendability and fatigue resistance.
CROSS-REFERENCE TO RELATED APPLICATIONS This application is a division of Ser. No. 814,182, filed Apr. 7, 1969, now Pat. No. 3,513,250 which is in turn a continuation-in-part of my copending application Ser. No. 795,055 filed Jan. 29, 1969 which is in turn a continuation-in-part of my copending application Ser. No. 779,376 filed Nov. 27, 1968, which is in turn a continuation-in-part of my copending application Ser. No. 730,- 933 filed May 21, 1968, all now abandoned.
DISCLOSURE This invention relates to a solid insulated aluminum alloy electrical conductor and more particularly concerns a solid insulated conductor which is prepared from an aluminum alloy wire having an acceptable electrical conice ductivity and improved elongation and bendability at a standard tensile strength.
The use of various aluminum alloy wires (conventionally referred to as EC wire) as conductors of electricity is well established in the art. Such alloys characteristically have conductivities of at least sixty-one percent of the International Annealed Copper Standard (hereinafter sometimes referred to as IACS) and chemical constituents consisting of a substantial amount of pure aluminum and small amounts of conventional impurities such as silicon, vanadium, iron, copper, manganese, magnesium, zinc, boron and titanium. The physical properties of prior insulated aluminum alloy conductors have proven less than desirable in many applications. Generally, desirable percent elongations have been obtainable only at less than desirable tensile strengths and desirable tensile strengths have been obtainable only at less than desirable percent elongations. In addition, the bendability and fatigue resistance of prior aluminum alloy conductors have been so low that the prior conductors have been generally unsuitable for many, otherwise, desirable applications.
Thus, it becomes apparent that a need has arisen within the industry for a solid insulated aluminum alloy electrical conductor which has both increased tensile strength and percent ultimate elongation, and also possesses an ability to withstand numerous bends at one point and to resist fatiguing during use of the conductor. Therefore, it is an object of the present invention to provide a solid insulated aluminum alloy electrical conductor of acceptable conductivity and improved physical properties such that the conductor may be used in new applications. These and other objects, features and advantages of the present invention will become apparent to those skilled in the art from a consideration of the following detailed description of the invention.
In accordance with this invention, the present solid insulated aluminum alloy electrical conductor is manufactured from a solid wire which is prepared from an alloy composed of less than about 99.70 weight percent aluminum, more than about 0.30 weight percent iron, and no more than 0.15 weight percent silicon. Preferably, the aluminum content of the present alloy comprises from about 98.95 to less than about 99.45 weight percent with particularly superior results being achieved when from about 99.15 to about 99.40 weight percent aluminum is employed. Preferably, the iron content of the present alloy comprises about 0.45 weight percent to about 0.95 weight percent with. particularly superior results being achieved when from about 0.50 weight percent to about 080 Weight percent iron is employed. Preferably, no more than 0.07 weight percent silicon is employed in the present alloy. The ratio between the percentage iron and percentage silicon must be 1.99:1 or greater. Preferably, the ratio between percentage iron and percentage silicon is 8:1 or greater. Thus, if the present aluminum alloy conductor contains an amount of iron within the low area of the present range for iron content, the percentage of aluminum must be increased rather than increasing the percentage of silicon outside the ratio limitation previously specified. It has been found that a properly processed solid insulated conductor prepared from a solid wire having aluminum alloy constituents which fall within the above-specified ranges possesses acceptable electrical conductivity and improved physical properties of tensile strength, ultimate elongation and fatigue resistance.
The solid wire of the present aluminum alloy conductor is prepared by initially melting and alloying aluminum with the necessary amounts of iron or other constituents to provide the requisite alloy for processing. Normally, the content of silicon is maintained as low as possible without adding additional amounts to the melt. Typical impurities or trace elements are also present within the melt, but only in trace quantities such as less than 0.05 weight percent each with a total content of trace impurities generally not exceeding 0.15 weight percent. Of course, when adjusting the amounts of trace elements due consideration must be given to the conductivity of the final alloy since some trace elements affect conductivity more severely than others. The typical trace elements include vanadium, copper, manganese, magnesium, zinc, boron and titanium. If the content of titanium is relatively high (but still quite low when compared to the aluminum, iron and silicon content), small amounts of boron may be added to tie-up the excess titanium and keep it from reducing the conductivity of the wire. Iron is the major constituent added to the melt to produce the alloy of the present invention. Normally, about 0.50 weight percent iron is added tothe typical aluminum component used to prepare the present alloy. Of course, the scope of the present invention includes the addition of more or less iron together with the adjustment of the content of all alloying constituents.
After alloying, the. melted aluminum composition is continuously cast into a continuous bar. The bar is then hot-worked in substantially that condition in which it is received from the casting machine. A typical hot-working operation comprises rolling the bar in a rolling mill sub stantially immediately after being cast into a bar.
One example of a continuous casting and rolling operation capable of producing continuous rod as specified in this application is as follows.
A continuous casting machine serves as a means for solidifying the molten aluminum alloy metal to provide a cast bar that is conveyed in substantially the condition in which it solidified from the continuous casting machine to the rolling mill which serves as a means for hot-forming the cast bar into rod or another hot-formed product in a manner which imparts substantial movement to the cast bar along a plurality of angularly disposed axes.
The continuous casting machine is of conventional casting wheel type having a casting wheel with a casting groove partially closed by an endless belt supported by the casting wheel and an idler pulley. The casting wheel and the. endless belt cooperate to provide a mold into one end of which molten metal is poured to solidify and from the other end of which the bar is emitted in substantially that condition in which it solidified.
The rolling mill is of conventional type having a plurality of roll stands arranged to hot-form the cast bar by aseries of deformations. The continuous casting machine and the rolling mill are positioned relative to each other so that the cast bar enters the rolling mill substantially immediately after solidification and in substantially that condition in which it solidified. In this condition, the cast bar is at a hot-forming temperature within the range of temperatures for hot-forming the cast bar at the initiation of hot-forming without heating between the casting machine and the rolling mill. In the event that it is desired to closely control the hot-forming temperature of the cast bar within the conventional range of hot-forming temperatures, means for adjusting the temperature of the cast bar may be placed between the continuous casting machine and the rolling mill without departing from the inventive concept disclosed herein.
The roll stand-s each include a plurality of rolls which engage the cast bar. The rolls of each roll stand may be two or more in number and arranged diametrically opposite from one another or arranged at equally spaced positions about the axis of movement of the cast bar through the rolling mill. The rolls of each roll stand of the rolling mill are rotated at a predetermined speed by a power means such as one or more electric motors and the casting wheel is rotated at a speed generally determined by its operating characteristics. The rolling mill serves to hot-form the cast bar into a rod of a crosssectional area substantially less than that of the cast bar as it enters the rolling mill.
The peripheral surfaces of the rolls of adjacent roll stands in the rolling mill change in configuration; that is, the cast bar is engaged by the rolls of successive roll stands with surfaces of varying configuration and from different directions. This varying surface engagement of the cast bar in the roll stands functions to knead or shape the metal in the cast bar in such a manner that it is Worked at each roll stand and also to simultaneously reduce and change the cross-sectional area of the cast bar into that of the rod.
As each roll stand engages the cast bar, it is desirable that the cast bar be received with suflicient volume per unit of time at the roll stand for the cast bar to generally fill the space defined by the rolls of the roll stand so that the rolls will be effective to work the metal in the cast bar. However, it is also desirable that the space defined by the rolls of each roll stand not be over-filled so that the cast bar will not be forced into the gaps between the rolls. Thus, it is desirable that the rod be fed toward each roll stand at a volume per unit of time which is sufficient to fill, but not over-fill, the space defined by the rolls of the roll stand.
As the cast bar is received from the continuous casting machine, it usually has one large fiat surface corresponding to the surface of the endless band and inwardly tapered side surfaces corresponding to the shape of the groove in the casting wheel. As the cast bar is compressed by the rolls of the roll stands, the cast bar is deformed so that it generally takes the cross-sectional shape defined by the adjacent peripheries of the rolls of each roll stand.
Thus, it will be understood that with this apparatus, cast aluminum alloy rod of an infinite number of different lengths is prepared by simultaneous casting of the molten aluminum alloy and hot-forming or rolling the cast aluminum bar.
The continuous rod produced by the casting and rolling operation is then processed in a reduction operation designed to produce continuous wire of various gauges between 0000 gauge AWG (corresponding to a cross-sectional diameter or greatest perpendicular distance between parallel faces of about 0.460 inch) to 40 gauge AWG (corresponding to a cross-sectional diameter or greatest perpendicular distance between parallel faces of about 0.0031 inch). The unannealed rod (i.e., as rolled to f temper) is cold-drawn through a series of progressively constricted dies without intermediate anneals to form a continuous wire of desired diameter. At the conclusion of this drawing operation, the alloy wire will have an excessively high tensile strength and an unacceptably low ultimate elongation, plus a conductivity below that which is industry accepted as the minimum for an electrical conductor, i.e. 61% of IACS. The wire is then annealed or partially annealed to obtain a desired tensile strength and cooled. At the conclusion of the annealing operation, it is found that the annealed alloy wire has the properties of acceptable conductivity and improved tensile strength together with unexpectedly improved ultimate elongation and surprisingly increased bendability and fatigue resistance as specified in this application. The annealing operation may be continuous as in resistance annealing, induction annealing, convection annealing by continuous furnaces, or radiation annealing by continuous furnaces; or, preferably, may be batch annealed in a batch furnace. In addition, the present aluminum alloy wire may be partially annealed by resistance or induction annealing and then additionally annealed by batch annealing. When continuously annealing, temperatures of about 450 F. to about 1200 F. may be employed with annealing times of about five minutes to about of a minute. Generally, however, continuous annealing temperatures and times may be adjusted to meet the requirements of the particular overall processing operation so long as the desired tensile strength is achieved. In a batch annealing operation, a temperature of approximately 400 F. to about 750 F. is employed with resistance times of about twenty-four (24) hours to about thirty (30) minutes. As mentioned with respect to continuous annealing, in batch annealing the times and temperatures may be varied to suit the overall process so long as the desired tensile strength is obtained. Simply by way of example, it has been found that the following tensile strengths in the aluminum alloy wire of the present insulated conductor are achieved with the listed batch annealing temperatures and times.
During the continuous casting of this alloy, a substantial portion of the iron present in the alloy precipitates out of solution as iron aluminate intermetallic compound (FeAl Thus, after casting, the bar contains a dispersion of FeAl in a supersaturated solid solution matrix. The supersaturated matrix may contain as much as 0.17 weight percent iron. As the bar is rolled in a hot-working operation immediately after casting, the FeAl particles are broken up and dispersed throughout the matrix inhibiting large cell formation. When the rod is then drawn to its final gauge size without intermediate anneals and then aged in a final annealing operation, the tensile strength, elongation and bendability are increased due to the small cell size and the additional pinning of dislocations by preferential precipitation of FeAl on the dislocation sites. Therefore, new dislocation sources must be activated under the applied stress of the drawing operation and this causes both the strength and the elongation to be further improved.
The properties of the present aluminum alloy wire are significantly affected by the size of the FeAl particles in the matrix. Coarse precipitates reduce the percent clongation and bendability of the wire by enhancing nucleation and, thus, formation of large cells which, in turn, lowers the recrystallization temperature of the wire. Fine precipitates improve the percent elongation and bendability by reducing nucleation and increasing the recrystallization temperature. Grossly coarse precipitates of FeAl cause the wire to become brittle and generally unusable. Coarse precipitates have a particle size of above 2,000 angstrom units and fine precipitates have a particle size of below 2,000 angstrom units.
Following the annealing operation, the aluminum alloy electrical conductor is continuously insulated in a standard continuous insulating operation. A typical insulating operation comprises passing the solid conductor through an extrusion head. As the conductor passes through an extrusion head, a continuous thermoplastic coat of insulation is generated around the conductor. The coated conductor is then cooled in the air or by contact with a cooling bath. The insulating material should be one which is capable of insulating the solid conductor and the material should be of a thickness sufficient to insulate the solid conductor and withstand the physical hazards associated with solid insulated conductors. Typical thicknesses of insulation are between about & of an inch and 6 of an inch. A preferred thermoplastic insulating material is poly (vinyl chloride), but other coatings such as neoprene, polypropylene and polyethylene may also be employed.
A typical No. 12 AWG solid wire, which is subsequently insulated to produce the conductor of the present invention, has physical properties of 16,000 p.s.i. tensile strength, ultimate elongation of 20%, conductivity of 61% IACS, and bendability of thirty ,(30) bonds to break. Ranges of physical properties generally provided by a suitable No. 12 AWG solid wire prepared from the present alloy include tensile strengths of about 13,000 to about 22,000 p.s.i., ultimate elongations of about 35% to about 5%, conductivities of about 61% to about 63%, and number of bends to break of about 45 to 10. Preferred wire for use in the present invention have a tensile strength of between 14,000 and 18,000 p.s.i., and ultimate elongation of between 30% and 15%, a conductivity of between 61% and 63% and number of bends to break of between 40 and 15.
A more complete understanding of the invention will be obtained from the following examples:
Example No. 1
A comparison between EC aluminum alloy wire and the aluminum alloy wire of the present insulated conductor is provided by preparing an EC alloy with aluminum content of 99.73 weight percent, iron content of 0.18 weight percent, silicon content of 0.059 weight percent, and trace amounts of typical impurities. The present alloy is prepared with aluminum content of 99.45 weight percent, iron content of 0.34 weight percent, silicon content of 0.056 weight percent, and trace amounts of typical impurities. Both alloys are continuously cast into continuous bars and hot-rolled into continuous rod in similar fashion. The alloys are then cold-drawn through successively constricted dies to yield #12 AWG continuous wire. Sections of the wire are collected on separate bobbins and batch furnace-annealed at various temperatures and for various lengths of time to yield sections of the prior EC alloy and the present alloy of varying tensile strengths. Several samples of each section of wire are tested in a device designed to measure the number of bends required to break each sample at a particular flexure point. Through uniform force and tension, the device fatigues each sample through an arc of approximately The uninsulated Wire is bent across a pair of spaced opposed mandrels having a diameter equal to that of the wire. The mandrels are spaced apart a distance of about 1 /2 times the diameter of the wire. One bend is recorded after the wire is deflected from a vertical disposition to one extreme of the arc, returned back to vertical, deflected to the opposite extreme of the arc, and returned back to the original vertical disposition. The speed of deflection, force and tension are substantially equal for all tested samples. The results are as follows:
TABLE IIA EC alloy wire Present alloy wire N0. of bends to break Average N0. of bends Tensile strength Several samples of the present alloy #12 AWG wire and EC alloy #12 AWG wire, processed as previously specified, are then tested for percent ultimate elongation by standard testing procedures. At the instant of breakage, the increase in length of the uninsulated wire is measured. The percent ultimate elongation is then figured by dividing the initial length of the wire sample into the increase in length of the wire sample. The tensile strength of the wire sample is recorded as the pounds per square inch of crosssectional diameter required to break the wire during the percent ultimate elongation test. The results are as follows:
Examples 2 through 7 Six aluminum alloys are prepared with varying amounts of major constituents. The alloys are reported in the following table.
The six alloys are then cast into six continuous bars and hot-rolled into six continuous rods. The rods are colddrawn through successively constricted dies to yield #12 gauge wire. The wire produced from the alloys of Examples Numbers 2 and 4 are resistance annealed and the remainder of the examples are batch furnace annealed to yield the tensile strengths reported in Table IV. Each of the uninsulated wires is tested for percent conductivity, tensile strength, percent ultimate elongation and average number of bends to break by standard testing procedures for each, except that the procedure specified in Example No. l is used for determining average number of bends to break. The results are reported in the following table:
From a review of these results it may be seen that Example No. 2 falls outside the scope of the present invention in percentage of'components. In addition, it will be noted for Example No. 2 that the percentage of ultimate elongation is somewhat lower than desirable and the average number of bends to break the sample is lower than the remaining examples.
Example No. 8
An aluminum alloy is prepared with an aluminum content of 99.42 weight percent, iron content of 0.50 weight percent, silicon content of 0.055 weight percent and trace amounts of typical impurities. The alloy is cast into a continuous bar which is hot-rolled to yield a continuous rod. The rod is then cold-drawn through successively constricted dies to yield #12 AWG wire. The wire is collected on a 30 inch bobbin until the collected wire weighs approximately 250 pounds. The bobbin is then placed in a cold General Electric Bell Furnace and the temperature therein is raised to 480 F. The temperature of the furnace is held at 480 F. for 3 hours after which the heat is terminated and the furnace cools to 400 F. The furnace is then quick cooled and the bobbin is removed. The annealed wire is then passed through an extrusion head and insulated with poly (vinyl chloride). Under testing it is found that the insulated alloy wire has a conductivity of 61.6% 'IACS and improved physical properties.
Example N0. 9
Example No. 8 is repeated except the Bell Furnace temperature is raised to 600 F. and held 3 hours prior to cooling. The annealed and insulated alloy wire has a conductivity of 61.2% IACS and improved physical properties.
Example No. 10
Example No. 8 is repeated except the Bell Furnace temperature is raised to 600 F. and held 1 /2 hours prior to cooling. The annealed and insulated conductor has a conductivity of 61.5% IACS and improved physical properties.
Example No. 11
The alloy of Example No. 8 is cast into a continuous bar which is hot-rolled to yield a continuous f temper rod of inch diameter. The rod is then cold-drawn through successively constricted dies to yield #14 AWG wire. The wire is then redrawn on a Synchro Model BG-l6 wire drawing machine which includes a Synchro Resistoneal continuous in line annealer. The wire is drawn #28 AWG at a finishing speed of 3,300 feet per minute and the in line annealer is operated at 52 volts with a transformer tap setting at No. 8. The annealed wire is then insulated by extruding poly (vinyl chloride) around the wire. The annealed and insulated alloy wire has a conductivity of 62% IACS and improved physical properties.
Example No. 12
The alloy of Example No. 8 is cast into a continuous bar which is hot-rolled to yield a continuous f temper rod of inch diameter. The rod is then cold-drawn on a Synchro Style No. F X 13 wire drawing machine includes a continuous in line annealer. The rod is drawn to #12 AWG wire at a finishing speed of 2,000 feet per minute and the in line annealer voltage at preheater #1 is 35 volts, at preheater #2 is 35 volts, and at the annealer is 22 volts. The three transformer taps are set at #5. The annealed wire is continuously insulated by passing through an extrusion head where poly (vinyl chloride) is applied. The annealed and insulated alloy wire has a conductivity of 62% IACS and improved physical properties.
It should be understood that the present invention concerns solid aluminum alloy insulated conductors. Also included within the scope of the present invention are insulated cables made up of individual solid insulated aluminum alloy conductors. Particular examples of specific solid insulated conductors or cables formed therefrom as encompassed by the present invention include building wire, NM sheath cable, underground building wire, feeder cable, type TW single wire, harness wire, neon sign cable, radio hook-up wire, fire alarm and burglar alarm wire, fixture wire, control wire, machine tool wire, enunciator wire, DD service entrance wire, and railroad signal cable.
While this invention has been described in detail with particular reference to preferred embodiments thereof, it will be understood that variations and modifications can be effected within the spirit and scope of the invention as described hereinbefore and as defined in the appended claims.
I claim:
1. Process for preparing an aluminum alloy solid insulated conductor having an electrical conductivity of at least sixty-one percent IACS and iron aluminate inclusions with a particle size of less than 2000 angstrom units comprising the steps of:
(a) Alloying from about 98.95 to about 99.45 weight percent aluminum, from about 0.45 to about 0.95 weight percent iron, about 0.01 to about 0.15 weight percent silicon, and less than 0.05 weight percent each of trace elements selected from the group consisting of vanadium, copper, manganese, magnesium, zinc, boron and titanium; the total weight percent of trace elements being no more than 0.15 weight percent and the ratio of iron to silicon being at least 8:1;
(b) Casting the alloy into a continuous bar in a moving mold formed by a groove in the periphery of a casting wheel and an endless belt lying adjacent the groove along a portion of the periphery of the wheel;
(c) Hot-working the bar substantially immediately after casting while the bar is in substantially that condition as cast by rolling the bar in closed roll passes to obtain a continuous aluminum alloy rod;
(d) Drawing the rod with no intermediate anneals to form wire;
(e) Annealing or partially annealing the wire; and
(f) Insulating the annealed wire.
2. Process of claim 1 wherein step (a) comprises alloying from about 98.95 to about 99.44 weight percent aluminum, about 0.55 to about 0.95 weight percent iron, from about 0.01 to about 0.15 weight percent silicon, and less than 0.05 weight percent each of trace elements selected from the group consisting of vanadium, copper, manganese, magnesium, zinc, boron and titanium.
3. Process of claim 1 wherein the individual trace element content is from 0.0001 to 0.05 weight percent and the total trace element content is from 0.004 to 0.15 weight percent.
4. Process of claim 1 wherein step (e) comprises batch annealing or batch partially annealing the wire.
5. Process of claim 1 wherein polyvinyl chloride is employed as the insulation material.
6. Process for preparing an aluminum alloy solid insulated conductor having an electrical conductivity of at least sixty-one percent IACS comprising the steps of:
(a) Alloying from about 98.95 to about 99.45 weight percent aluminum with about 0.45 to about 0.95 weight percent iron, about 0.01 to about 0.15 weight percent silicon, and from 0.0001 to 0.05 weight percent each of trace elements selected from the group consisting of vanadium, copper, manganese, magnesium, zinc, boron and titanium, the total trace element content being from 0.004 to 0.15 weight percent.
(b) Continuously casting the alloy into a continuous bar;
(c) Continuously rolling the bar in substantially that condition in which it was cast into a bar to form a continuous rod;
(d) Drawing the rod with no intermediate anneals to form wire;
(e) Annealing or partially annealing the wire; and
(f) Insulating the annealed wire.
7. Process of claim 6 wherein step (a) comprises alloying from about 98.95 to about 99.44 weight percent aluminum, about 0.55 to about 0.95 weight percent iron, from about 0.01 to about 0.15 weight percent silicon, and from 0.0001 to 0.05 weight percent each of trace elements selected from the group consisting of vanadium, copper, manganese, magnesium, zinc, boron and titanium, the total trace element content being from 0.004 to 0.15 weight percent.
8. Process for preparing an aluminum alloy solid insulated conductor having an electrical conductivity of at least sixty-one percent IACS and iron aluminate inclusions with a particle size of less than 2000 angstrom units comprising the steps of:
(a) Alloying from about 98.95 to about 99.45 weight percent aluminum, from about 0.45 to about 0.95
weight percent iron, about 0.01 to about 0.15 weight percent silicon, and less than 0.05 weight percent each of trace elements selected from the group consisting of vanadium, copper, manganese, magnesium, zinc, boron and titanium; the total weight percent of trace elements being no more than 0.15 weight percent and the ratio of iron to silicon being of at least 8:1;
(b) Casting the alloy into a bar;
(0) Hot-working the bar by rolling the bar in closed roll passes to obtain an aluminum alloy rod;
(d) Drawing the rod with no intermediate anneals to form wire;
(e) Annealing or partially annealing the wire; and
(f) Insulating the annealed wire.
9. Process for preparing an aluminum alloy solid insulated conductor having an electrical conductivity of at least sixty-one percent IACS comprising the steps of:
(a) Alloying from about 98.95 to less than 99.44
weight percent aluminum with about 0.55 to about 0.95 weight percent iron, about 0.01 to about 0.15 weight percent silicon, and from 0.0001 to 0.05 weight percent each of trace elements selected from the group consisting of vanadium, copper, manganese, magnesium, zinc, boron and titanium, the total trace element content being from 0.004 to 0.15 weight percent;
(b) Casting the alloy into a bar;
(c) Hot-rolling the bar to form a rod;
((1) Drawing the rod with no intermediate anneals to form wire;
(e) Annealing or partially annealing the wire; and
(f) Insulating the annealed wire.
References Cited UNITED STATES PATENTS 2,252,421 8/1941 Stroup 75-138 2,545,866 3/1951 Whitzel et al. 29-193 3,063,832 11/1962 Snyder 75-138 3,241,953 3/1966 Pryor et al. 75-138 3,278,300 10/1966 Kloke 75-138 3,397,044 8/1968 Bylund 75-138 3,571,910 3/1971 Bylund 29-527.7
OTHER REFERENCES Alloy Digest, Aluminum EC, Filing Code, AL-104, June 1961, 2 pages, published by Engineering Alloys Digest, Inc., Upper Montclair, NJ.
Horn et al.: Aluminum-Conductor Cable an Alternative to Copper, Bell Laboratories Record, November 1967, Pp. 314-319.
Transactons of the American Society for Metals, The Efiect of Single Addition Metals on the Recrystallization, Electrical Conductivity and Rupture Strength of Pure Aluminum, 1949, volume 41, pp. 443 to 459.
A. I Field et al.: The Electrical Conductivity of Aluminum Wire, Journal of the Institute of Metals, 1933, 51, 183-198.
H. J. Miller: Heat-Treatment and Finishing Operations in the Production of Copper and Aluminum Rod and Wire, Journal of the Institute of Metals, 1954-55, 83, 221-232.
Ya. M. Krupotkin et al.: Effect of Small Impurities of Iron, Nickel, and Cobalt on the Mechanical Properties and Electrical Conductivity of Aluminum, Izv. Vysshikh Uchebn. Zavedenii, Energ. 8, No. 10, 112-116, 1965.
Gaston G. Gauthier: The Conductivity of Super-Purity Aluminum: The Influence of Small Metallic Additions, Journal of the Institute of Metals, 1936, 59, 129-150.
RICHARD O. DEAN, Primary Examiner U.S. Cl. X.R. 148-115
US31460A 1970-04-01 1970-04-01 Method of the preparation of a solid insulated conductor Expired - Lifetime US3647562A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US3146070A 1970-04-01 1970-04-01

Publications (1)

Publication Number Publication Date
US3647562A true US3647562A (en) 1972-03-07

Family

ID=21859578

Family Applications (1)

Application Number Title Priority Date Filing Date
US31460A Expired - Lifetime US3647562A (en) 1970-04-01 1970-04-01 Method of the preparation of a solid insulated conductor

Country Status (1)

Country Link
US (1) US3647562A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4431168A (en) * 1981-12-21 1984-02-14 Southwire Company Apparatus for improved heat treatment of elongated aluminum alloy materials
CN103757491A (en) * 2013-12-26 2014-04-30 安徽欣意电缆有限公司 Al-Fe-Cu-V aluminum alloy for automotive wire and wiring harness prepared from alloy
CN112210701A (en) * 2020-10-09 2021-01-12 美图(福建)铝业有限公司 High-conductivity 6101B alloy extruded section and processing technology thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4431168A (en) * 1981-12-21 1984-02-14 Southwire Company Apparatus for improved heat treatment of elongated aluminum alloy materials
CN103757491A (en) * 2013-12-26 2014-04-30 安徽欣意电缆有限公司 Al-Fe-Cu-V aluminum alloy for automotive wire and wiring harness prepared from alloy
CN112210701A (en) * 2020-10-09 2021-01-12 美图(福建)铝业有限公司 High-conductivity 6101B alloy extruded section and processing technology thereof
CN112210701B (en) * 2020-10-09 2022-05-31 美图(福建)铝业有限公司 High-conductivity 6101B alloy extruded section and processing technology thereof

Similar Documents

Publication Publication Date Title
US3512221A (en) Aluminum alloy wire
US3647939A (en) Reinforced composite aluminum alloy conductor cable
CA1037742A (en) High iron aluminum alloy
US4028141A (en) Aluminum iron silicon alloy
US3807969A (en) Aluminum alloy electrical conductor
CA1055734A (en) Aluminum nickel alloy electrical conductor
US3811846A (en) Aluminum alloy electrical conductor
US3600500A (en) Twin conductor with filler
US3670401A (en) Method of fabricating aluminum alloy rod
US3586751A (en) Circular electric service cable
US3513252A (en) Insulated aluminum alloy magnet wire
US4080222A (en) Aluminum-iron-nickel alloy electrical conductor
US3964935A (en) Aluminum-cerium-iron electrical conductor and method for making same
US4082573A (en) High tensile strength aluminum alloy conductor and method of manufacture
US4140549A (en) Method of fabricating an aluminum alloy electrical conductor
US3830635A (en) Aluminum nickel alloy electrical conductor and method for making same
US4233066A (en) Electrical conductor of aluminium
US3513251A (en) Multifilament conductor
IL32263A (en) Aluminum alloy wire
US4080223A (en) Aluminum-nickel-iron alloy electrical conductor
US3958987A (en) Aluminum iron cobalt silicon alloy and method of preparation thereof
US3807016A (en) Aluminum base alloy electrical conductor
US4216031A (en) Aluminum nickel base alloy electrical conductor and method therefor
US3513250A (en) Solid insulated conductor
US3914009A (en) Electrical contact device and method of preparation thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: SOUTHWIRE TECHNOLOGY, INC., A GEORGIA CORP.,GEORGI

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SOUTHWIRE COMPANY, (A GA. CORP.);REEL/FRAME:004765/0692

Effective date: 19870126

Owner name: SOUTHWIRE TECHNOLOGY, INC., CARROLLTON, GEORGIA, A

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:SOUTHWIRE COMPANY, (A GA. CORP.);REEL/FRAME:004765/0692

Effective date: 19870126

AS Assignment

Owner name: SOUTHWIRE COMPANY, GEORGIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:SOUTHWIRE TECHNOLOGY, INC.;REEL/FRAME:005091/0198

Effective date: 19890210